
Digital Systems Design - Fall Semester 2024 Exercise 1b
Telecommunications Circuits Laboratory EPFL-STI-IEL

Basic RTL Design
Synchronous (positive-edge triggered) Register Transfer Level (RTL) designs implements a
given functionality by using registers (Flip-Flops) and combinational logic. The registers store
the system state, which is updated on every positive clock edge. The next state is determined
by the combinational logic from the current state (register outputs) and the primary inputs.

In this exercise, you implement a few basic functions which are repeatedly used in the class
and serve as a basis for many RTL designs. Specify the RTL architecture for these functions
as RTL block diagrams, i.e., you do not have to write any VHDL code for this exercise.

Hand-in instructions: Prepare a small report with your solutions (detailed). Submit your
report as a PDF through the lecture moodle per the moodle submission deadline.

Task 1: Pulse Generator
Your block in this task has the following ports with directions:

• CLKxCI (input): 100 MHz=10 ns clock.
• RSTxRI (input): Active-high aynchronous reset that is only asserted once during power

up (HIGH=’1’) and inactive (LOW=’0’) after.
• X (output): Pulse which is HIGH (’1’) for 10 ns every microsecond.

Draw the RTL block diagram describing this circuit. Note that you can measure pulse
length in different ways, i.e., you can use the start of the pulses or the gap between the pulses
to measure 1 microsecond. Picking one or the other will just result in a slightly different timing
diagram compared to Figure 1 where we have also added a register before output X.

CLKxCI
RSTxRI
CNTxDN 1 2 3 100 0 1 2 100 0 1 2

CNTxDP 0 1 2 99 100 0 1 99 100 0 1

XxSN
XxSP

Figure 1: Pulse generator timing diagram with a pulse every microsecond (1000 ns).

Hints and common errors �

Some important things to remember in this class:

• Remember the rules of synchronous design at all times!
• Do not make your life unnecessarily complicated! Implement the circuit with standard

components like adders, boolean gates, multiplexers, D flip-flops (no T flip-flops!)
and so forth. Do not implement standard components like adders with logic gates,
you should just directly use an adder as a standard component.



Exercise 1b 2

Circuit designer’s toolbox å

We often find that many students will immediately start drawing schematics without having
fully understood the problem they are trying to solve. A clear, concise problem statement
is always the first step to solve any programming or hardware design problem.

As the class progresses, you will have to deal with problem statements becoming less detailed
and you have to fill in the gaps. Examples of elaborating the problem description include:

• Writing down a list of ports with their directions and purpose as shown in Task 1.
• Drawing a timing diagram to show the circuit behavior as done in Figure 1. For a task

where counters are used, you can also add the counter value to relate this to signal
changes, i.e., at what counter value should other signals do something particular.

• If you have a larger circuit with many signals, you can do several small timing diagrams
where you only include the subset of signals relevant for describing certain cases.

These practices, while simple, are a good way to better understand the circuit you are
implementing and it also serves as a form of documentation.

Task 2: Up-Counter with Conditional Enable
The input of your block in this task are two 1-bit signals AxSI and BxSI as well as a clock
CLKxCI and an asynchronous reset RSTxRI that is only asserted once during power up (HIGH)
and inactive (LOW) after. Implement a circuit that counts and outputs the number of clock
cycles in which both inputs are ’1’.

Draw the RTL block diagram describing this circuit. You may consider elaborating on our
task description by listing the ports and their purpose as done in Task 1.

Task 3: Rising Edge-Detector
The input of your block in this task is a 1-bit signals AxSI as well as a clock CLKxCI and an
asynchronous reset RSTxRI that is only asserted once during power up (HIGH) and inactive
(LOW) after. The input signal AxSI can change from ’0’ to ’1’ and from ’1’ to ’0’ at random
moments in time. Implement a circuit that outputs (signal X) a ’1’ for only a single clock cycle
every time the input transitions from ’0’ to ’1’.

Draw the RTL block diagram describing this circuit.


