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The Geometry of a Linear Map
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The SVD!

[ N
Let A € R**"
There exists orthogonal matrices U € R™*™ and V € R"*" such that
A=Uxv"
S 0 : rxr
where ¥ = 0o ol S = diag(o1,...,0,) ER"™"and oy > 09> ...0, >0
B S o] [V
el 0
L = U, SV )

Uy € R™" Vi € R™™" rotations/reflections in r-dimensional subspaces‘of R and R”



Geometric Interpretation
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Some SVD terminology

{0(,0,,...,0.} are the singular values of A.

The columns of U are the left singular vectors and orthonormal eigenvectors of AAT
The columns of V are the right singular vectors and orthonormal eigenvectors of AT A
Singular values are uniquely defined by A

But not singular vectors ! (although their span is)



Singular Vectors Basis

The left and right singular vectors provide useful basis of R" and R™

A e R™"™ with SVD A =UXV?’

re€R" and x =V«
y e R and y =Up

Suppose y = Ax then ff = Za

Expressed on these bases, the matrix is diagonal !



SVD and the fundamental subspaces

Let A€ R™" and A = UZVT

.
T :
A= E o;u;V; and A has rank r (# non-zero singular values)
1=1

sum of rank 1 matrices

Using this decomposition we easily see:
A?JZ' = 0O;Uy
ATUZ' = 0;U;

Using the Penrose conditions we see:

1
AT =VETUT, where X1 = [S O]

T

1
AT = g —vul
0; ’

=1



SVD and the fundamental subspaces
Let A€ R and A=UZV"  Uj=[u,...u] Uy=[u,,...u,l

Vi=lv,.eovl Vo=, ....v]

(a) R(U1) =R(A) = N(A")"

(b) R(U2) = R(A)~ = N(AT) provides orthobases

() R(V1) =R(AT) = N(A)* for the fundamental subspaces
(d) R(Vz) =R(A")* = N(A)



SVD and the fundamental subspaces

Wrapping it all together: the full picture

A
C (" A
> LC@)
Row space v \, Column space \
all A%y W all Ax
dim r -
. Perpendicular Perpendicular \ dim r
R Z xT(4Ty) =0 YT (4x) =0 " R™
dimn — N
mn r xin ) . yin “ dlmm_r
\[Nullspace { Nullspace of AT




SVD and the fundamental subspaces

Wrapping it all together: the full picture

A

c(4M
——

Row space Cotumn SpaceC(A) SVD gives us ortho-bases for the fundamental subspaces
. all ATy all Ax
- Petpendiula Pepedicutar 4 . . . .
dimn—r N the right singular vectors V are a basis of R

Nlﬁ;slzcg N;lTl;piycg:)f A"

N4 N7 the left singular vectors U are a basis of R™

AT
But more importantly: Restriction T of A from row space to column space is bijective
V) =[v,...v,] is a an orthobasis of the row space
V,=1[v.,q,...v,] is a an orthobasis of the null space of A

U, = [u,,...u,] is a an orthobasis of the col. space

U, = Uy, ...u,] is a an orthobasis of the null space of A" 10



SVD and the fundamental subspaces

Wrapping it all together: the full picture

cuy 4 Restriction T of A from row space to column space is bijective
h —" C(A4)
Row space . .
al A7y e Vi =1[v,,...v,] is a an orthobasis of the row space
dim r
. : dim r . .
RO oo e e V,=1[v,y1,...v,] is a an orthobasis of the null space of A
dimn —r
x in yin dimm —r . .
Aria Rullmaceof £ U, = [u,,...u,] is a an orthobasis of the col. space
N(A) N(AT) . .
— U, = [u,,q,...u,] is a an orthobasis of the null space of AT

AT
The action of T is specified by its action in the corresponding bases

Tv,=Av,=ou; Vi =1,...,r and the matrix is therefore diagonal in these bases!

T is a bijection therefore invertible and clearly T~ lu; = 6,1y,

and this defines the pseudo-inverse: A*u, = 671y, Vi = 1,...r
11



Low-Rank Approximation

Consider a full rank matrix A € R™*" A =yUxy7’
Now construct the following low-rank matrix
77{2(A) — Ukzkivk'T Uk — [ula ceey uk] Zk = dlag(o-l, vees 6]{) Vk — [vla IREE) vk]

k
T1(A) has rank at most k Ti(A) = Z oV}
i=1

How well does it approximate A?

We will measure the error of approximation with a well-chosen matrix norm

12



Low-Rank Approximation

Consider a unitarily invariant matrix norm: ||[UAVY|| = ||A||
| T (A) — A|| = ||diag(0,...,0,0k+1,--.,04)]

Frobenius norm: Operator norm:

IT(4) = Al = [0,y + ...+ 2 | 75(4) — All2 = 011
Good approximation when singular values decay fast

We have just solved arg mBin |A — B||F or 2 subject to rank(B) < r

13

See Eckart-Young-Mirsky theorem



Low-Rank Approximation

The same idea allows finding an m X k orthogonal matrix s.t. range(Q) ~ range(A)

minimising (for unitarily invariant norm) || AH

orthogonal projector on range(Q)*

Leads to Q = U,

14



SVD and Least Squares
min ||Az — b||s, A € R™*" b e R™

Assume A has SVD A=UXV"! = U1SV1T
We can write the error term as: ||Az — b||3 = ||Sz1 — c1||3 + ||c2]/3
With: 2=V zand c=U"b

Since S is invertible, the minimum error is reached for z; = S~ 1¢;

min | Az — b3 = ezl .



SVD and Least Squares

By switching back to original coordinates:

x=Vz
= Vls_lUlTb + VQZQ
At an arbitrary vector in N (A)

And so we recover the general solution:

r=A b+ (I — AT A)y, with y € R™ arbitrary



SVD and Least Squares

Moreover, minimum error (least squares residual): ||ca|l2 = [|[UZ b||2

minimum residual < b is orthogonal to all vectors in Us

& b is orthogonal to all vectors in R(A)™*
< beR(A)

SVD allows us to quickly recover all our results about Least Squares !



An aside: QR for Least Squares

Let A € R™" be a full column rank matrix (n linearly indep. columns)

a; = A[;, j] € R™ j-th column

Gram-Schmidt to the columns:

Ui
Uy = a1 — €1 =
21 |2
U2
Uy = Ay — (6{&2)61 — ey = ol
212
J—1 ”
’U,] — aj — Z(Gk aj)ek — €j = HU,JH2
j

Express in the GS basis

(er. a;)en
1

aj:

J
k=



An aside: QR for Least Squares

J

J
aj = Z €rajer  Tn matrix form: a; = Al;,j] = Z Ql:, k| R[k, j]
k=1 |

The QR decomposition A = QR

Q € R™*"™ with orthonormal columns

R € R™ ™ upper triangular

Complete Q into an orthonormal basis of R

UeR™™MU =[QQ:]



An aside: QR for Least Squares

We can now easily express the LS residual:

|Az — yll3 = |U" Az — U"y|13

= [[Rz — a1l + lleal3

where we used UTy = [21] UTA = [QQQ]TA = [?] ()2 is orthogonal to R(A)
2
And we immediately get minimum residual at:
Tr = R_lcl = R_lQTy check that AT = R71QT

The minimum value of the residual: le2||2 = |Q3yll3 20



