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Diagonalization - general case

A e C"*™ with distinct eigenvalues Aq,..., A,
Corresponding right eigenvectors X = [z1,--- ,x,]| form a linearly independent set
left eigenvectors Y = [y1, -, yn]

No orthogonality ? No but “bi-orthogonality”
Ax; = \jx; and yJHA = )\jyf Ni #FAj
Then yf x; =0

x; cannot be orthogonal to y, as well (since they are independent)

So we can normalise the y/’s and/or the x;’s so that yix,=1,Vi=1,n

A=XAX""=XAYT =) Ny
1 =1




Diagonalization - special case
Hermitian matrices (symmetric in the real-valued case) : real eigenvalues

All eigenvectors of distinct eigenvalues are orthogonal

Moreover A has n linearly independent eigenvectors and it is always possible
to find an orthonormal basis of eigenvectors of A

(even if some eigenvalues are degenerate)

If moreover A is positive definite x’ Ax > 0, all eigenvalues are positive 4, > 0
A is positive semi-definite x’ Ax > 0, all eigenvalues are 4,20



The Spectral Theorem

If A € C™" is hermitian, there exists a orthonormal basis of C" of eigenvectors of A

Main idea of the proof:

By the fundamental theorem of algebra applied to z(1), there is an eigenvalue 4,

and a corresponding eigenvector v,

Let W, be the orthogonal complement to v; in C"

VwElev{{Aw:)\_lvfIw:OiAwer

A can be restricted to W7 and we can proceed by induction



The Spectral Theorem

This decomposition expresses a nice factorization of hermitians matrices

X 1AX =AorA=XAX"!

A is unitarily equivalent to the diagonal matrix A

where A is the diagonal matrix of eigenvalues (with multiplicity)

This also means you can write the linear transformation as a direct sum

of orthogonal projections on the eigenspaces:

A=) NP, 5



The Spectral Theorem

A fundamental reason the spectral theorem is so important :
+o0

Let fbe an analytic function, i.e f(t) = Zaktk ex: sin, exp, ...
k=0

A € R™"™ such that A = UAU?
Then f(A) = Uf(A)U" where f(A) = diag(f(A1), -+, f(An))
Proof: just think of eigendecomposition of A*

This is crucial when studying differential equations %m(t) = Ax(t)



Solving linear homogeneous

systems of ODEs
t(t) = Ax(t), x(tg) = xo with 2,29 € R” and A € R"*"

+o0
1
. . - 1. A L
Define the matrix exponential: e = E k!A
k=0

Solution (¢ > #y): z(t) = el~t0) 4z,

Proof: use the definition of the matrix exponential and differentiate under the sum



Higher Order Systems

e W (t) = Ap_12F D (8) 4+ - + Aga(t) where A; € R™X"

Can be written as a larger order 1 ODE:

c Rnk}

and z®) (t)

0 I
0 0
Ao Ay

dk
= a0




Modal Decomposition

Suppose now A is diagonalisable: A = X AYH

S

A

The matrix exponential can be written as: e” = Z ixyy

=1

Therefore the solution of the homogeneous ODE becomes:

H
(yz' Lo
Modal directions are invariant

Modal velocities



Long-term behavior

A e R™™™ with eigenvalues 44, ..., 4

n

Consider the system: z(t) = Ax(t)

Solutions involve only functions like: t¥e?st

Therefore the long-term evolution of solutions is governed by eigenvalue, i.e

lim [[z(?)] =

t——4o0

0 if Re(A\;) <0 Vj
+oo if Re(A;) >0 for some j
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Example

Consider a damped pendulum: maz® (t) = —ka(t) — bz (¢)

You can now solve the system and check how 2(%) evolves as a function of

the eigenvalues of the system.
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Linear Homogeneous Systems of

Ditference Equations
Discrete-time equivalent to ODEs: z|k + 1] = Ax|k]; z[0] given
It is easy to see that: z[k] = A*z[0] k >0

And again, if A is diagonalizable this simplifies thanks to: A¥ = XAPYH = Z eyt
i=1



Asymptotic Behaviour of Linear
Dynamical Systems

The eigendecomposition can also give us insights about

the long-term evolution of the system

Example: discrete-time case x|k + 1] = Ax|k]; x[0] given
We already know: x[k] = A*z[0] k >0
z[k] = AP (crxi + - + cuzp)
= cl)\’fxl + -4 cn)\f;azn

If we have|/12| > > |4
system evolves in the direction of the

' ~ \F
dominant eigenvalue lim CC[k] — )\1 C121 . . 13
k——+oco dominant eigenvector



Inhomogeneous systems

t(t) = Ax(t) + Bu(t); xz(tg) =29 € R" and u(t) € R™, B e R"™ ™ given

“Variation of parameters” formula ¢ > ¢,

t
t—tg)A t—s)A
x(t) = ettt g 4 / e =4 Bu(s)ds
to
homogeneous case At each time, a new solution with
initial conditions is computed and added

14



Matrices and

Figendecompositions of Networks

Networks can be represented by matrices whose eigenvectors and eigenvalues

have many interesting applications!

