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Once over, gently :)

Consider a linear transformation from R? onto itself

Most vectors get “knocked off” their span
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Sometimes, some vectors “remain” on their span

Av = A\, for some A € R

v is a (right) eigenvector of eigenvalue A :



Once over, gently :)
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must be singular det(A — \I) =0

(non-trivial null-space)

Once eigenvalues are identified you can solve for eigenvectors

Rem: imagine you have a full ortho basis of eigenvectors of A

the action of A becomes very simple !

Example: 3D rotation matrices



Detinitions and Properties

A nonzero vector x € C" is a right eigenvector of A € C"*"

if there exists a scalar A € C called an eigenvalue, such that Az = Az

Similarly y € C" is left eigenvector corresponding to eigenvalue u if y? A = uy?

Usually we normalise eigenvectors (so they have unit 2-norm)

m(A) = det(A — Al) is the characteristic polynomial of A.

For any A € C"*" 7w(A) = 0 (Cayley-Hamilton)



Detinitions and Properties

If Ae C""xw(\) is a polynomial of degree n

m(A) has n roots, possibly with non-trivial multiplicity

The spectrum of A € C"*" is the set of all eigenvalues of A, i.e all roots of z(1)

A(A) will denote the spectrum

A simple relationship between left /right eigenvectors of real square matrices

A e RP*™ Ay = Ay right eigenvector

(Ay)H :EyT = yTA5 left eigenvector of transposed matrix




Properties

m(A)

det(A — AI) n
n m(0) = det(A) = )\z
flo - = m(0) = det(4) = [T

A(A) = A(AT)

if A is real valued, #(A) has real coefficients, therefore its complex roots must

appear in complex conjugate pairs = A(A) = A(A)

Algebraic multiplicity of A4 is the multiplicity of z(4)

Geometric multiplicity of 4 is the number of associated independent eigenvectors

dim(N (A — AD)) ;



Diagonalization - general case

Left /right eigenvectors are orthogonal
AeC™™ Az; = Naz; and yj' A = Ajy; with A; # A
Then y]H x =0

.. and form a linearly independent family

A € C™*™ with distinct eigenvalue A1, ..., \,
The corresponding n left (or right) eigenvectors are linearly independent,

With proper normalisation, we get:

A=XAX"'=XAYP =) Ny
=1

A is similar to the diagonal matrix A



Diagonalization: General Case

This points to an equivalent definition:
A complex matrix A is diagonalizable IFF it is similar to a diagonal matrix

There exists an invertible matrix X s.t. A = XAX !

Now let’s recover previous objects and properties:

The column vectors of X are right eigenvectors (with corresponding eigenvalue in A)
Invertibility of X is equivalent to linear independence of eigenvectors.

The row vectors of X~! are the left eigenvectors



Properties

Hermitian matrices (A = A¥) have real eigenvalues

Ar =Xz A e Cn

eH Ar = Mot
A is hermitian

(T Ax = NP x) = 2 Ay = Natl o = 2 Az = NP2

e Ax = etz = Xxflz  and 2z # 0 since z is an eigenvector

= A=\



Properties

eigenvectors of a hermitian matrix corresponding to distinct eigenvalues are orthogonal
AeC™™ A=A"  Ar=) Az = pz

HAr = \2Hy

(M Ax = ) = e Ay = Natl 2 = 27
= prtz = etz = 22 = 0 since p # A
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The Spectral Theorem

If A € C™" is hermitian, there exists a orthonormal basis of C" of eigenvectors of A

Main idea of the proof:

By the fundamental theorem of algebra applied to z(1), there is an eigenvalue 4,

and a corresponding eigenvector v,

Let W, be the orthogonal complement to v; in C"

VwElev{{Aw:)\_lvfIw:OiAwer

A can be restricted to W7 and we can proceed by induction



The Spectral Theorem

This decomposition expresses a nice factorization of hermitians matrices

X 1AX =AorA=XAX"!

A is unitarily equivalent to the diagonal matrix A

where A is the diagonal matrix of eigenvalues (with multiplicity)

This also means you can write the linear transformation as a direct sum

of orthogonal projections on the eigenspaces:

A=) NP, )



The Spectral Theorem

A fundamental reason the spectral theorem is so important :
+o0

Let fbe an analytic function, i.e f(t) = Zaktk ex: sin, exp, ...
k=0

A € R™"™ such that A = UAU?
Then f(A) = Uf(A)U" where f(A) = diag(f(A1), -+, f(An))
Proof: just think of eigendecomposition of A*

This is crucial when solving differential equations —x(t) = Ax(t)
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