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Ouvrage de référence et source

Introduction

auMachine

Learning
Ces transparents sont basés en grande partie sur le

texte de Chloé-Agathe Azencott “Introduction au
Machine Learning”, Dunod, 2019
ISBN 978-210-080153-4

L'auteure a mis le texte (sans les exercices) a disposition ici :
http://cazencott.info/dotclear/public/lectures/
IntroML_Azencott.pdf

Avertissement : Bien que ces transparents partagent la notation
mathématique, la structure de I'exposition (en partie), et certains
exemples avec le livre, ils ne constituent qu'un complément et non
un remplacement ou une source unique pour la couverture des
matiéres du cours. A ce titre, ces transparents ne se substituent pas
au texte.
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Contenu

« Sur- et sous-apprentissage, généralisation (rappel)
« Dilemne biais-variance

. Evaluation des méthodes d’'apprentissage :

« concevoir un cadre expérimental dans lequel sélectionner un
modele d'apprentissage supervisé

 choisir un ou des critéres d'évaluation d'un modele
d'apprentissage supervisé

« estimer la performance en généralisation d'un modele
d'apprentissage supervisé
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Généralisation et sur-apprentissage (rappel du Cours 2)

Définition 2.21 (Généralisation) On appelle généralisation la
capacité d'un modele a faire des prédictions correctes sur de
nouvelles données, qui n'ont pas été utilisées pour le construire.

Définition 2.22 (Sur-apprentissage) On dit d'un modele qui,
plutot que de capturer la nature des objets a étiqueter, modélise
aussi le bruit et ne sera pas en mesure de généraliser qu'il
sur-apprend. En anglais, on parle d'overfitting.

Définition 2.23 (Sous-apprentissage) On dit d'un modele qui est
trop simple pour avoir de bonnes performances méme sur les
données utilisées pour le construire qu'il sous-apprend. En anglais,
on parle d'underfitting.
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lllustration : Sous-apprentissage et sur-apprentissage (rappel

du Cours 2)

() Pour séparer les observations négatives (x) des
observations positives (+), la droite pointillée sous-
apprend. La frontiére de séparation en trait plein ne fait
aucune erreur sur les données mais est susceptible de
sur-apprendre. La frontiére de séparation en trait dis-
continu est un bon compromis.

(B) Les étiquettes y des observations (représentées par
des points) ont été générées a partir d'un polyndme de
degré d = 3. Le modele de degré d = 2 approxime trés
mal les données et sous-apprend, tandis que celui de de-
gré d = 13, dont le risque empirique est plus faible, sur-
apprend.

FIGURE 2.6 - Sous-apprentissage et sur-apprentissage
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Compromis biais-variance

Pour mieux comprendre le risque d'un modeéle f : & — %, nous
pouvons le comparer a I'erreur minimale &£* qui peut étre atteinte
par n'importe quelle fonction mesurable de & dans % : c'est ce
qu’'on appelle I'exces d’erreur, et que I'on peut décomposer de la

facon suivante :

R(F)—R" = |RA(f)—minR (h)| + |minR (h) — R*

heF

\

heF

7 A\ 7

~

Erreur d’estimation :

TV
Erreur d’approximation :

distance entre modele f et la qualité du modele (dans
le modele optimal sur F F) optimal
“variance” qualité du choix de I'espace

des hypotheses

“biais”
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Example : approximation d’une fonction sinusoidale par des
B-splines

On veut approximer une fonction sinusoidale
x (t) = sin(«at)

par une fonction constante par morceaux, discontinues entre deux
entiers (B-splines centrés de degré 0)

ZC/(].[ 575 t— k)

keZ

On cherchera a estimer les coefficients cy.
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lllustration compromis biais-variance
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Remarques dilemne biais-variance

o Il est clair qu'en fixant ce modele simpliste (fonction escalier)
on ne pourra jamais modéliser le sinus exactement (on fait une
approximation biaisée par ce choix de modele).

« L'erreur d’approximation caractérise la meilleure approximation
possible (biaisée)

 En pratique, comme on fait I'estimation des parametres sur des
mesures, on n'obtiendra en général méme pas la qualité de
cette approximation : on fait, en plus, une erreur d’estimation.

