
Digital Systems Design - Fall Semester 2024 Exercise 4
Telecommunications Circuits Laboratory EPFL-STI-IEL

Finite State Machines
In this exercise we specify a finite state machine (FSM) to be implemented later on an FPGA.

Hand-in instructions: Prepare a small report with your solutions (detailed). Submit your
report as a PDF through the lecture moodle per the moodle submission deadline.

System Description
The goal is to model an electronic lock system, as shown in Figure 1, which might be used in
an access control system or a safe with an electronically controlled door.

1

4

2

7

R

5

8

0

9

3

6

OK

Error

Figure 1: Electronic Lock System

The input of the FSM are two signals, the KeyValid signal, which is asserted (=’1’) when a
key is pressed, and the Key signal, which reports the value of one of the pressed numerical
keys. Once the key is released, KeyValid is de-asserted (=’0’). The possible values of these
two signals are:

• KeyValid ∈ {0, 1} (key pressed)
• Key ∈ {0, 1, 2, 3} (key value)

The interface electronics are designed in a way that if two numerical keys are pressed at the
same time, KeyValid is not asserted (i.e., both keys are ignored). If KeyValid is asserted, Key
always has a defined value ∈ {0, 1, 2, 3}.

The outputs of the FSM are two signals controlling a red and a green LED:

• GLED ∈ {0, 1} (green LED: OK & door open)
• RLED ∈ {0, 1} (red LED: Door closed or wrong key)

The signal for the green LED also controls the door opening mechanism of the system.



Exercise 4 2

Basic Lock (Single Cycle Open)
Initially, the door is closed (RLED asserted). Once any key is pressed, both LEDs turn off. After
three keys have been pressed, the door is either open (GLED asserted) if the code was correct
or closed (RLED asserted) if the code was wrong. Once the door is open (for a single clock
cycle), it closes automatically (transitions into the closed state in which the RLED asserted).

Our lock has a 3-digit code: "0,2,1" that must be entered in the correct order. Make sure to
check after each key press, that the key has been released again, before waiting for the next
key press. This mechanism in practice avoids multiple detections of the same key, due to it
being held down for a long time.

Task 1: State Diagram of Basic Lock
Draw the state machine diagram that implements the above-described lock.

Lock with Extended (Multi-Cycle) Opening
The lock defined in the previous Task has the problem that it remains open only for a single
clock cycle. On the FPGA, our FSM is clocked with a clock of 125 MHz, which renders the
opening time very short if we just use a single clock cycle.

Modify your FSM such that the lock stays open for approximately 2 seconds (green light) and
then it closes (red light). Any new key input can be ignored during the 2 seconds where the
lock is open. The red light stays on until the first key is pressed to open it again (the light is
not shown while a new password is being entered). To this end, you are given two new FSM
outputs to help control the time the lock stays open:

• CountEn ∈ {0, 1} (counter enable)
• CountClear ∈ {0, 1} (counter clear)

These outputs control an up-counter, which increases its value by one in every cycle whenever
CountEn is asserted. The CountClear signal allows the counter to be reset to zero.

The current value of the up-counter is given by the following FSM input:

• Count ∈ {0, 1, 2, . . . } (counter value)

This input is used to control when the FSM leaves the open state.

Task 2: State Diagram of Lock with Extended Opening
Draw the state machine that implements the lock described above.


