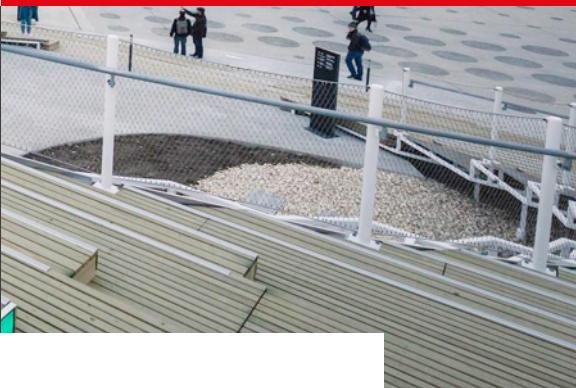


Prof. Pierre
Vanderghenst

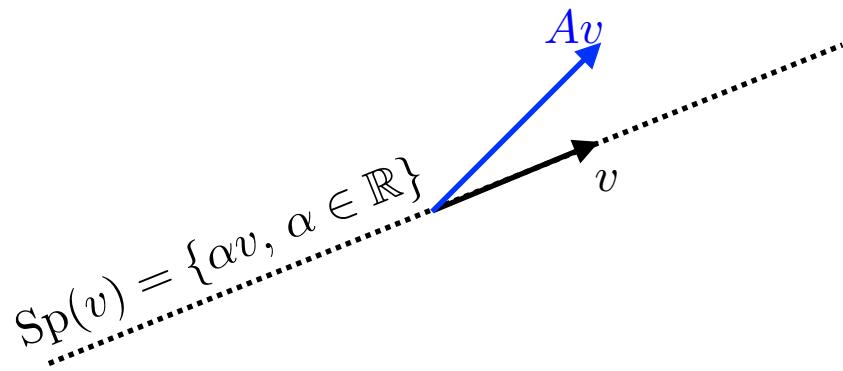
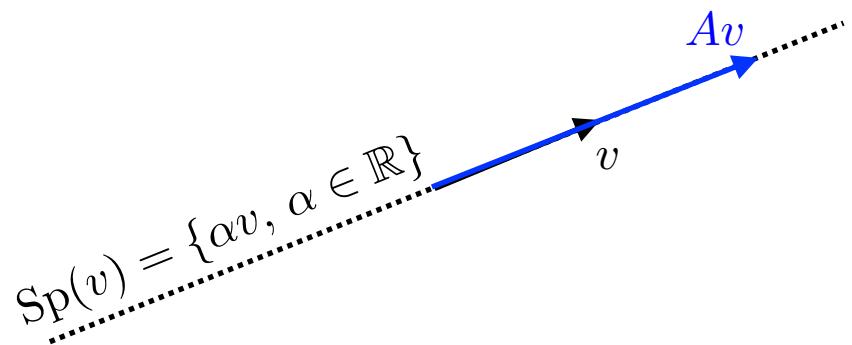
Eigenvalues & Eigenvectors EE-312



Once over, gently :)

Consider a linear transformation from \mathbb{R}^2 onto itself

Most vectors get “knocked off” their span



Sometimes, some vectors “remain” on their span

$$Av = \lambda v, \text{ for some } \lambda \in \mathbb{R}$$

v is a (right) eigenvector of eigenvalue λ

Once over, gently :)

$$Av = \lambda v \Rightarrow Av = \lambda \mathbb{I}v \Rightarrow (A - \lambda \mathbb{I})v = 0 \text{ for } v \neq 0$$

must be singular
(non-trivial null-space)

$$\det(A - \lambda \mathbb{I}) = 0$$

Once eigenvalues are identified you can solve for eigenvectors

Rem: imagine you have a full ortho basis of eigenvectors of A
the action of A becomes very simple !

Example: 3D rotation matrices

Definitions and Properties

A nonzero vector $x \in \mathbb{C}^n$ is a **right eigenvector** of $A \in \mathbb{C}^{n \times n}$

if there exists a scalar $\lambda \in \mathbb{C}$ called an **eigenvalue**, such that $Ax = \lambda x$

Similarly $y \in \mathbb{C}^n$ is **left eigenvector** corresponding to eigenvalue μ if $y^H A = \mu y^H$

Usually we normalise eigenvectors (so they have unit 2-norm)

$\pi(\lambda) = \det(A - \lambda \mathbb{I})$ is the **characteristic polynomial** of A .