. erreur totale = erreur d’approximation + erreur d’estimation.

« En choisissant un modele plus “précis” (par example avec des
noeuds plus serrés) on réduira bien I'erreur d’approximation
mais pas forcément I'erreur d'estimation (car on a plus de
parameétres a estimer mais toujours les mémes données).

« Le modele avec un plus grand biais pourra dans certains cas
s'avérer préférable pour obtenir une erreur totale moindre !
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Estimation de densité : décomposition biais-variance

Lorsqu’on désire estimer le parametre 6 d'une densité, I'erreur

N\

quadratique moyenne d'un estimateur 6 est donnée par

MSE (0) = E [(9 - 9)2]

~E|(0-E[0] + E[0] -0)°]

7

~\~
+0

~£|(1-£0])"| +=|(£0) - 1)

déterministe :
fixe

+E{2(@_E[@])(@i)]

déterministe :
quantité

fixe et
indépendante

= --- (page suivante)
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Décomposition biais-variance d’un estimateur de parametre
de densité (suite)

MSE (9) = -+ = Var(8) + (E[0] - 6)

vEf2(0-[1)|E|(2[f] -6)

\ 7

E[E[4] T:E[e]zo

2

= Var(é) + (E [QA] — 0)2
:ri‘arncej carréaz biais ’

= un estimateur biaisé peut, si sa variance est plus faible, avoir une
erreur quadratique moyenne plus faible qu'un estimateur non biaisé.

C'est une nouvelle manifestation de la notion de compromis

biais-variance !
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Rappel : Régression linéaire (sans offset
Modele linéaire (par exemple pour une fonction de

décision) :
p b
fZXI—>E Bjsz(xl xp) Ll = X0
—
J 5p
avec X € RY*P et 3 € RP*! (Nombre de variables : p).
Régression linéaire par minimisation des moindres carrés : on

cherche le modele de la forme f: X — > 7, 3;x; dont les
coefficients sont obtenus par :

n p
~x . I I
Bi's = arg min E y' = § Bix]
i=1 j=1

2

BERP
Solution : Si X est de rang égal a son nombre de colonnes p, on a :
Dk T -1 75
Bls = (X X) X'y

B¢ est un estimateur non-biaisé de 3
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Régression Ridge

Définition (régression ridge) : On appelle régression ridge le
modele

p )}

f:>?|—>26jxj:(xl xp) ] = X0

J=1 Bp

dont les coefficients sont : f : X+ > | B;x; dont les coefficients
sont obtenus par :

B

5* = arg min Y—Xg

2 2
ridge + A
BERP 2 2

Solution : (pas de condition sur le rang de X) on a :

Frage = (Mo + XTX) " Xy

* - - - Ve
ﬁr,dge est un estimateur biaisé de (3
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Un estimateur biaisé peut avoir des avantages comparé a un
estimateur non-biaisé

Avantages de I'estimateur ridge (estimateur biaisé)

. régularisation du probléme : si la matrice (X' X) est mal
conditionnée, calculer son inverse (estimateur moindre carrés)

. . . . ~1
sera instable, contrairement a I'expression ()\/p + XTX) de
I'estimateur ridge

« bien que l'estimateur ridge soit biaisé, comme |'erreur est la
somme du biais au carré et de la variance, si la variance est
faible (grace a une inversion plus stable), I'erreur totale
pourrait ainsi étre plus faible que pour I'estimateur non-biaisé

. lorsqu’on a n'a pas suffisemment de mesures n < p la
régression ridge permet néanmoins d'obtenir une estimation des
parametres
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Evaluation # sélection

Comment mettre en place un cadre expérimental qui permette
d’'évaluer un modéle en évitant le biais du sur-apprentissage ?

Distinguer :

. évaluation d'un modele, qui consiste a déterminer sa
performance sur |'espace des données dans sa totalité

. sélection du modele, qui consiste a choisir le meilleur modele
parmi plusieurs.
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Estimation empirique de I'erreur de généralisation (appel cours 5)

L'erreur empirique mesurée sur les observations qui ont permis de
construire le modele est un mauvais estimateur de |'erreur du
modele sur I'ensemble des données possibles, ou erreur de
généralisation : si le modele sur-apprend, cette erreur empirique peut
étre proche de zéro voire nulle, tandis que I'erreur de généralisation
peut étre arbitrairement grande.

