Digital Systems Design - Fall Semester 2024 Lab 2
Telecommunications Circuits Laboratory EPFL-STI-IEL

LED Color Controller FPGA Implementation

The aim of this lab is to implement in VHDL the PWM circuit that you have designed on
paper in Exercise 2 and to test it on the FPGA board. It is strongly recommended that you
finish Exercise 2 and Lab 1 before starting this lab.

Hand-in instructions: Prepare a small report with block diagrams. Submit the report as a PDF
with the source code files through the lecture moodle per the moodle submission deadline.

Important information A

Please always check these things before you start a lab or when you have issues!
FPGA:

= Remember to use the reset button/switch on the FPGA to reset your design and to
turn this off again if using a switch.

= Connect the FPGA board's Ethernet port to a computer, router, or any other device
with an Ethernet port that can power the Ethernet chip on the FPGA board (no
internet connection is needed). See the Lab 2 manual for an explanation.

VHDL:

= For combinational logic, use process(all). Do not write your own sensitivity lists!
Please remember to change files using process(all) to VHDL 2008. This is done
by selecting the file in the Source tab. Look at the Source File Properties tab
and change the type to VHDL 2008 by clicking on the 3 dots in the Type field.

= For defining registers, use the clocked process style process(CLKxCI, RSTxRI).
Do not define combinational logic like CNTxDP <= CNTxDP + AxDI inside a clocked
process! See Task 4 in Exercise 3 and its solution for further explanation.

= Never write to the same signal in multiple concurrent statements! This means that if
you assign to a signal in a process that signal can only be assigned to in that process
and nowhere else. The only place you are allowed to assign multiple times to a signal
is inside the (single) process where it is assigned to.

Virtual machines:

= EDA server users must start Vivado with vivado -source load board files.tcl
as described in Lab 1. If you do not see the board files in the Vivado GUI, you have
likely used the command with a spelling error or something similar.

Windows users:

= Avoid spaces and special characters in your filepaths! Vivado projects can become
corrupted if you have spaces and special characters in your filepaths.

= You may have to disable your antivirus tool before running simulations in Vivado.

For common questions/hints to this lab, please see the last page of this document
which contains various hints and best-practices.

Lab 2 2

VHDL Coding of The Circuit

Download the handout .zip file from moodle. The file contains the following files:

» pwm.vhdl: Template for the circuit that generates the PWM pulse to control each color.

» toplevel.vhdl: Template for the top-level that instantiates three PWM circuits to
control the three colors of the RGB LED.

» pwm_tb.vhdl: The testbench which automatically checks the PWM pulse width.

Task 1: PWM Pulse Generator Implementation

Implement the PWM pulse generation from Exercise 2 in pwm.vhdl. The input PushxSI is
from a push button and the output LedxS0 controls an LED color. Do not forget to stick to
your block diagrams! The counter for the PWM and the threshold should be 20-bits and you
should increment the threshold counter by 2'7 = 131072 every time the button is pressed.

Circuit designer’s toolbox >

In Exercise 1b and 2 we worked on understanding the problem at hand that we are solving
and devising a plan. In this lab, we are now carrying out this plan by implementing. In
general, problem solving can be divided into 4 steps:

1. Understanding the problem: This step can involve writing out the ports and their
purpose, making a timing diagram, etc. Anything that furthers your understanding
of the problem. Many students are halfway through writing code before discovering
they do not really understand the problem and then have to start over.

2. Devising a plan: In circuit design, this means drawing a schematic (before writing
the code!). Note that this 2nd step and the 1st step have some overlap.

3. Carrying out the plan: This step involves writing the actual VHDL code that
implements the circuit and verifying its correctness.

4. Looking back: Think about how you solved the problem, could you have done
anything simpler? How did others solve the problem? In this class we will do this
together by looking at some of the solutions handed in.

While the process of problem solving may seem trivial to some of you, we find that many
students have some bad habits in this area that should be unlearned.

Task 2: PWM Pulse Generator Verification

You can verify you implementation for the PWM pulse generation using the provided testbench
pwm_tb.vhdl, which is added in the same way as the testbench from the first lab session.
Please make sure that only the pwm_tb.vhdl file is listed as a top-level file for simulation.

File Edit Flow Tools Reports Window layout View Run _Help Quick Access Synthesis and Implementation Out-of-date detalls

=, > o & X L €D 2)s vz < Default Layout v
= e o N

Figure 1: Press the Run All button at the top of the Vivado window to run a full simulation.

You must press Run All at the top of Vivado, as shown in Figure 1, to run the full simulation.
The testbench verifies the pulse width and prints the result to the Tcl Console, as shown in
Figure 2. However, you should still look at the waveforms in the waveform viewer to verify that
everything is correct. See the hintbox on the next page for help with Vivado simulations.

