Digital Systems Design - Fall Semester 2023 EE-334 Exam 17-01-2024
Telecommunications Circuits Laboratory EPFL-STI-IEL

Personal Information

Please fill in the following information

First Name:

Last Name:
SCIPER Nr.:

You must put your name and SCIPER number on all the answer sheets where these can be
written, please use the fields in the top of every second page.

Instructions

The rules of the exam are:

You have 180 minutes, from 15:15 — 18:15, to complete as many tasks as you can.
The exam is OPEN BOOK with access to the lab computers (as during the labs).

You can use your own computer as well, but it is your responsibility that it works (no
debugging from us of any computer issues on private computers during the exam).

You may use Vivado tools for simulation, syntax checking, and so forth.

You may use the internet for searching for information, but you are not allowed under
any circumstances to communicate with anyone.

Al systems like chatGPT, google Bard etc. are forbidden during the exam.

The Moodle contains a ZIP file that you can download once the examination starts. This ZIP
file holds templates for VHDL code that you need to complete or edit for some of the tasks.

When handing in, please note:

For questions where you must submit VHDL code, please upload files prefixed with your
SCIPER number, i.e., named SCIPER_taskX.vhdl with SCIPER to be replaced with
your SCIPER number and taskX being the task with its number.

For other tasks, please use the red rectangular response areas to write your answer. An
example of such a box is provided at the bottom of this page. It is recommended to
make a sketch on your own paper before drawing in the response area if you are unsure
about your answer. You can ask the exam supervisors for more paper if necessary.

= The answer sheets will be collected at the end of the examination.

EXAMPLE RESPONSE AREA

Example response area.

EE-334 Exam 17-01-2024

Part 1: Erroneous Designs and VHDL Code

This part of the exam deals with examples of VHDL code written in ways that do not match a
specification or where the VHDL code has numerous errors that do not allow synthesis.

Task 1.1: Computational block with unexpected behaviour

Listing 1 shows sequential pseudocode of an algorithm specification that an intern at the
company BIGCHIP was asked to implement as a synchronous circuit. For the algorithm
specification, the updates shown in Listing 1 have to happen immediately to all the variables.
This means that when A is incremented the new value of A should be used to calculate B and
the new value of B should be used to update C. For the implementation of the synchronous
circuit, the circuit must produce a new and coherent set of outputs (corresponding to one
execution of the algorithm in Listing 1) in each cycle.

1 A=A+ 1;
2 B = A xor "10101010";
3 C=B-1;

Listing 1. Pseudocode for the hardware implemented in Listing 2 for Task 1.1.

The VHDL code snippet in Listing 2 is an attempt to implement this code in hardware by the
intern. Two signals have been added to control the operation of the block in a synchronous
manner:

» OFFxSI: If OFFxSI is HIGH ('1’), the circuit should re-initialize AxD, BxD, and CxD no
matter the value of ONxSI.

= ONxSI: If ONxSI is HIGH ('1") and OFFxSI LOW ('0’) the circuit updates every cycle.
While the hardware synthesis succeeds (i.e., there are no errors hindering synthesis/implemen-
tation in Vivado), the implemented design (on the chip) does not meet the specifications above

for the operations on A, B, C and control signals OFFxSI and ONxSI. In the following tasks,
you will explain why.

2 of 22

Name: SCIPER:

10 entity taskl_1 is

11 port (

12 CLKxCI, RSTxRI : in std_logic;

13 ONxSI, OFFxSI : in std_logic;

14 OutxD0O : out unsigned(24-1 downto 0)
15 DE

16 end taskl_1;

17

18 architecture rtl of taskl_1 is

19 signal AxD, BxD, CxD : unsigned(8-1 downto 0);
20 begin

21

22 process (CLKxCI, RSTxRI)

23 begin

24 if (RSTxRI = '1') then

25 AxD <= (others => '0');

26 BxD <= (others => '0');

27 CxD <= (others => '0');

28 elsif (CLKxCI'event and CLKxCI = '1') then
29 if (OFFxSI = '1') then

30 AxD <= (others => '0');

31 BxD <= (others => '0');

32 CxD <= (others => '0');

33 end if;

34 if (ONxSI = '1') then

35 AxD <= AxD + 1;

36 BxD <= AxD xor "10101010";
37 CxD <= BxD - 1;

38 end if;

39 end if;

40 end process;

41 OutxD0 <= AxD * BxD * CxD;

42 end rtl;

Listing 2: Task 1.1 code snippet (task1_1.vhdl) implementing Listing 1 pseudocode.