Pour évaluer la qualité d'un modele appris, on sépare communément
les données en trois jeux de données (pourcentages indicatifs, regle
générale) :

1. jeu d’entrainement (60-70% des données)

2. jeu de validation (15-20% des données), e.g. si plusieurs
modeles sont considérés ou si le modele a entrainer a des
parametres

3. jeu de test (15-20% des données)
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Jeu d’entl‘a'l\nement, Jeu de test (rappel cours 5)

Pour évaluer un modeéle, il est indispensable d’utiliser des données
étiquetées qui n'ont pas servi a le construire.

Définition 3.1 (Jeu d’entrainement, Jeu de test) Etant donné
un jeu de données @ = {(x,y')}._, partitionné en deux jeux
Dy, et Do, on appelle jeu d’entrainement (training set en anglais)
I'ensemble 9, utilisé pour entrainer un modele prédictif, et jeu de
test (test set en anglais) I'ensemble Dy, utilisé pour son évaluation.
La perte calculée sur ce jeu de test est un estimateur de
I’erreur de généralisation.

Attention : manquer a séparer les jeux d’entrainement et de test
(e.g. en présentant comme la performance d'un modeéle son erreur
sur le jeu d'entrainement) est probablement le péché capital du
machine learning !
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Jeu de Validation (rappel cours 5)

Considérons la situation ou nous devons choisir entre K modeles :
nous pouvons entrainer chacun des modeles sur le jeu de données
d’'entralnement, obtenant ainsi K fonctions de décision f, f, ..., fxk.

Comment choisir le meilleur modele ? Si on calcule I'erreur de
chacun de ces modeles sur le jeu de test pour choisir le meilleur,
nous ne pourrons plus utiliser le jeu de test pour évaluer |'erreur de
généralisation du modele choisi.

Plut6t, nous définissons un jeu de validation &,,, sur lequel on peut
choisir le modele qui a la plus petite erreur :

LY Ly A(9)

min
1 K | Dvall Bl

f=arg
k=

Importance de distinguer la sélection d'un modele de son évaluation :
les faire sur les mémes données peut nous conduire a sous-estimer
I'erreur de généralisation et Ie sur-apprentissage du modele ch0|5|/
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Solution de découpage des jeux de données (uappel cours 5)
Entrainement d’un seul modele sans parametre

1. jeu d’entrainement &, sur lequel on entraine |'algorithme
d’apprentissage

2. jeu de test D sur lequel on évalue I'erreur de généralisation du
modele

Entrainement d’un modele avec parametres ou lorsque le
modele doit étre choisi parmi plusieurs

1. jeu d’entrainement &, sur lequel on entraine K algorithmes
d’'apprentissage

2. jeu de validation 9, sur lequel on évalue les K modeles pour
sélectionner le modele définitif

3. jeu de test D sur lequel on évalue I'erreur de généralisation du

\ -
modele cholsi.
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Validation CI’OiSée (rappel cours 5)

Définition 3.2 (Validation croisée) Etant donné un jeu & de n
observations, et un nombre K, on appelle validation croisée la
procédure qui consiste a

1. partitionner & en K parties de tailles sensiblement similaires,
@17 @27 ceey @K
2. pour chaque valeurde k=1, ..., K,

- entrainer un modele sur (U, 2
« évaluer ce modele sur .

Chaque partition de & en deux ensembles I et U#k D, est
appelée un fold de la validation croisée.

000 0000000000000

000 0000000000

000000 0000000

000000000 (0000

000000000000 (0

FIGURE 3.1 - Une validation croisée en 5 folds : Chaque observation appartient a un des 5 jeux de validation
(en blanc) et aux 4 autres jeux d’entrainement (en noir).

Azencott
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Stratification (nouveau!)

Définition 3.3 (Validation croisée stratifiée) Une validation
croisée est dite stratifiée si la moyenne des étiquettes des
observations est sensiblement la méme dans chacun des K
sous-ensembles I, :

Zy \92|Zy Zy

169 €Dy 16@ 169

Dans le cas d'un probleme de classification, cela signifie que la
proportion d'exemples de chaque classe est la méme dans chacun
des . Cette proportion est donc aussi la méme que dans le jeu de
données &I complet.