For any $A \in \mathbb{C}^{n \times n}$, $\pi(A) = 0$ (Cayley-Hamilton)

Definitions and Properties

If $A \in \mathbb{C}^{n \times n}$ $\pi(\lambda)$ is a polynomial of degree n

$\pi(\lambda)$ has n roots, possibly with non-trivial multiplicity

The **spectrum** of $A \in \mathbb{C}^{n \times n}$ is the set of all eigenvalues of A , i.e all roots of $\pi(\lambda)$
 $\Lambda(A)$ will denote the spectrum

A simple relationship between left/right eigenvectors of real square matrices

$$A \in \mathbb{R}^{n \times n} \quad Ay = \lambda y \quad \text{right eigenvector}$$

$$(Ay)^H = \overline{\lambda} y^T = y^T A^T \quad \text{left eigenvector of transposed matrix}$$

Properties

$$\begin{aligned}\pi(\lambda) &= \det(A - \lambda\mathbb{I}) \\ &= \prod_{i=1}^n (\lambda_i - \lambda) \quad \Rightarrow \pi(0) = \det(A) = \prod_{i=1}^n (\lambda_i)\end{aligned}$$

$$\Lambda(A) = \Lambda(A^T)$$

if A is real valued, $\pi(A)$ has real coefficients, therefore its complex roots must appear in complex conjugate pairs $\Rightarrow \Lambda(A) = \overline{\Lambda(A)}$

Algebraic multiplicity of λ is the multiplicity of $\pi(\lambda)$

Geometric multiplicity of λ is the number of associated independent eigenvectors
 $\dim(\mathcal{N}(A - \lambda\mathbb{I}))$

Diagonalization - general case

Left/right eigenvectors are orthogonal

$A \in \mathbb{C}^{n \times n}$ $Ax_i = \lambda_i x_i$ and $y_j^H A = \lambda_j y_j^H$ with $\lambda_i \neq \lambda_j$

Then $y_j^H x = 0$

... and form a linearly independent family

$A \in \mathbb{C}^{n \times n}$ with distinct eigenvalue $\lambda_1, \dots, \lambda_n$

The corresponding n left (or right) eigenvectors are linearly independent

With proper normalisation, we get:

$$A = X\Lambda X^{-1} = X\Lambda Y^H = \sum_{i=1}^n \lambda_i x_i y_i^H$$

A is similar to the diagonal matrix Λ

Diagonalization: General Case

This points to an equivalent definition:

A complex matrix A is diagonalizable IFF it is similar to a diagonal matrix

There exists an invertible matrix X s.t. $A = X\Lambda X^{-1}$

Now let's recover previous objects and properties:

The column vectors of X are right eigenvectors (with corresponding eigenvalue in Λ)

Invertibility of X is equivalent to linear independence of eigenvectors.

The row vectors of X^{-1} are the left eigenvectors

Properties

Hermitian matrices ($A = A^H$) have real eigenvalues

$$Ax = \lambda x \quad A \in \mathbb{C}^{n \times n}$$

$$x^H A x = \lambda x^H x$$

A is hermitian

$$(x^H A x = \lambda x^H x)^H \Rightarrow x^H A^H x = \bar{\lambda} x^H x \Rightarrow x^H A x = \bar{\lambda} x^H x$$

$$x^H A x = \lambda x^H x = \bar{\lambda} x^H x \quad \text{and } x^H x \neq 0 \text{ since } x \text{ is an eigenvector}$$

$$\Rightarrow \lambda = \bar{\lambda}$$

Properties

eigenvectors of a hermitian matrix corresponding to distinct eigenvalues are orthogonal

$$A \in \mathbb{C}^{n \times n} \quad A = A^H \quad Ax = \lambda x \quad Az = \mu z$$

$$z^H Ax = \lambda z^H x$$

$$(z^H Ax = \lambda z^H x)^H \Rightarrow x^H A^H z = \bar{\lambda} x^H z = x^H \Rightarrow x^H Az = \lambda x^H z$$

$$x^H Az = \mu x^H z \Rightarrow \mu x^H z = \lambda x^H z \Rightarrow x^H z = 0 \text{ since } \mu \neq \lambda$$

The Spectral Theorem

If $A \in \mathbb{C}^{n \times n}$ is hermitian, there exists a orthonormal basis of \mathbb{C}^n of eigenvectors of A

Main idea of the proof:

By the fundamental theorem of algebra applied to $\pi(\lambda)$, there is an eigenvalue λ_1 and a corresponding eigenvector v_1

Let W_1 be the orthogonal complement to v_1 in \mathbb{C}^n

$$\forall w \in W_1 : v_1^H A w = \overline{\lambda_1} v_1^H w = 0 \Rightarrow A w \in W_1$$

A can be restricted to W_1 and we can proceed by induction

The Spectral Theorem

This decomposition expresses a nice factorization of hermitians matrices

$$X^{-1}AX = \Lambda \text{ or } A = X\Lambda X^{-1}$$

A is unitarily equivalent to the diagonal matrix Λ

where Λ is the diagonal matrix of eigenvalues (with multiplicity)

This also means you can write the linear transformation as a direct sum of orthogonal projections on the eigenspaces:

$$A = \sum_i \lambda_i P_{\lambda_i}$$

The Spectral Theorem

A fundamental reason the spectral theorem is so important :

Let f be an analytic function, i.e $f(t) = \sum_{k=0}^{+\infty} a_k t^k$ ex: \sin, \exp, \dots

$A \in \mathbb{R}^{n \times n}$ such that $A = U\Lambda U^T$

Then $f(A) = Uf(\Lambda)U^T$ where $f(\Lambda) = \text{diag}(f(\lambda_1), \dots, f(\lambda_n))$

Proof: just think of eigendecomposition of A^k

This is crucial when solving differential equations $\frac{d}{dt}x(t) = Ax(t)$