Task 1.1a

When the circuit was tested, it was observed that when OFFxSI = ’1° the circuit never re-
initializes AxD, BxD, CxD to all 0 when ONxSI = ’1’. It is only when OFFxSI = ’1°’ and
ONxSI = ’0’ that the circuit correctly re-initializes AxD, BxD, CxD to all 0. Explain why this
happens, i.e., why does changing the value of OFFxSI have no effect when ONxSI = °1°,

Response area for task 1.1a.

3 0of 22

EE-334 Exam 17-01-2024

Task 1.1b

When the circuit was tested, it was observed that contrary to the specifications, when AxD
is incremented, the new value of AxD (i.e., AxD+1) is not used to calculate BxD <= AxD xor
"10101010". Likewise, when calculating CxD from BxD, the new value of BxD is not used. In
other words the outputs AxD, BxD, and CxD are inconsistent when compared to the values of
the variables in the algorithm specification after one pass of the algorithm. Explain why this
happens.

Response area for task 1.1b.

4 of 22

Name: SCIPER:

Task 1.1c

In its current form, i.e., without creating a new process for combinational logic (process(all)
or writing additional logic outside the clocked process (process(CLK, RSTxRI)), how would
you fix the code so that the outputs in each cycle are consistent with the values of A, B, and
C at the end of each execution of the reference algorithm in Listing 1. Describe whether it is
possible to do so and how you would modify the VHDL code inside the clocked process to do
this. You can write out the new VHDL code by hand just for that small part (lines 35-37) in
the response area below.

Response area for task 1.1c.

5 of 22

EE-334 Exam 17-01-2024

Task 1.1d

This style of writing code where everything is written inside a single process that describes
both sequential and combinational logic is called a one-segment description. This is considered
to be bad practice! Explain why this style of writing VHDL code is considered bad practice in
the response area below. Think back to the exercise in the class on this and your responses to
previous sub-tasks in this part of the exam.

Response area for task 1.1d.

6 of 22

Name: SCIPER:

Task 1.1e

Now, we consider rewriting the code to use separate processes to separate the sequential and
combinational logic. Use the response area below to now write out 2 processes. You need
to use one clocked process that updates the registers and one process for the combinational
logic. You just have to write the 2 processes and any new signal definitions, you do not need
to re-write the entity definition part with the ports or the output. Please use the notation xDN
and xDP for the registers.

Response area for task 1.1e.

7 of 22

11
12
13
14

15

EE-334 Exam 17-01-2024

Part 2: VHDL to Schematics

This part of the exam is concerned with translating VHDL code to circuit schematics.

Task 2.1: Dot product computation

The VHDL code snippet in Li sting 3 describes a module that performs dot products. The
two input elements AxDI and BxDI are Multiplied and Accumulated to the partial result (this
is called a MAC operation). The partial result is stored in the register MacxDP and outputted
at MacxD0. The MAC operation is performed in each clock cycle only if ENxST is active. The
signal ClearxSI is used to start a new MAC operation. Your task is to translate this code into
a schematic using standard components such as multipliers, adders, multiplexers, and so forth.

entity task2_1 is

port (
CLKxCI : in std_logic;
RSTxRI : in std_logic;
ENxSI : in std_logic;
ClearxSI : in std_logic;
AxDI : in unsigned(16-1 downto 0);
BxDI : in unsigned(16-1 downto 0);
MacxDO : out unsigned(16-1 downto 0)
)s

end task2_1;

architecture rtl of task2_1 is

signal ProdxS : unsigned(32-1 downto 0);
signal SumxS, MacxDN, MacxDP : unsigned(16-1 downto 0);
begin

process (CLKxCI, RSTxRI)
begin
if (RSTxRI ='1') then
MacxDP <= (others => '0');
elsif (CLKxCI'event and CLKxCI = '1') then
MacxDP <= MacxDN;
end if;
end process;

ProdxS <= AxDI * BxDI;

SumxS <= ProdxS(16-1 downto 0) + MACxDP;

MacxDN <= ProdxS(16-1 downto 0) when ClearxSI '1' and ENxSI = '1' else
SumxS when ENxSI = '1' else
MACxDP;

MacxD0O <= MACxDP;
end rtl;

Listing 3: VHDL code snippet for Task 2.1 from task2_1.vhdl.

8 of 22

Name: SCIPER:

Response area for drawing the schematic of Task 2.1.