L'intérét de cette procédure est de faire en sorte que la distribution
des observations au sein de chaque 9, soit la méme qu’au sein du
jeu de données 9.
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Stratification : justification

Exemple : si par malchance un des folds ne contient que des
exemples positifs dans son jeu d’entrainement et que des exemples
négatifs dans son jeu de test, il est vraisemblable que, sur ce fold,
tout le modele apprenne a prédire que tout est positif et ait une tres
mauvaise performance.
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Validation croisée leave-one-out

Définition 3.4 (Validation croisée leave-one-out) Une
validation croisée dont le nombre de folds est égal au nombre
d’observations dans le jeu d'entrainement, et dont chaque fold est
donc composé d'un jeu d’entrainement de taille n — 1 et d'un jeu de
test de taille 1, est appelée leave-one-out : on met de coté, pour
chaque fold, un unique exemple.

Intuition un algorithme d'apprentissage apprendra d'autant mieux
qu'il y a d'avantage de données disponibles pour I'entrainement :
plus on connait d'étiquettes pour des observations de I'espace I,
plus on peut contraindre le modele a les respecter. Or pour un jeu
de données de taille n, un jeu de test d'une validation croisée a K
folds contient @ points : les modeles entrainés apprendront
d’autant mieux sur chacun des folds qu'ils sont grands, ce qui nous

pousse a considérer le cas ou K = n.
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Inconvénients du leave-one-out

Le leave-one-out a deux inconvénients :

. requiert un grand temps de calcul (on entraine n modeéles,
chacun sur n — 1 observations au lieu de (dans le cas K = 10)
10 modeles, chacun sur 90% des observations)

« les jeux d’'entrainements ainsi formés sont tres similaires entre
eux et les modeles entrainés le seront aussi, et peu différents
d'un modele entrainé sur I'intégralité du jeu de données.

. les jeux de test seront disjoints, et les performances pourront
avoir une grande variabilité (interprétation plus compliquée)
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Bootstrap

But : rééchantillonner les données afin d’estimer |'erreur de
généralisation

Définition 3.5 (Bootstrap) Etant donné un jeu & de n
observations et un nombre B, on appelle bootstrap la procédure qui
consiste a créer B échantillons 91, 9,, ..., Pg de &, obtenus
chacun en tirant n exemples de & avec remplacement. Ainsi chaque
exemple peut apparaitre plusieurs fois, ou pas du tout, dans &,.
Remarque : le bootstrap est une procédure couramment utilisée en
statistiques pour estimer un parametre en fonction de son
estimation sur les B échantillons.

Procédure :

1. entrainement du modele a évaluer sur chaque échantillon &,

2. évaluation de sa performance sur l'intégralité de & (mieux : sur
D \ Dy, pour éviter les biais)
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Bootstrap discussion

Probleme : si |I'évaluation est faite sur 9, cette estimation serait
biaisée par la présence d'une partie des exemples de & dans &,,.
faut donc se limiter aux exemples de 9 \ 9, = procédure trop
complexe en pratique

Remarque : La probabilité que (X', y') apparaisse dans 9, peut étre
calculée comme le complémentaire 3 1 de la probabilité que (X', y')
ne soit tiré aucune des n fois. La probabilité que (X', y') soit tiré une
fois vaut 1. Ainsi

n

P[(X,y') €Dy =1— (1—1)n.

n

Quand n est grand, cette probabilité vaut donc environ
1 —e 1 ~0.632, car la limite en +0c0 de (1 + %)n vaut e,

Ainsi, &, contient environ deux tiers des observations de <.
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Criteres de performance

|"évaluation de la performance prédictive d'un modele
d’'apprentissage supervisé peut se faire de nombreuses maniéres.

