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The Geometry of a Linear Map
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The SVD!

[ N
Let A € R**"
There exists orthogonal matrices U € R™*™ and V € R"*" such that
A=Uxv"
S 0 : rxr
where ¥ = 0o ol S = diag(o1,...,0,) ER"™"and oy > 09> ...0, >0
B S o] [V
el 0
L = U, SV )

U € R™" Vi € R™™" rotations/reflections in r-dimensional subspaces‘of R™ and R”



Geometric Interpretation
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Some SVD terminology

{6(,0,,...,0.} are the singular values of A.

The columns of U are the left singular vectors and orthonormal eigenvectors of AAT
The columns of V are the right singular vectors and orthonormal eigenvectors of AT A
Singular values are uniquely defined by A

But not singular vectors ! (although their span is)



Singular Vectors Basis

The left and right singular provide useful basis of R” and R™

A e R™"™ with SVD A =UXV?’

re€R" and x =V«
y e R and y =Up

Suppose y = Ax then f = Za

Expressed on these bases, the matrix is diagonal !



SVD and the fundamental subspaces

Let A€ R"™" and A = UZV?

.
T :
A= E o;u;V; and A has rank r (# non-zero singular values)
1=1

sum of rank 1 matrices

Using this decomposition we easily see:
A?JZ' = 0O;Uy
ATUZ' = 0;U;

Using the Penrose conditions we see:

1
AT =VETUT, where X1 = [S O]

T

1
AT = g —vul
0; ’

=1



SVD and the fundamental subspaces
Let A€ R™ and A=UZV" U =[u,...u] Uy=[u,,,...u,

Vi=lv,.oovl Vo=, ...v]

(a) R(U1) =R(A) = N(A")"

(b) R(U2) = R(A)~ = N(AT) provides orthobases

() R(V1) =R(AT) = N(A)* for the fundamental subspaces
(d) R(Vz) =R(A")* = N(A)



SVD and the fundamental subspaces

Wrapping it all together: the full picture

A
C (" A
> LC@)
Row space v \, Column space \
all A%y W all Ax
dim r -
. Perpendicular Perpendicular \ dim r
R Z xT(4Ty) =0 YT (4x) =0 " R™
dimn — N
mn r xin ) . yin “ dlmm_r
\[Nullspace { Nullspace of AT




SVD and the fundamental subspaces

Wrapping it all together: the full picture

A

cm
Row space Cotumn SpaceC(A) SVD gives us ortho-bases for the fundamental subspaces
. all ATy all Ax
m pr . Perpendicular Perpendiular |~ dim r . . .
dmp—r AP0 ’ ‘Ax):(:n Koo the right singular vectors V are a basis of R”
Nlﬁ;slzcg Nlel;piycg of AT
N ¢ N the left singular vectors U are a basis of R"”

AT
But more importantly: Restriction T of A from row space to column space is bijective
V, =1[v,...v.] is a an orthobasis of the row space
V,=1[v,,,...v,] is a an orthobasis of the null space of A

U, = [u,,...u.] is a an orthobasis of the col. space

U, =[u,,,...u,] is a an orthobasis of the null space of A 10



SVD and the fundamental subspaces

Wrapping it all together: the full picture

NN 4 Restriction 7T of A from row space to column space is bijective
‘ —'» C(A4)

d Sy Column space V, = [v,...v,] is a an orthobasis of the row space
im r :
Lo e e e " Vy=1[v,,y,...,] is a an orthobasis of the null space of A
imn —r . .

NAN‘E%‘;’i'“S N;L‘;Piycifi::’ff"" - U, = [uy, ...u,] is a an orthobasis of the col. space

. — e U, = [u,,,...u,] is a an orthobasis of the null space of AT

AT
The action of T is specified by its action in the corresponding bases

Tv;=Av,=0cu; Vi =1,...,r and the matrix is therefore diagonal in these bases!

T is a bijection therefore invertible and clearly T™'u; = 67!y,

and this defines the pseudo-inverse: A%y, = 67y, Vi = 1,...r
11



Low-Rank Approximation

Consider a full rank matrix A € R™*" A =yUxv7
Now construct the following low-rank matrix
77{2(A) — Ukzkivk'T Uk — [ula ceey uk] Zk = dlag(O'I, vees 6]{) Vk — [vla IRRE) vk]

k
T1(A) has rank at most k Ti(A) = Z oV}
i=1

How well does it approximate A?

We will measure the error of approximation with a well-chosen matrix norm

12



Low-Rank Approximation

Consider a unitarily invariant matrix norm: ||[UAVT|| = ||A]|
| T (A) — A|| = ||diag(0,...,0,0k+1,--.,04)]

Frobenius norm: Operator norm:

IT(4) = Al = [0,y + ...+ 2 | 75(4) — All2 = 011
Good approximation when singular values decay fast

We have just solved arg mBin |A — B||F or 2 subject to rank(B) < r

13

See Eckart-Young-Mirsky theorem



Low-Rank Approximation

The same idea allows finding an m X k orthogonal matrix s.t. range(Q) ~ range(A)

minimising (for unitarily invariant norm) || AH

orthogonal projector on range(Q)*

Leads to Q = U,

14



