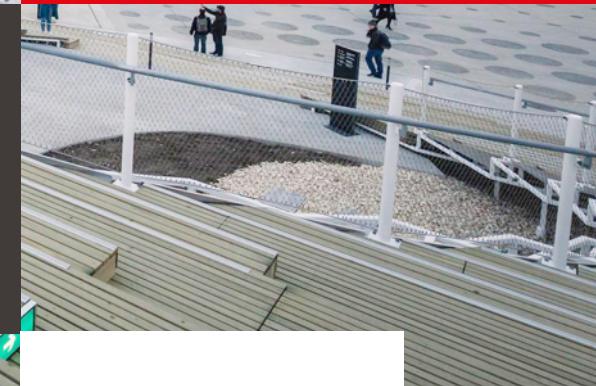
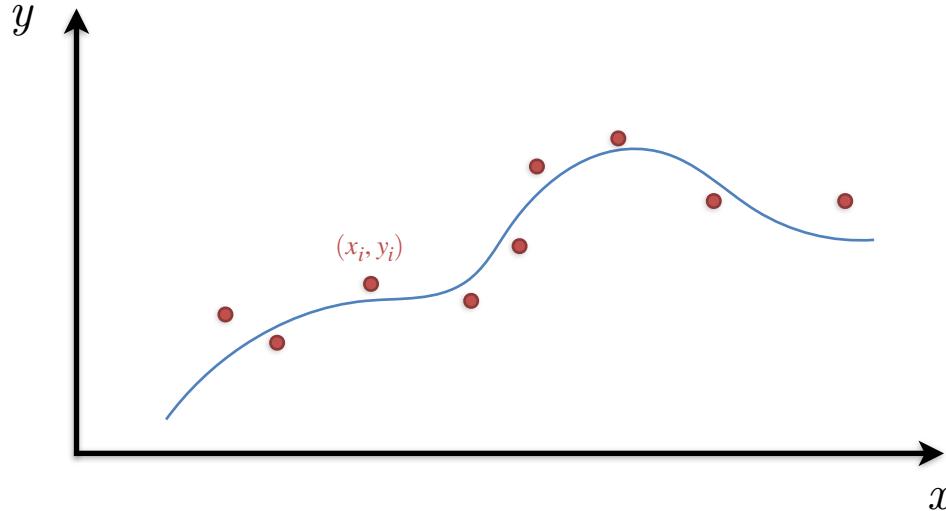


Prof. Pierre
Vandergheynst



Motivation

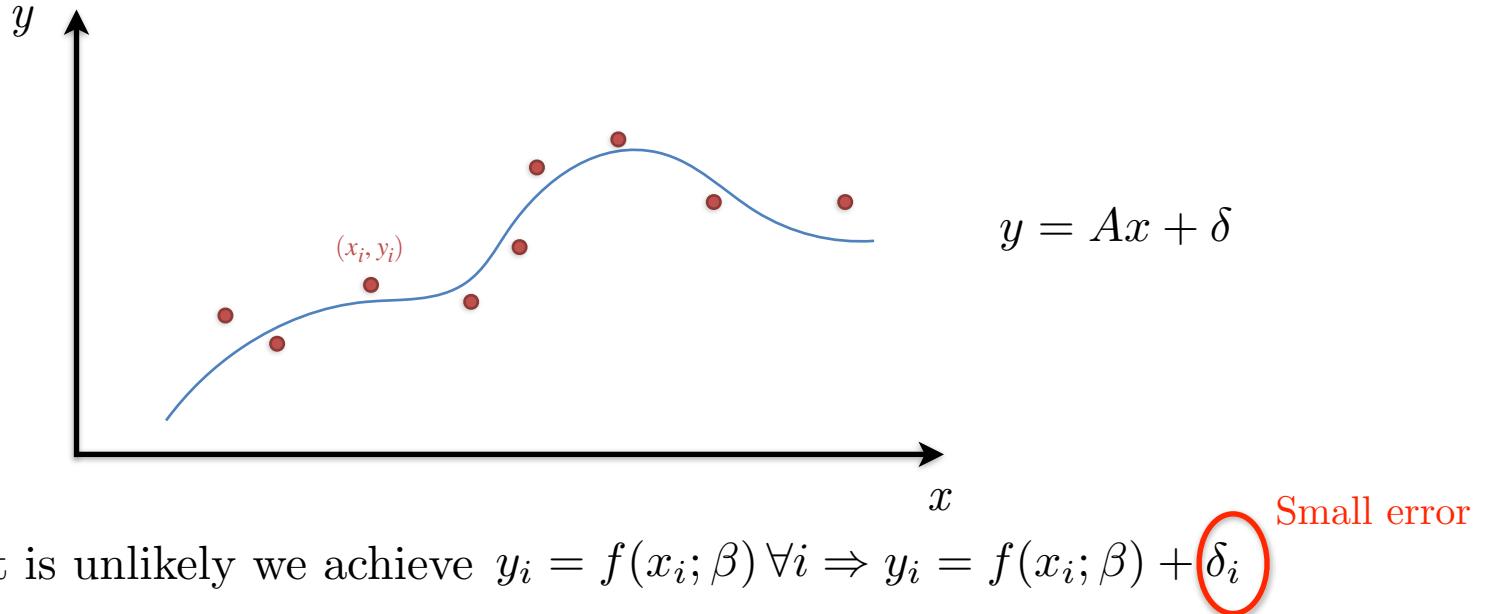


$y_i, i = 1, \dots, m$ measurements taken at corresponding x_i

Hypothesis: $y = f(x; \beta) = \sum_{j=1}^n \beta_j \varphi_j(x)$

A linear model (in the unknown parameters β_j)