« Matrice de confusion, précision, rappel, F-mesure et spécificité
« Courbe ROC, courbe précision-rappel

« Erreurs de régression
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Matrice de confusion

Définition 3.6 (Matrice de confusion) Etant donné un probleme
de classification, on appelle matrice de confusion une matrice M
contenant autant de lignes que de colonnes que de classe, et dont
I'entrée M, est le nombre d'exemples de la classe ¢ pour laquelle
I'étiquette k a été prédite.
Exemple (classification binaire)
Classe réelle
0 1

Classe 0 | vrais négatifs (TN) faux négatifs (FN)

prédite 1 | faux positifs (FP)  vrais positifs (TP)
vrais positifs (true positives) : exemples (+) correctement classifiés
faux positifs (false positives) : exemples (—) classifiés comme (+)
par le modele
vrais négatifs (true negatives) : exemples (—) correctement classifiés
faux négatifs (false negatives) : exemples (+) classifiés comme (—)
par le modele
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Exemple faux positifs/faux négatifs : examens de dépistage

Prédiction a partir d’une radiographie qu’une tumeur soit
maligne (+) ou bénigne (-)

e Une prédiction positive (tumeur maligne) entraine un examen
approfondi (par exemple, une biopsie).

e Une prédiction négative (tumeur bénigne) n'entraine pas d’examen
supplémentaire.

Dépistage radiographique : peu invasif, fiabilité moindre
Examen approffondi par biopsie et analyse du tissu : invasif,
plus fiable

— Vrai positif : tumeur maligne, examen sera confirmé par examen
approfondi (OK)

— Vrai négatif : tumeur bénigne, pas d’'examen approfondi ne sera
effectué (OK)

— Faux positif : tumeur bénigne, sera identifiée comme bénigne par
examen approfondi (OK, mais ce dernier est coliteux et stressant)
— Faux négatif : tumeur maligne, pas d'examen approfondi ne sera

effectué et la tumeur maligne restera non-diagnostiquée @
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Terminologies équivalentes

Faux positif (FP) : fausse alarme, erreur de type |

Faux négatifs (FN) : erreur de type Il
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Rappel

Définition 3.7 (Rappel) On appelle rappel (recall) ou sensibilité
(sensitivity), le taux de vrais positifs (true positive rate, TPR), i.e. la
proportion d'exemples positifs correctement identifiés comme tels
(par rapport au nombre d'exemples positifs présents)

I e —
Ra pp€
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Rappelle-toi d’acheter. ..
Liste de courses d'articles ménagers : pain, lait, savon

Articles disponibles en magasin : pain, lait, pommes, chocolat,
savon, papier toilette

Liste oubliée a la maison! On passe en revue les rayons du magasin
et on classifie chaque article suivant qu'on pense :

. qu'il faut I'acheter (présent sur la liste : positif), ou

. qu'il ne faut pas I'acheter (absent de la liste : négatif)

En rentrant a la maison, on peut évaluer :

Articles achetés et sur la liste : vrai positifs (TP)

Articles achetés et pas sur la liste : faux positifs (FP)
Articles non-achetés mais sur la liste : faux négatifs (FN)
Articles non-achetés et pas sur la liste : vrai négatifs (TN)
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lllustration Rappel (Recall)
— . /.dfz}‘,t
luct

Truc mnémotechnique :
saven Le rappel représente la pro-
portion d'éléments de la
liste de commissions qu’on
s'est rappelé d'acheter.
Calcul du rappel :

Rappel — — 1~ 2
PPETTPYIN T 3
Q : Comment peut-on

obtenir un rappel parfait
(=1)7

Indice : la solution est
TP TP TN FP FN TN

coliteuse. . .
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Rappel parfait : 1. se rappeler correctement de tout

TP TP TN TN TP TN
Calcul du rappel :

TP 3

_— = :1
TP+FN 3

Rappel =
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Rappel parfait : 2. tout acheter

TP TP FP FP TP FP

Calcul du rappel :

TP 3
TP+FN 3
Autre exemple (avec rappel = sensibilité = 1) : test de

dépistage qui indique toujours un résultat positif (donc assuré de ne

rater aucun cas de vraie malade)
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Rappel = =1

Précision (precision)
Définiton 3.8 (Précision) on appelle précision la proportion de
prédictions correctes parmi les prédictions positives :

TP

Précision = -l_P——l—FP
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Rappel et précision parfaits (se rappeler de tout correctem.)

