Telecommunications Systems Exercise 2

Spring semester 2025

1 Stochastic signals: Noise in Wireless

In wireless communication, a received signal is often corrupted by thermal
noise at the antenna, where the noise can be modeled as a wide-sense sta-
tionary (WSS) process and its spectral characteristics affect system perfor-
mance. In many practical systems, due to some subsequent filters, the impulse
response h(t) causes the received noise to be colored (i.e., its power is not uni-
form across all frequencies). The received noise Y (t) is related to the original
white noise X (t) through convolution:

Y(t) = X(¢) = h(t)
where h(t) is the impulse response of a low-pass filter.

1. The power spectral density (PSD) of the input noise X (¢) is flat across all
frequencies (i.e., it is white noise). Given that the impulse response is
modeled as an ideal low-pass filter with cutoff frequency B., sketch the
approximate PSD Py (f) of the output noise Y (t). Explain why the noise
is no longer white.

2. Assume the autocorrelation function of the filtered noise Y () is given by:

_sin(27B.7)
B =4= 5

Describe how the correlation between noise values at different times is
affected by the bandwidth B, of the filter.

2 AM signals: Square Wave Mixing

In practical RF CMOS circuits, instead of using a sinusoidal carrier for mod-
ulation, a square wave is often used in IQ mixing due to implementation
constraints. A square wave with a fundamental frequency fy can be expressed
as a Fourier series:
> 4
sq(t) = Z — sin(27k fot)

k=1,3,5,...



where fj is the fundamental frequency of the square wave. This means that
in addition to the fundamental component at fy, the square wave also contains
harmonics at frequencies 3fo,5/0,7f0,.... If a baseband signal m(t) is up-
converted using a square wave carrier, the modulated signal is:

Smod () = m(t) - sq(t)
This introduces multiple spectral components, making analysis important.

1. Assume an ideal case where the baseband message signal m(¢) is band-
limited to B Hz and modulated using a sinusoidal carrier at frequency fy

Smod (t) = m(t) cos(2 fot)
Sketch the frequency domain representation Sped(f) of this signal.

2. Now, assume the modulation is performed using a square wave instead
of a sinusoidal carrier

Smod (t) = m(t) - sq(t)

(a) Derive the frequency components introduced by the square wave
using its Fourier series expansion.

(b) Show that the modulated signal contains harmonics at 3 fy, 5 fo, . . ..
(¢) Sketch the spectrum of the modulated signal.

3. Explain why the additional harmonics at 3fo,5fo,... do not necessarily
degrade communication performance.

4. What type of filtering technique can be used in an RF system to remove
these unwanted harmonics?

5. In AM radio transmission, why does square wave mixing still work effec-
tively despite the presence of these extra spectral components?

3 Digitalize your AM signal

As a good radio amateur, you sit on top of a hill and listen to some AM signals
sent by another radio amateur on another hill somewhere. Because you missed
on sport lately, you really did not want to carry all that analog AM hardware
that is way to heavy. Instead, you made a small circuit board with an analog
to digital converter that samples the received AM signal at sampling frequency
fs. But will it work ?

The other radio amateur emits an amplitude-modulated single tone m(t) defined
by:

m(t) = cos(27 f1t) - sin(27 f.t)



Consider m(t), which is the signal m(t), sampled at frequency fs.

For the parameters:
e f.=1MHz
o f1=250kHz2
o f,=21MH:z

1. Express M(f), the Fourier transform of /(). You only need to find and
express explicitly the terms for which —% <f< %

2. Show that if m(t) is used to reconstruct m(t), the resulting signal will not
correspond to the original m(t) by finding the expression of the inverse
Fourier transform of M(f).

3. Explain why it does not correspond and how this could be prevented.

Hint: sketch the spectrum of the signals.

4 You can’t have the cake and eat it too

Remember Heisenberg uncertainty principle 7 Good ! But you wonder what
does it have to do with telecommunications, fair enough. The principle says
that for a given particle, one may not know its position with an arbitrarily
high accuracy without loosing all knowledge on the velocity. This principle can
be reformulated in many ways and the core of it is: you can’t know it all. It
applies for signals too, or as signal processing people would say, the principle
of Heisenberg is a consequence of the Fourier transform. Here is why: a signal
cannot be bounded in both time and spectrum. It means that a signal which
starts at a moment in time and ends at another moment in time and occupy
a finite band does not exist... you can’t have the cake and eat it too. Then
how can the TV signal that starts and ends in time be sampled by the receiver
without an infinite sampling frequency ? Or how did we know at { = —o0
before the Big Bang that we had to start broadcasting the signal that has a
strictly limited bandwidth 7 Be reassured, clever engineers have found some
workaround so that you can enjoy 5G despite not eating the cake :)

Let’s have a look at it. In your computer, the processor communicates with the
RAM bars on copper lines along the motherboard. Let’s assume for simplicity
that 0 V means ”0” and 5 V means ”1”. The processor wants to send a ”1” and
therefore transmits a perfect square pulse defined by the rectangle function :

-}

Where 7 is the duration of the pulse.



1. Sketch the signal s(t).

2. Express the spectrum S(f) defined by the Fourier transform of s(¢) and
sketch it (in magnitude only).

3. What shall be the sampling frequency fs; of the RAM bar to ensure that
the message sent by the processor is received correctly (i.e. it can be
perfectly reconstructed) ?

5 Time to sing

You want to play karaoke and ensure that everybody who can listen to the
electromagnetic spectrum around you will enjoy it too. You found a small radio
transmitter to do that. It only requires that you provide it with a digital signal
that is already up-sampled and in the pass-band. You therefore set up a small
system that includes:

e A microphone;

e An analog combiner;

e An ideal low-pass filter with cut-off frequency fo;

e An Analog-to-Digital Converter (ADC) sampling at fs;

e An up-sampler (low-pass filter included) that doubles the number of sam-
ples;

e A modulator that simply multiplies the signal by a pure complex carrier
at frequency f..

The combiner merges (adds) your voice v(t) and the music m(t). Unfortunately,
your microphone is not of the best quality and adds a lot of white noise n(t) to
your voice. The final signal is v(t) + m(¢) +n(¢) and their spectra are illustrated
down-below respectively in blue, red and dark.

Between each step of your system is given a set of axes. The spectrum is
represented on the first step. Sketch the spectrum as it evolves through the
system and fills the missing labels where necessary. Keep the color code for voice,
music and noise. The spectrum of your voice after sampling is also represented
to indicate the sampling rate. Note that for every step, fs always refer to the
initial sampling frequency, even after up-sampling.
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