Lab 2 3

Tcl Console

QT 21 B E@

run all

Note: Pulse width 131072 clock cycles, expected 131072 good work!

Time: 9437200 ns Iteration: 0 Process: /pwm_th/p_stim File: shome/andreas/gitlabs/dsd/AS21/1abs/1ab02_colorled,
Note: Pulse width 262144 clock cycles, expected 252144 good work!

Time: 18874384 ns Iteration: @ Process: pwn_tb/p_stim File: shomesandreas/gitlab/dsd/AS21/1abs/1ab0o2 colorlec
Mote: Pulse width 393216 clock cycles, expected 393216 good work!

Time: 28311568 ns Iteration: @ Process: /pwn_th/p_stim File: shome/andreas/gitlab/dsd/AS21/1abs/1ab02 _colorlec
Mote: Pulse width 524288 clock cycles, expected 524288 good work!

Time: 37748752 ns Iteration: © Process: /pwn_tb/p_stim File: shomesandreas/gitlabsdsd/AS21/1abs/1ab02_colorlec
Note: Pulse width 655360 clock cycles, expected 655360 good work!

Time: 47185936 ns Iteration: @ Process: /pwn_tb/p_stim File: shomesandreas/gitlab/dsd/AS21/1abs/1ab0o2_colorlec
Note: Pulse width 786432 clock cycles, expected 786432 good work!

Time: 56623120 ns Iteration: @ Process: /pwn_tb/p_stim File: shome/andreas/gitlab/dsd/AS21/1abs/1ab02_colorlec
Note: Pulse width 917504 clock cycles, expected 917504 good work!

Time: 66050304 ns Iteration: @ Process: pwn_tb/p_stim File: shomesandreas/gitlab/dsd/AS21/1abs/1ab02 colorlec
$ston called at time : 74448928 ns : File "/homesandreas/oitlab/dsd/as21/1abs/1aboz colarled/handout/lab/sre/own

Figure 2: Tcl console with print out from the testbench. The testbench checks the width of your
PWM pulses and reports the result. Pulse widths should be integer multiples of 27 = 131072.

By default, you only see the signals in your top-level entity, but from this it is almost
impossible to identify most issues in larger designs. The simulator allows you to check and
plot waveforms of any signal in your design as shown in Figure 3. For this, you have to:

1. Set the Scope to the entity in which you want to look at signals.
2. Drag and drop signals of interest into the Waveform viewer from the Objects tab.

3. You need to restart the simulation to view some signals as they were not saved earlier.

' TestYGA - [/ UsersaburgyDocuments/PaganaTesi/TestVEA Testui

il - w.-;u"" ii 1“__.“" =8 __x

Ede Eot Fow Tools Repods Winoow Lawuwt View Bun Help wrte_tastream Complete
=, B P E & T ¥ M o» ok ams v E c DetafLa v
Flow Navigator ERCIR I SIMULATION - Behavaral Simulaon - Funcional - sim_1 -vga_coniraller_t
v PROJECT MANAGER e .
Scope Sources Objects: X
2 senings
alzls ¢ Q o
Add Sources
_ Hame Design Unit Block Type Name Value o~
y ENBRpG Tonp) Wwa vpa_contoser_toin) VHOL En W REOXDO]30) 0
T 1P Catatog B _ vga_controBer() DL En. > W GREEN:DO[RD] 0 A
@l gl varies » W BLUEXDOZ 0] 0 A
¥ P INTEGRATOR © CNI_HSIDF{110] 026 A

Create Block Design

¥ SIMULATION °
Run Simulalion 0
521 A
¥ RILANALYSIS . 326 A
> Opan Elabarated Design 1 Baroens 1
LeaSiords 1B A
v SYNTHESIS » W RightBordend{i10] 518

» Rum

> Open Synthesized Design

¥ IMPLEMENTATION e ————
yTVGA/ TESTVGA. 3TCa/913_1 F1TPOTTS/ ITC/Vga_Cconcroller_to~
B Run Implementation

> Open Implemented Dasign

v PROGRAM AND DEBUG

Sim Time: 1us

Figure 3: Click on Scope to unfold the top-level and see its sub-components. Any signal shown
in the Objects tab can be dragged over to the Waveform viewer. Note that you have to restart
the simulation to view some signals as they were not saved earlier.

Task 3: RGB PWM Pulse Controller

Implement the RGB PWM pulse controller inside toplevel.vhdl by instantiating the pwm
component three times for each color. The component declaration is already included and you
only need to assign the corresponding top-level ports to each instance.

Lab 2 4

Implementation on the Board

Task 4: FPGA Constraint File

Launch Vivado and create a new project using the name of the work directory in the handout.
Add the previously described source files to your project. Then, add the .xdc file, provided
on moodle, to the project. The .xdc file is in the constr directory as in the first lab. The
provided .xdc file is the standard template for the board, and you need to correctly connect
the buttons, clock and LEDs to your design as follows:

= Connect the clock port of the design to the external board clock source which has a
frequency of 125 MHz.