TP TP TN TN TP TN

Calcul du rappel et de la précision :

TP 3
R |l=—————==-=1 ©
PP T TP AN T 3
TP 3
Précision = ——— = > =1 @
recision TP T Fp 3
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Tout acheter : rappel parfait mais précision médiocre

S+t
Y

TP TP FP FP TP FP

Calcul du rappel et de la précision :
TP

3
Rappel = —— —>_1 @
PP T TP YEN T 3
TP
Précision:w—ngzl/Q ®
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Une astuce pour obtenir une bonne précision ?

Faire peu de prédictions positives (seulement acheter les choses dont
on est absolument siir qu’elles sont sur la liste)

FN TP TN TN FN TN

TP 1
R | = = =1/3 ©®
Ppel = AN T2 Y
TP 1
Précision= - =- =1 ©
recision TP T Fp 1
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Accuracy and error rate

Pour obtenir une mesure de performance qui tient compte de toutes
les prédictions (positives et négatives) on peut considérer :

Définiton 3.8b (Accuracy) on appelle accuracy la proportion de
prédictions correctes parmi toutes les prédictions (positives et
négatives) :

TP+ TN
TP+ FP+ TN+ FN

Accuracy =

Définiton 3.8c (Taux d’erreur) on appelle taux d’erreur la
proportion de prédictions incorrectes parmi toutes les prédictions
(positives et négatives) :

FP + FN
TP+ FP + TN + FN

Taux d’erreur = 1 — Accuracy =
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F-mesure

Définition 3.9 (F-mesure) On appelle F-mesure (F-score ou
FI-score) la moyenne harmonique de la précision et du rappel :

Précision X Rappel 2TP

F
Précision+Rappel ~ 2TP + FP + FN

Interprétation

« La F-mesure la plus haute est de 1.0, indiquant une parfaite
précision et rappel.

« La F-mesure la plus basse est de 0, indiquant soit une précision
ou un rappel zéro.
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D’accord de payer plus pour oublier le moins de choses

Acheter trop en n'omettant que les choses dont on est siir qu'elles
ne sont pas sur la liste

il @E40)

VAR & b e b Bonne spécificité :

S icificitd TN
g ITICI — 5 . -+n
— + + + + P FP+ TN

@ 2
1223
TP TP FP TN TP TN

Définition 3.10 (Spécificité) On appelle spécificité le taux de
vrais négatifs, autrement dit, la proportion d'exemples négatifs
correctement identifiés comme tels :

N
FP + TN
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Spécificité =



Exemple : test de dépistage d’'une maladie

Pour identifier des personnes atteintes d'une maladie on a souvent
acces a de multiple méthodes (questionnaire web, détection de
présence d'anticorps, séquencage d’ADN, etc.) qui different par leur
prix, rapidité, invasivité, précision et specificité.
Lors d'un dépistage, on cherche, en particulier, a :
« donner acces a un test a un grand nombre de personnes
= test peu coliteux, routinier, peu invasif, rapide
. s'assurer qu’on n'identifie (presque) aucune personne comme
non-atteinte si elle est réellement atteinte de la maladie
= pas/peu de FN donc haut rappel
. identifier toutes les personnes potentiellement atteintes (+)
= précision pas critique, taux élevé de FP peut étre acceptable
« mais ne pas identifier trop de personnes comme
potentiellement atteintes (+) car les tests approfondis et précis
sont souvent longs, coliteux, invasifs, anxiogeénes (effets a long
et court terme) — précision la plus haute possible sous

contrainte de prix, temps, simplicité, invasivité
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Dépistage coronavirus (analyse via réaction en chaine par
polymérase avec transcription inverse (RT-PCR))

How does PCR testing for CO\.-‘ID 19 work? Caracterlsthues

Polymerase chain reaction (PCR) testing can detect even very small amounts
of viral genetic material in a sample by duplicating it many times over

through a complex laboratory process called amplification. . pe u- | nvaS|f (frottls nasa I )

@ A test sample is swabbed from the back of the nose
and processed to isolate genetic material.

« requiert équipemment de
laboratoire

o cher

Srnalt pieces of specifically engineered genetic material, called primers, |
are introduced and bind to the isolated viral genetic material, oy, S i o en t

initiating amplification. W oS g @
THTAT @Q’ %
Lo 111111 YT

T Amphfacatlon crealmq
HHTITIT ]]]m LI'I'ITITI]iI' millions of copies

Primers binding Initial duplication h i
@ Fluorescent markers bound to the copies during PCR are released
;'r and can be deteded when amplification oceurs. @y b

s & m D@ | =

Positive When there is viral genetic material in the sample, amplification
result i occurs, releasing enough fluoresent markers to be detected.