Motivation



Set $y = \begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix} \in \mathbb{R}^m$ $A = \begin{pmatrix} \varphi_1(y_1) & \dots & \varphi_n(y_1) \\ \vdots & & \vdots \\ \varphi_1(y_m) & \dots & \varphi_n(y_m) \end{pmatrix} \in \mathbb{R}^{m \times n}$ $x = \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_n \end{pmatrix} \in \mathbb{R}^n$ $\delta = \begin{pmatrix} \delta_1 \\ \vdots \\ \delta_m \end{pmatrix} \in \mathbb{R}^m$

Motivation

With these notations, we are led to looking for the coefficients that will minimise the error:

$$\arg \min_{x \in \mathbb{R}^n} \|Ax - y\|_2$$

Before proceeding, let us informally explore ...

$$\nabla (\|Ax - y\|_2^2) = 2A^T (Ax - y)$$

Setting the gradient to zero, we find something interesting:

$$A^T Ax = A^T y \Rightarrow x = (A^T A)^{-1} A^T y$$

Motivation

Now let's try geometrically:



$$(y - Ax) \perp \mathcal{R}(A) \text{ at a minimiser}$$

$$(Au)^T(y - Ax) = 0 \text{ for arbitrary } u \in \mathbb{R}^n$$

$$u^T A^T(y - Ax) = 0$$

$$u^T (A^T y - A^T Ax) = 0$$

And again, we reach the same characterisation:

$$A^T A x = A^T y \Rightarrow x = (A^T A)^{-1} A^T y$$

Linear Least Squares

We will study the set of minimisers of our problem:

$$\mathcal{X} = \{x \in \mathbb{R}^n \text{ s.t. } \rho(x) = \|Ax - y\|_2^2 \text{ is minimized}\}$$

Normal equations: $x \in \mathcal{X}$ IFF $A^T r = 0$ where the residual $r = (y - Ax)$

The normal equations can be rewritten as: $A^T A x = A^T y$

Characterisation of solutions: $x \in \mathcal{X}$ IFF it is of the form

$$x = A^+ y + (\mathcal{I} - A^+ A) b, \text{ where } b \in \mathbb{R}^n \text{ is arbitrary}$$

Moreover $x \in \mathcal{X} \Rightarrow \rho(x) \leq \|y\|_2^2$

Linear Least Squares

We will study the set of minimisers of our problem:

$$\mathcal{X} = \{x \in \mathbb{R}^n \text{ s.t. } \rho(x) = \|Ax - y\|_2^2 \text{ is minimized}\}$$

The set \mathcal{X} is convex

$$x_1, x_2 \in \mathcal{X}, \theta \in [0, 1] \Rightarrow \theta x_1 + (1 - \theta)x_2 \in \mathcal{X}$$

Unicity: there is a unique solution, i.e $\mathcal{X} = \{x^*\}$

IFF $A^+A = \mathbb{I}$ or equivalently $\text{rank}(A) = n$

In that case $x^* = A^+y$

Linear Least Squares

We will study the set of minimisers of our problem:

$$\mathcal{X} = \{x \in \mathbb{R}^n \text{ s.t. } \rho(x) = \|Ax - y\|_2^2 \text{ is minimized}\}$$

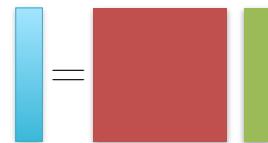
General case: rank deficient matrix A

There is a unique $x^* \in \mathcal{X}$ of minimum 2-norm

$$x^* = A^+y$$

A General View

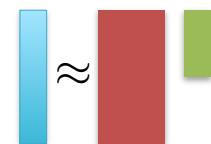
Solve: $y = Ax, A \in \mathbb{R}^{m \times n}$



Determined ($m=n$):

Over-Determined ($m>n$): $\arg \min_{x \in \mathbb{R}^n} \|Ax - y\|_2$

$$x = (A^T A)^{-1} A^T y = A^+ y$$



Under-Determined ($m < n$): $\arg \min_{x \in \mathbb{R}^n} \{\|x\|_2 \text{ such that } Ax = y\}$

