

Prof. Pierre
Vanderghenst

The unreasonable power of linear systems

$$Ax = b$$

Linear dynamics: $\dot{x}(t) = Ax(t)$ or $x_{k+1} = Ax_k$

Control: $x_{k+1} = Ax_k + Bu_k$

Data Science: $a_{i1}, \dots, a_{in} \mapsto b_i$ $b_i = x_0 + a_{i1}x_1 + \dots + a_{in}x_n$

features (predictors)

characteristic

Linear Model

Row & Column Views

A gentle reminder before we proceed

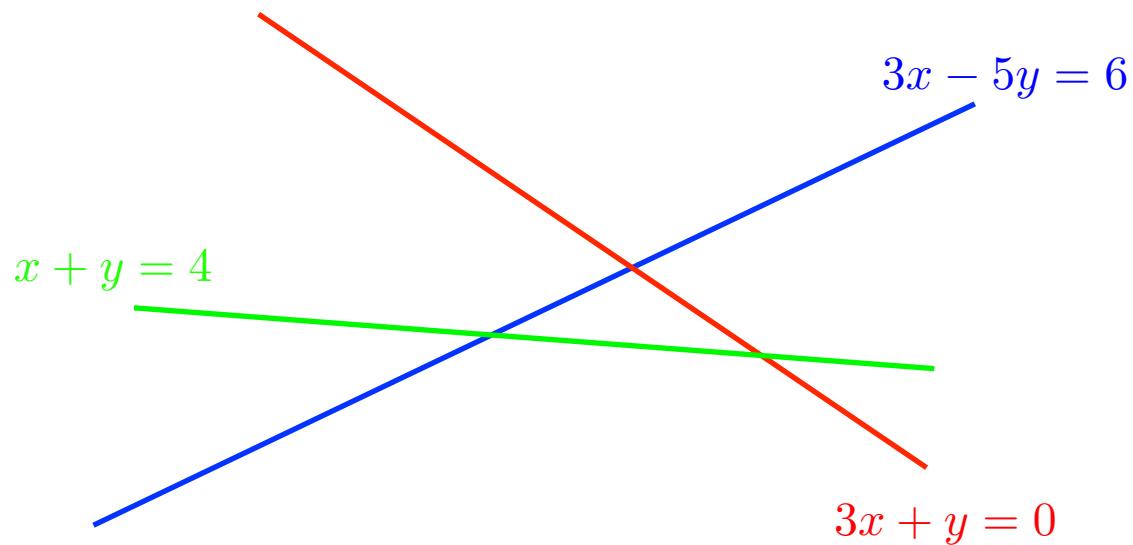
$$Ax = b, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m, x \in \mathbb{R}^n$$

Row view: each row of A defines a linear equation (matrix entries = coefficients)

m equations of the form $\sum_{j=1}^n a_{ij}x_j = b_i$ each equation is a line constraint that “carves out” the solution

$$A = \begin{pmatrix} - & a_1^T & - \\ & \vdots & \\ - & a_m^T & - \end{pmatrix} \quad a_i^T x = b_i$$

Row View



Row & Column Views

A gentle reminder before we proceed

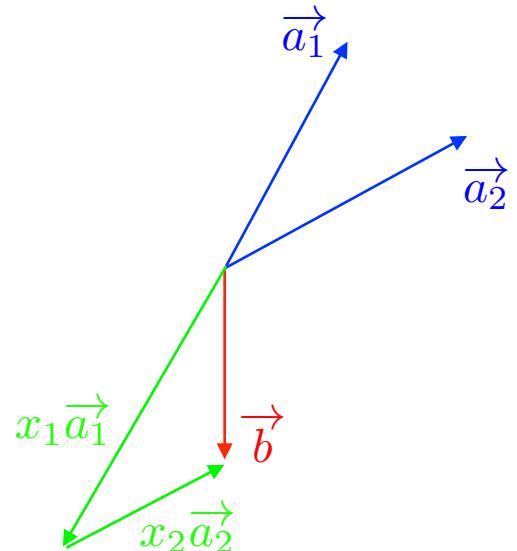
$$Ax = b, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m, x \in \mathbb{R}^n$$

Column view: express b as a linear superposition of the columns of A

$$A = \begin{pmatrix} | & & | \\ a_1 & \dots & a_n \\ | & & | \end{pmatrix} \quad \sum_{i=1}^n x_i a_i = b$$

A more geometric construction that relates well to fundamental subspaces

Column View



General result for vector linear systems

$$Ax = b, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m, x \in \mathbb{R}^n$$

there exists a solution IFF $b \in \mathcal{R}(A)$

there exists a solution $\forall b \in \mathbb{R}^m$ IFF $\mathcal{R}(A) = \mathbb{R}^m$ A is onto

$$\text{rank}([A, b]) = \text{rank}(A)$$

$m \leq n$ More unknowns than equations

General result for vector linear systems

$$Ax = b, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m, x \in \mathbb{R}^n$$

A solution is unique IFF $\mathcal{N}(A) = 0$ A is 1-1

there exists a unique solution $\forall b \in \mathbb{R}^m$ IFF A is 1-1 and onto, i.e non-singular

equiv. $A \in \mathbb{R}^{m \times m}$ and A has no zero singular nor eigenvalue

there exists at most a solution $\forall b \in \mathbb{R}^m$ IFF the columns of A are
linearly independent, i.e $\mathcal{N}(A) = 0$ only possible if $m \geq n$

More equations
than unknowns

there exists a non-trivial solution to $Ax = 0$ IFF $\text{rank}(A) < n$ $\mathcal{N}(A)$ non-trivial

General result for vector linear systems

Now we would like to compute solutions

If A is non-singular, clearly $b = A^{-1}x$

In the general case, shall we try $b = A^+x$

Let $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$ Then any x of the form

$$x = A^+b + (\mathbb{I} - A^+A)y \text{ where } y \in \mathbb{R}^n \text{ is arbitrary,}$$

is a solution of $Ax = b$.

Matrix Linear Equations

$$AX = B, A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{m \times k}, X \in \mathbb{R}^{n \times k}$$

Existence: The matrix linear equation $AX = B$ has a solution IFF $\mathcal{R}(B) \subseteq \mathcal{R}(A)$
Equivalently a solution exists IFF $AA^+B = B$

Characterisation: Let $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{m \times k}$ and suppose that $AA^+B = B$.
Then any matrix of the form

$$x = A^+B + (\mathbb{I} - A^+A)Y \text{ where } Y \in \mathbb{R}^{n \times k} \text{ is arbitrary,}$$

is a solution of $AX = B$.