Undirected networks: adjacency matrix
Ali, j] = 1 IFF there is an edge linking nodes ¢ and j
A is symmetric and the degree of node i is d; =} _; Ali, j
D = diag(d;) is the degree matrix of the network



Matrices and

Figendecompositions of Networks

Undirected networks:

The (combinatorial) Laplacian of the network is L = D — A

L € R™™™ is symmetric and positive semi-definite, i.e 27 Lz >0 Vz € R
It has only real, non-negative eigenvalues and an ortho. basis of eigenvectors

The smallest eigenvalue is 4, = 0 and its multiplicity = {# connected components}

If a network is connected but has k clusters or communities there will typically

be a gap between 4, and 4, ;. This is the basis of a famous algorithm...
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Matrices and

Figendecompositions of Networks

Spectral Clustering
Input: adjacency matrix of graph with k£ communities or clusters

Compute: eigenvectors x; corresponding to k smallest eigenvalues

X = r ... X

apply clustering to the feature matrix (group similar features)

C ... | )\ » k-dimensional graph features
) will be similar for all nodes in same community

17
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Matrices and

Figendecompositions of Networks

Networks can be represented by matrices whose eigenvectors and eigenvalues

have many interesting applications!

Directed networks: Directed adjacency matrix
Ali, j] = 1 IFF there is an edge from i to j

A is not symmetric, nodes have in and out degrees



PageRank:
The $1611 billion eigenvector

Web as a directed graph: nodes = web pages, edges = hyperlinks

Web 1 Web 3
eb page eb page

Sl
(o) = (o)

A web page is authoritative if many pages point to it

or if authoritative pages point to it

Challenge: Compute a ranking of web pages by authority
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PageRank:
The $1611 billion eigenvector

Hyp. 1: Each page transfers its authority equally to pages it links to

Source page
Web page 1 Web page 3
0 0O 1 1/2
|13 0 0 o0
113 172 0 1/2
1/3 1/2 0 0
CWeb page D CWeb page D

Hyp. 2: Each link to a page increases its importance v — Av

21
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PageRank:
The $1611 billion eigenvector

Source page

Dynamical systems view:

0 0 1 1/2\ o
z 1
A_ |13 0 0 0 = 0[0] =
- 1/3 1/2 0 1/2 g numb. pages
1/3 1/2 0 0 % U[k‘] = Akv[()]

All matrices of this form (“column stochastic”) have a dominant eigenvalue = 1

lim U[k] — ZLdominant

k—-+oco
0.38
1 " o1z
I our examp c. Ldominant — 029

0.19



Understanding Recurrent Neural
Networks (RNNs)

Let’s consider a state variable following a first order ODE: h(t) = f(h(t))

h(t) € R™ and f() is a component-wise non-linearity
This can be discretised in time using the forward Euler method:

hp =hp—1+ Tf(hn—l)

which has the form of a Recurrent Neural Net with no input



Understanding Recurrent Neural
Networks (RNNs)

Consider the particular case: h(t) = f(Wh(t)+ b) W e R™™™  Weight matrix

We will study how the solution A(f) depends on initial conditions /(0)

d ,Oh(t), Oh(t)
a(m) JF(h(t))m
F(x) = f(Wx +b) Jacobian: Jp(x);; = gi (x)

Jr(z) = diag (f'(Wz + b)) W



Understanding Recurrent Neural
Networks (RNNs)

d  oh oh A(0) = 1T,
o) g L = AW -
as a function of t and initial conditions Aigt) = 0h;(0)

If the Jacobian changes slowly with time, we therefore have:

A(t) = et’F

And we see that the eigenvalues of the Jacobian will play a crucial role!




Aside: stability of initial value
problems

Stability (informal definition):

Consider a solution A(f) of the initial value problem h(t) = f(h(t)) h(0)
Let z(¥) be a solution with z(0) = z,

Stable (Lyapunov stable): Vé > 0, Je > 0 s.t

1Po = zoll < 0 = [[A(t) — 2(t)]| <€, V1

Asymptotically stable: 35 > 0 s.t

lho — 20|| <0 = lim ||h(t) — 2(¢)|| =0

t—4o0



Another point of view:
perturbation analysis

Again the spectrum of the Jacobian will inform us whether perturbations

can grow, decay or sustain.



Aside: stability of initial value

problems
Original RNN Dynamics linearized around (0,0)
R
=y
::J’m‘,,; 0 N
«3‘{' -2 =
{ N
]
%
= ; : : B/ ; : :

W=[ 0.64952629, -0.22683761],
[ 1.40245917, 0.55148058]]



-2

—4

Original RNN

.
a
A Ja
v
A
v
v
an
v
v at
v A
v A
v At
a
A
e &
4
A
v 4
v
\a 4
v 4
¥
v a
v A
v
M 4
\4 A
¥ a
v
a
v
N
W,
A a
A
>
T T T

Dynamics linearized around (0,0)

v <
<
4 - )
v
v
A “
A
v 1«
<
w 4
2 v )
»
4
1
>
4
4 » |
0 L ¥ N (s
»or
»
»
» A
> 4
Ll A
-2 N .
»> 4
» A
LN a
¥ e
=41 > R
»
* »
T T
-4 -2 4

W= array([[ 1.20163856, -0.05038193],
[-2.33322499, -0.14888851]])

29



0,0)
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Dynamics linearized around

Original RNN

array([[ o, 1],

W=

[-1, 0ol])
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Back to the discretization !

Question: when is Euler’s approximation a stable discrete system 7
hp =hp_1+Tf(hp_1)

Again we know that with linearization /perturbation analysis, we can just look

at how this will behave in the simplest linear case and in the Jacobian eigen-basis :
Up = Up—1 + T)\un—l

Unt1 = (L +TXN)uyp — up = (1 + T ug

We therefore need: |1 +TA| < 1

31