9 of 22

EE-334 Exam 17-01-2024

Task 2.2: Arithmetic Logic Unit

The VHDL code snippet in Listing 4 describes an ALU performing various operations on an
input AxDI. Your task is to translate this code into a schematic using standard components.

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

entity task2_2 is

port (
CLKxCI in std_logic;
RSTxRI in std_logic;
SelxSI in std_logic_vector(2-1 downto 0);
AxDI : in unsigned(8-1 downto 0);
ResxDO : out unsigned(8-1 downto 0)

i

end task2_2;

architecture rtl of task2_2 is
signal ResxDN, ResxDP :

begin

process (CLKxCI, RSTxRI)

begin

if (RSTxRI ='1') then
ResxDP <= (others => '0');

elsif (CLKxCI'event and CLKxCI = '1') then
ResxDP <= ResxDN;

end if;

end process;

process(all)

begin

if (SelxSI = "00") then
if (AxDI >= 127) then
ResxDN <= to_unsigned(l, ResxDN'length);

else

ResxDN <= (others => '0');
end if;
elsif (SelxSI = "01") then
if (AxDI >= 127) then
ResxDN <= AxDI;

else

ResxDN <= (others => '0');
end if;

elsif (SelxSI

else

ResxDN <= AxDI(8-2 downto 0) & '0O';

end if;

end process;

ResxD0 <= ResxDP;

end rtl;

Listing 4. VHDL code snippet for Task 2.2 from task2_2.vhdl.

unsigned(8-1 downto 0);

"10") then
ResxDN <= '0O' & AxDI(8-1 downto 1);

Name: SCIPER:

Response area for drawing the schematic of Task 2.2.

11 of 22

EE-334 Exam 17-01-2024

Part 3: Schematics to VHDL

This part of the exam is concerned with converting schematics to VHDL code. The schematics
do not have any errors in them.

Task 3.1: Implementation of Mathematical Function

In this task, you will explain what the circuit in Figure 1 is doing, translate the schematic of
the circuit into VHDL code, and write a testbench.

EHEH
a[7:0] 0
— 2[15:0]
b([7:0]
c[7:0]

CLKxCI

RSTxRI

Figure 1: Schematic for Task 3.1.
Task 3.1a: Circuit Analysis

Explain what the circuit in Figure 1 is doing, i.e., what is the purpose of this circuit. As this
circuit implements a mathematical function z(a, b, ¢), you should write out this function and
relate the different parts of the function to the parts of the circuits like the multiplexers and
comparators. Note that the block with ~ simply inverts all the bits of the input. Inverting the
bits and adding 1 performs the 2's complement on that number and converts a signed number
from positive to negative or negative to positive, i.e., —1 would be transformed to 1 and vice
versa. The comparator outputs a >1’ if x1 >= x2 and otherwise a >0°.

Response area for explaining the functionality of the circuit in Task 3.1a.

12 of 22

Name: SCIPER:

Task 3.1b: VHDL Implementation

Translate the schematic into VHDL code using the template file task3_1b.vhdl and upload
your response to Moodle. Please name your file SCIPER_task3_1b.vhdl and replace SCIPER
with your SCIPER number.

The ports a, b, and c are all 8-bit signed numbers in 2's complement and z is 16-bit signed.
The bit-widths of the internal signals are up to you, but you should try to avoid overflows.
You can check for overflows in Task 3.1c by comparing the output of your testbench using the
mathematical function derived in Task 3.1a.

Task 3.1c: VHDL Simulation

Write a testbench for the component you implemented in Task 3.1b using task3_1c_tb.vhdl
and upload your response to Moodle. Please name your file SCIPER_task3_1c_tb.vhdl and
replace SCIPER with your SCIPER number.

You testbench should consider the following 5 input combinations:

1. a=3, b=2, and c=4

2. a=30, b=-25, and c=-10

3. a=-128, b=-32, and c=-14

4. a=-128, b=-128, and c=-127

5. a=127, b=90, and c=-128
For each of these input combinations, you should calculate the expected value based on your
equation and compare to what you get in simulation. The last 3 input patterns can help you
identify if there are any overflows in your design. Remember to reset your circuit first and also
generate a clock. Leave 1 clock cycle between each of the above steps to observe the behavior

of the circuit. It is enough to just observe the behavior of the circuit, there is no need to put
assertions on the circuit output for verifying its correctness.

In the response area below, please indicate your output result from the VHDL code for each
of the 5 different input combinations. If the output from your VHDL code does not match
your mathematical function, please explain why you think this is the case and what you may
have to change in your code. If the result matches what you expect, it means that you have
correctly implemented the function in your code.

ok
N
I

Response area for Task 3.1c.

