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Notations

IR™ the set of n-tuples or column vectors (il\
2

xs3
reR" =] . x; €R

\&
. T
vectors are always column vectors and row vectors are transposed, i.e y

C™ likewise with complex-valued entries

T is the vector of complex conjugates 2 is the transposed and conjugate vector
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Notations

R™™ is the set of real-valued m-by-n matrices (m rows, n columns)

AeR™", (A)j=ay€eR (A")ij = aji

C™" likewise with complex-valued entries

(A™)ij=az€C

A= A" symmetric matrix

A = A" hermitian matrix



Multiplications: matrix-matrix,

matrix-vector, vector-vector

A and B are compatible for multiplication A € R™*? B e RP*" AB ¢ R™*"

Everything is matrix-matrix! But some useful particular cases

Real and Hermitian dot products, inner products or scalar products

z,yeR" s> zly=ylz eR z,yceC" = sy =yHzr e C
Outer products
reR™y e R — gyl e R™*7 zeCmyeC" — gyt e c*n

both “products” will play fundamental roles later on !



Two views of matrix-vector mult

Column view: A = [al, Ce an], a; € R™ the columns of A
1INy
Az = | o o, ol Z z.a; € R™ linear combination
] P of columns
\
Row view: A = [alT .a™, a'" €R™ the rows of A (seen as transposed vectors!)

m-tuple of products of

rows of A with z
5




Scalar (inner) products,

orthogonality
x,y €R" x,yeC"
(z,y) =2’y = i; iy (x, 9y = 'y = i:as_y
<x,m>:()iffac:_0 (x,x)H:Oiff:C:_O

Orthogonal vectors: (z,y) =0 or (z,y)g =0

Orthogonal matrices: A € R"*" such that AT A = AAT =1,

Unitary matrices: A € C"*" such that A¥ A = AA" =1,



Vector Spaces

(essentially finite dimensional ones)

Motivation: abstraction of the more intuitive euclidean case, but allows to work

with other interesting objects such as functions

A vector space over a field F is a set of vectors V

two operations +:V X V=V vector addition

- FExX V=Y mult. by a scalar



Vector Spaces

A vector space over a field IF is a set of vectors V

two operations +:V X V=V

cFEXx VeV

(V,+) is an abelian group

(af) - u=a(f -u)Va, g € F and YVu € V
(a+pB) - u=a-u+p-u Vo, E€F and Vu eV
a-(u+v)=a-u+a-v VaelF and Vu,veV

1-u=wu, Vu €Y and 1 is neutral element of product over F |



=

xamples

u; + v1 auy
V=R"andF=R wu+4+v= U=

Uy, + Up QUp,

The set of polynomials of order n with coefficients in F

V=R"""and F=R (A+ B); = aij; +b;; and (a - A);; = aay;

Rem: when there is no risk of confusion we will save the product sign for other

operations and simply write au or aA



Subspaces

Part of a vector space that is closed under the natural operations.
Will play a major role when we discuss (in particular) linear applications.

More formally:
(V,F) a vector space. W C V, W # (.
(W, TF) is a subspace of (V,F) IFF
aw; + Pwy € W VYwy, we € W and Va, € F

Rem: it is equivalent to saying it is itself a vector space
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Linear independence

Motivation: Somehow measure the “size” of a vector space or of a subspace

X ={v1,...,0}, v; €V a collection of k vectors

Suppose there exists scalars aq,...,axr € F not all zeros such that

avy+ ...+ arvy =0
a2 g

For instance a; # 0 then: vy = ——wvy — ... — —wy
Q] Q]

At least one vector in X can be expressed as a linear combination of the others

X is a linearly dependent set of vectors
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Linear independence

X is a linearly independent set of vectors if the equation
a1+ ...+ apv, =0

can only be satisfied for a; = ... =ax =0

Examples: Pauli matrices
Monomials form a linearly independent family of vectors for the

vector space of finite order polynomials
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Span, Basis, Dimension

Where linear independence gets us where we wanted

Let X be a collection of vectors v; € V

The span of X is the set of all vectors that can be represented as lin. comb. of X

Sp(X)={v:v=a1v1 + ...+ v, a; € F}

X is a basis for V IFF

X is a linearly independent set, and

Sp(X) =V
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Span, Basis, Dimension

6( is a basis for V IFF \

X is a linearly independent set, and

Sp(X) =V

This means you can write v = Xa, Vv €V with unique coefficients a

The number of elements in a basis is independent of the basis

It is therefore a characteristic of the vector space spanned by the basis

called its dimension (note the space can be infinite dimensional)
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Sums, intersections of subspaces

Let R, S € (V,F)

R+S={r+s:71reR,seS}
Subspaces! R US not necessarily subspace

RNS={v:veRandveS}

Ri+--+R CV ﬂRkQV
keA

The direct sum of two subspaces is a subspace T =R & S

RNS = t=7r+suniquely Vi€ T, reR,s€ S
R+S=T [ dim(7) = dim(R) 4 dim(S)



Inner product, orthogonality

Vector spaces over R or C are sometimes endowed with an inner product

) VXV = F Vu,v,w eV and o € F

al, ’U> = Oz<u, v> ﬁmportant example: Euclidean “dot” product\

u,v € R"  (u,v) =ulv
n
= Z U;V;
\_ i=1

A set of non-zero vectors {vy,...,v,} is orthogonal if (v, v) =0 for i #

J

It is orthonormal if (v, v;) = §;



Orthogonal complements

Let the set S C V. The orthogonal complement is defined as:
St={veV:{(vs =0 VscS}

Some properties for R, § C V

Stcvy R CSIFF St CR*
SaSt =Y (R+S)t=Rtnst
(SL)L _S (RNS): =R+ +5+



The Discrete Fourier Basis

The set of k-dimensional complex-valued vectors vg[n] = €27~

k,ne€0,--,N—1

Is an orthogonal basis of CV called the Discrete Fourier Basis

N—-1

Change of basis: f = Z (v fug

k=0

N-1
Flkl=vif = Z e 72"% f[n] Discrete Fourier Transform

n=0 18