= Connect the reset port of the design to BTN 0 on the board.

= Connect the RGB color controller inputs to BTN 1-3 on the board, with PushRedxSI
connected to BTN 3, PushGreenxSI to BTN 2, and PushBluexSI to BTN 1.

= Connect the RGB output color to LED4 on the board. Note that this LED has 3 inputs
as it is an RGB LED.

You can look at the .xdc file from Lab 1 better understand what changes to make when
connecting your signals to the pins.

Task 5: FPGA Programming

Run synthesis, implementation and generate the bitstream. Program the FPGA with the
bitstream and try the followings to verify your design:

s Press BTN 0 to reset all the counter values. The PWM pulses have duty cycle of 0 and
the LED should be turned off (black).

= Press BTN 3 to increase the intensity of the red color. Press reset again and test the
two other colors in a similar way.

= Try to generate other colors by mixing RGB according to their color codes.

Important! For the design to be fully working, it is necessary to connect the FPGA with an
Ethernet cable to a computer, router, or any other device with an active Ethernet port. This
is because the FPGA clock comes from the Ethernet chip on the board. Without this, you
will see some flickering of the LED, even if your design is correct, as the clock will periodically
stop. For this lab, it is okay to NOT use an Ethernet cable, but it will be needed in
future labs. The result of not using an Ethernet cable in this lab is a little pulsing of
the LED.

Common Questions

Common questions/remarks for this lab are:

= How do | create a VHDL file? After creating a project in Vivado you can click File —
Add Sources — Add or create design sources. Alternatively, just use your normal
code editor and create new files with the .vhdl (recommended) or .vhd extensions.

= How do | resolve the warning 'The PS7 cell must be used in this Zynq design
...? This warning can be safely ignored as it's unrelated to what we do on the FPGA.

= How do | resolve the error 'Unconstrained Logical Port’? While VHDL itself is case-
insensitive, .xdc constraints are case sensitive and your port names should match
those in the .xdc file in case as well.

Lab 2

Outlook does not allow . vhad files: You cannot send .vhd files in Outlook, try renaming
to .vhdl as the .vhd extension is also used for Virtual Hard Disk on Windows.

Remember that order matters in processes! Since the order of assignments are done
sequentially in a process, meaning that in the example below DxS0 is only assigned AxSI
and BxSI and never AxSI or BxSI.

Listing 1: This implementation ignores the line AxSI or BxSI as it is always
overwritten by the final assignment to DxS0.

process(all)
begin
if (CxS0 = '0') then
DxS0 <= AxSI or BxSI;
end if;

CxS0 <= not AxSI;
DxS0 <= AxSI and BxSI;
end process;

Remember to separate the description of the flip-flops from the combinational
logic! Use a single process for updating the flip-flops and a separate process or concurrent
assignments for updating the adder as shown below. This is really important! We also
discuss this in Exercise 3.

Listing 2: VHDL code to show how to define flip-flops for a counter.

CNTxDN <= CNTxDP + 1; -- Increment outside clock-process

process (CLKxCI, RSTxRI)
begin
if (RSTxRI = '1') then
CNTxDP <= (others => '0');
elsif CLKxCI'event and CLKxCI = '1' then
CNTxDP <= CNTxDN;
end if;
end process;

Remember to never write to the same signal in multiple concurrent statements!
When assigning to a signal in a process, you can only assign to that signal in that (single)
process. The code below in Listing 3 shows the signal CNTxDN being assigned to in two
different concurrent statements, which is not allowed. With this code, you will see an "X’
for CNTxDN in the waveform viewer. The solution is to put the default assignment in a
process like shown in Listing 4.

Listing 3: VHDL code which shows how not to assign to a signal!

CNTxDN <= CNTxDP;

process(all)
begin
if (InOxSI = '1') then
CNTxDN <= CNTxDP + 1;
end if;
end process;

Lab 2 6

» Use default values in your process! To avoid introducing errors in your code from
missing assignments to signals, you should always use a default value for all signals
assigned to in a process(all) when describing combinational logic as shown in Listing 4.
This is done as the first thing in a process.

Listing 4: VHDL code which shows the assignment of a default value.

process(all)
begin
-— Default values
CNTxDN <= CNTxDP;
AxD <= (others => '0');
BxD <= (others => '0');

-- Actual logic after default values
if (InOxSI = '1') then
CNTxDN <= CNTxDP + 1;
AxD <= In1xSI;
elsif (Ini1xSI = '1') then
CNTxDN <= CNTxDP - 1;
BxD <= Ini1xSI;
end if;
end process;