13 of 22

EE-334 Exam 17-01-2024

Part 4: Circuit Design and Analysis

This part of the exam is concerned with circuit design and analysis from a high-level description.

Task 4.1: FIR Filter Implementation

In this task, we consider an FIR filter used in a wireless system. An FIR filter can be described
by the equation

where K is the filter order, z[n — k] is the input in cycle n — k (so x[n — k| represents delayed
versions of), h[k| is the k-th filter weight, and y[n] is the output in cycle n. Input data is
received in every cycle and the filter just runs continuously.

Task 4.1a

For K = 2, draw the isomorphic hardware architecture of the FIR filter using multipliers, adders,
and registers. Signals x[n], delayed versions x[n-1] and x[n-2], filter weights h[0], h[1],
h[2], and the output y[n] must all be explicitly labelled in the circuit. Assuming that the
input x is 8-bits and all the filter weights are 8-bits, please indicate after each multiplication
and addition what the required bit-width would have to be.

You can simplify your drawing by using a black vertical bar for the registers (I). You can decide
whether to add registers in the beginning for x and at the end for y, but registers are necessary
to get the delayed input signal z. It can help to write out the equation for different n.

Response area for task 4.1a.

14 of 22

Name: SCIPER:

Task 4.1b

Now, we consider a change in the system. The clock speed is 40 MHz, but the rate at which
valid data is delivered at is only 20 MHz. Hence, only every 2nd data input is valid, yet, the
circuit is clocked in every cycle and can not be disabled. As an example, in cycle 0 the circuit
receives x[0], in cycle 1 it receives an arbitrary unrelated (invalid) input, and in cycle 2 it receives
z[1] and so forth. The invalid outputs can be any value as they are ignored by subsequent
circuit. Given that we do not have valid data in every cycle, write out a new correctly pipelined
version of your FIR filter that takes into account that there is only one valid data item in every
second cycle to correctly do the filter convolution. This is a task in pipelining, there is no
control logic to add on top of the circuit you have previously defined.

Response area for task 4.1b.

15 of 22

EE-334 Exam 17-01-2024

Part 5: Finite-State Machines (FSMs)

In this part, you will design a finite-state machine (FSM). Just as a reminder on state notation,
we show the general notation for a state in a Moore FSM in Figure 2. Just like in the exercises,
you can write out what your default Moore output values are and only if the Moore output is
different from that do you need to write out the Moore outputs explicitly in each state. That
is, if you write that Out1xS0 by default is "10", then it can be left out of the node in Figure 2.

RSTxRI IdleST In1xSI="1’
@ > Out1xS0<="10"
Out2xS0<="11"

Y

a%
.,
SR

AN InixSI=’0’ AND

Moo In2xSI=’1’

O.a
Y In1xSI=’1’
%%
%

Figure 2: State notation with state name in bold. Moore outputs are indicated inside the node
of a state. The initial state after reset needs is indicated. A state needs an arrow to indicate
when we remain in the state along with the conditions for remaining in the current state. In this
example, the transition In1xSI="1’ implies that no matter the value of In2xSI, if In1xSI="1",
then we transition and it is not necessary to write the transition condition as (In1xSI=’1’
AND In2xSI=’0’) OR (Inl1xSI=’1’ AND In2xSI=’1’) which is much longer.

Task 5.1: Turnstile Entry Controller

Consider a turnstile entry controller into a subway station: a rotating gate with a coin receiver.
There are two inputs to the system and two outputs:

CoinxSI: Indicates a coin has been inserted
PushxSI: Indicates the arm is being pushed

GatexS0: Is >1° for open or >0’ for closed in the unlocked and locked states, respectively.

L s

EjectxS0: Is >1’ for ejecting an inserted coin when the gate is already open, otherwise
’0°.

The gate is initially locked and will not rotate or allow a passenger to pass through, no matter
how many times the gate is pushed. When a coin is inserted, i.e., CoinxSI goes HIGH (’1°),
the system changes the state to unlocked. In the unlocked state, any further coin insertion has
no effect and the coin is simply ejected. The turnstile controller remains in the open state if no
push is sensed for N seconds and then changes back to state locked and clears the counter. If
the turnstile controller detects a push while in the open state, it also goes back to the locked
state even if the counter has not reached IV seconds and it clears the counter.

You can assume that there is an external counter outside of the FSM which the FSM can clear
with a signal CNTClearxS0, enable with CNTEnablexS0, and the counter value is available as
input CNTxDI.