$$x = A^T (A A^T)^{-1} y = A^+ y$$

Simple Linear Regression

m measurements: $(t_1, y_1), \dots, (t_m, y_m)$

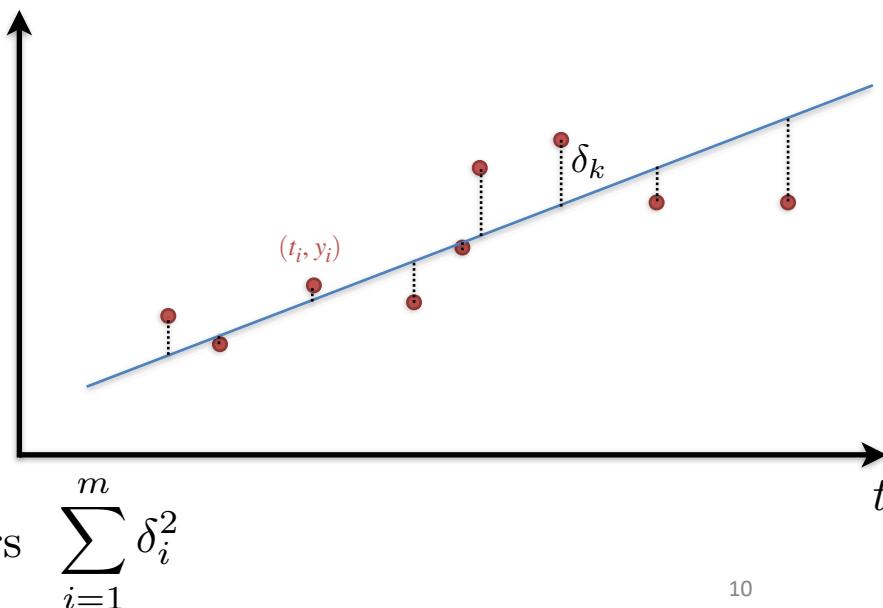
Looking for a simple linear model: $y = \alpha t + \beta$, with $y, t \in \mathbb{R}^m$ and $\alpha, \beta \in \mathbb{R}$

2 parameters & m measurements
(over-determined)

$$y_1 = \alpha t_1 + \beta + \delta_1$$

\vdots

$$y_m = \alpha t_m + \beta + \delta_m$$



Minimize the sum of squared errors

Simple Linear Regression

m measurements: $(t_1, y_1), \dots, (t_m, y_m)$

Looking for a simple linear model: $y = \alpha t + \beta$, with $y, t \in \mathbb{R}^m$ and $\alpha, \beta \in \mathbb{R}$

Minimize the sum of squared errors $\sum_{i=1}^m \delta_i^2$

$$y_1 = \alpha t_1 + \beta + \delta_1$$

$$\vdots$$

$$y_m = \alpha t_m + \beta + \delta_m$$

In matrix form: $y = Ax + \delta$

$$y = \begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix}$$

$$A = \begin{pmatrix} t_1 & 1 \\ \vdots & \vdots \\ t_m & 1 \end{pmatrix}$$

$$x = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$

$$\delta = \begin{pmatrix} \delta_1 \\ \vdots \\ \delta_m \end{pmatrix}$$

Simple Linear Regression

m measurements: $(t_1, y_1), \dots, (t_m, y_m)$

Looking for a simple linear model: $y = \alpha t + \beta$, with $y, t \in \mathbb{R}^m$ and $\alpha, \beta \in \mathbb{R}$

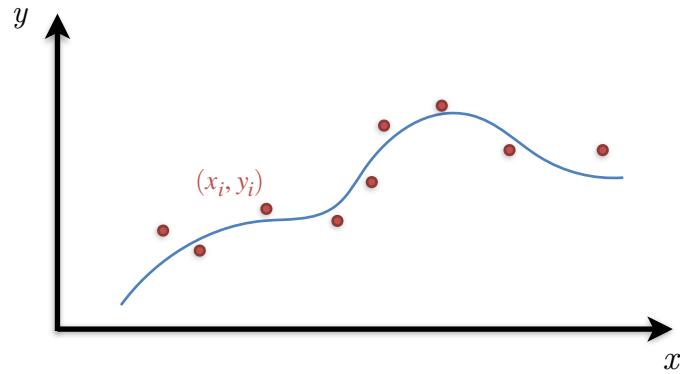
$$\arg \min_x \|y - Ax\|_2^2 \quad y = \begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix} \quad A = \begin{pmatrix} t_1 & 1 \\ \vdots & \vdots \\ t_m & 1 \end{pmatrix} \quad x = \begin{pmatrix} \alpha \\ \beta \end{pmatrix} \quad \delta = \begin{pmatrix} \delta_1 \\ \vdots \\ \delta_m \end{pmatrix}$$

Normal equations: $A^T Ax = A^T y$

A full rank (at least two distinct measurements to fit our line)

$$A^T Ax = A^T y \Rightarrow x = (A^T A)^{-1} A^T y$$

Less Simple Linear Regression ?



Hypothesis: $y = f(x; \beta) = \sum_{j=1}^n \beta_j \varphi_j(x)$ A linear model (in the unknown parameters β_j)

$$y = \begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix} \in \mathbb{R}^m \quad A = \begin{pmatrix} \varphi_1(y_1) & \dots & \varphi_n(y_1) \\ \vdots & & \vdots \\ \varphi_1(y_m) & \dots & \varphi_n(y_m) \end{pmatrix} \in \mathbb{R}^{m \times n} \quad x = \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_n \end{pmatrix} \in \mathbb{R}^n$$