16 of 22

Name: SCIPER:

Task 5.1a

Design a Moore FSM to control the turnstile entry based on the provided description. Use
the drawing area below for writing out your state diagram. Remember to indicate the output
values and the values required for state transitions. You may indicate in your response the
default outputs of your FSM and then only when the output is different from that do you have
to write it inside the node of a state. Please give your states and additional signals meaningful
names. You can implement your FSM with any number of states and any number of additional
signals beyond the described input and output signals if this is necessary.

Response area for drawing the Moore FSM for the turnstile entry controller in Task 5.1a.

17 of 22

EE-334 Exam 17-01-2024

Part 6: Architectural Transformations and Timing
Analysis

This part is concerned with architectural transformations, timing analysis, and pipelining.

Task 6.1: Algorithm to Architecture

We consider a datapath shown in Figure 3. The area and delay specifications of the operations
(and the registers) are provided in Table 1. Assume that the inputs are stable at to = 0.
Remember that the time-per-data-item is defined in both clock cycles and time (nanoseconds).
The time-per-data-item in clock cycles is the number of computation cycles between releasing
two subsequent data items, that is, producing two results.

OutputxDO

AxDI

00 01 10 11

BxDI
CxDI
DxDI
ExDI

Figure 3: Diagram of Task 6.1.

Table 1: Area and timing for various components for Task 6.1.

Component | Area tpg [ns] teq [ns] tsy [nS] tho [nS]
2-1 MUX 2 0.1 0.1 - -
4-1 MUX 5 0.15 0.15 - -
Mult. 12 1.5 0.5 - -
Add/Sub 4 0.6 0.3 - -
Register 1 0.25 0.15 0.3 0.1

Consider the schematic of the iteratively decomposed datapath in Figure 3. This circuit
processes 5 numbers over multiple cycles. We distinguish the following four path groups with
the corresponding minimum and maximum delays:

= Input-to-output delay: t7" and 14,
= Input-to-register delay: ¢7%" and #2%%.
= Register-to-output delay: $"%" and ¢
= Register-to-register delay: ¢7%" and ¢7%%
The circuit iteration over 5 cycles is as follows (this illustrates how the muxes are controlled):
1. OutputxDN <= AxDI * BxDI
OutputxDN <= QutputxDP * (OutputxDP + CxDI) + OutputxDP
OutputxDN <= OutputxDP * (OutputxDP + DxDI) + OutputxDP

OutputxDN <= OutputxDP * (OutputxDP + ExDI) + OutputxDP

o >~ W

OutputxDN <= AxDI * BxDI

18 of 22

Name: SCIPER:

Task 6.1a: Iteratively Decomposed Circuit Analysis

1. Which of the four path groups is not meaningful (has no path) in Figure 37 For the
meaningful path groups, please estimate the min and max of these, i.e., t7%" and 9%,

'YX
2. What is the area and minimum clock period? For this and the remaining questions, you
can assume that the inputs are stable at to = 0.

3. What is the time-per-data-item in clock cycles and nanoseconds for the circuit?

Response area for steps 1-3 in Task 6.1a.

19 of 22

EE-334 Exam 17-01-2024

Task 6.1b: Isomorphic Circuit Analysis

1.

Draw the isomorphic architecture of a circuit that generates the same result in 1 cycle.
The isomorphic circuit should have registers with the provided timing parameters at the
inputs and outputs.

What is the minimum clock period for the isomorphic architecture?

Draw the pipelined isomorphic architecture so that each pipeline stage matches an
iteration of the iterative circuit. The pipelined isomorphic circuit should have registers
with the provided timing parameters at the inputs and outputs.

. What is the minimum clock period and area for the pipelined circuit?

. What is the time-per-data-item in clock cycles and nanoseconds for the pipelined circuit?

Response area for step 1-2 for the isomorphic architecture in Task 6.1b.

20 of 22

Name: SCIPER:

Response area for steps 3-5 for the pipelined isomorphic architecture in Task 6.1b.

21 of 22

EE-334 Exam 17-01-2024

Task 6.1c: Architecture Comparison

1. Compute and compare the efficiency (in terms of area-delay product) of the iterative,
isomorphic, and pipelined circuits. What do you observe? Which is the most efficient
implementation in terms of its AT-product (provide the AT-products)?

2. In what situations would you opt for the circuit with the worse AT-product (despite its
AT-product disadvantage) and why?

Response area for steps 1-2 for Task 6.1c on the AT-products.

22 of 22