« précis

. spécifique

Negative If there is no viral genetic material in the sample, amplification
result | will not occur and no fluorescent markers will be detected.

https ://cdn.jamanetwork.com/

Applied Biosystems

Bttt

Intmncksd sa af the peoesast mentned 1t i kTl RS bRy,
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Coronavirus check (questionnaire web)
Caractéristiques :

« non-invasif

largement accessible

« peu coliteux

Avez-vous un ou plusieurs symptdomes d'une maladie
aigué* des voies respiratoires, p. ex. toux, maux de
gorge, souffle court ? Ou avez-vous eu un ou plusieurs
de ces symptomes au cours des derniers jours ?

. rapide
. peu précis (symptomes
subjectifs, similaires a

Et/ou avez-vous soudainement perdu I'odorat et/ou le

https://check.ofsp-coronavirus.ch/screening

gc:ttét d'autres maladies)
O ou « test manquera personnes
O Non atteintes de Covid-19 ou
porteuses du coronavirus
i mais asymptomatiques
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Test clinique de dépistage du cancer du col de l'utérus

Frottis de dépistage : simple et relativement peu invasif
Prélevement tissu et analyse histologique : invasif, cher, mais
tres fiable (vérité terrain)

Matrice de confusion

Cancer | Pas de cancer | Total
Frottis + 190 210 400
Frottis - 10 3590 | 3600
Total 200 3800 | 4000

Rappel : 95% Spécificité : 94.5% Précision : 47.5% TN : 3590

— Piétre précision : mauvais outil diagnostique (Les cas positifs
requierent un examen supplémentaire pour obtenir un diagnostic
fiable.

— Malgré la précision médiocre, bon test de dépistage :
Probabilité de ne pas avoir le cancer si frottis est négatif est de
3590/3600 =~ 99.7%.
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https://check.ofsp-coronavirus.ch/screening

Résumé matrice de confusion

Classe réelle
0 (N) 1(P)
4(N pred)=
™ FN TN + FN
0 (N)
g 2
5 g FP TP #(P pred)=
FP + TP
1(P)
Z diag— _ _ Z\diag:
e = | TN BT S T e
FP + FN TN + TP

Michael Liebling

Matrice conf. :

EE-311—Apprentissage machine / 11. Sélection de modele

Classe réelle

0 (N) 1 (P)
Specificity : 1-Sensibility :
_TIN _FN__
TN+FP FN+TP
0 (N)
Q2 . Sensibility
ke @ 1—S_peC|f|c_|’.cy —=Recall
O & anti-specific.
FP =rappel :
TNTFP TP
1 (P) FN+TP
1 1

normalisation dans chaque classe réelle

Note : taille de la population totale et taille de chaque classe réelle ne

sont plus lisibles avec cette normalisation.
Michael Liebling
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Matrice conf. : normalisation dans chaque classe prédite

Classe réelle
0 (N) 1 (P)
TN FN 1
TN+FN TN+FN
0 (N)
0 Y
ki % Ep Precision :
©a FP+TP _TP 1
FP+TP
1 (P)

Note : taille de la population totale et nombre de résultats de tests

{Positifs ou négatifs) ne sont plus lisibles avec cette normalisation.
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Matrice confusion avec normalisation globale (éléments
somment a 1)

Classe réelle
0 (N) 1 (P)

N FN
TP+FP+TNFFN| TP+FP+TN+FN

0 (N)
3 2
B
S 2 FP TP
TPTFP-TNTFN| TPIFPLTNIFN
1 (P)

Z/ diag™
taux d’erreur
1-accuracy

E\diag:

accuracy

Note : La somme de tous les éléments dans la matrice est 1.
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Receiver-operator characteristic curve (ROC) : origines

Radar Receiver Deux “Receiver- Signal brut
operators” (ami ou ennemi ?)

U.S. NAVY WWII Radar Movie “Conquest of the Night”
https://youtu.be/-BiBg2e0T-17t=59
https://youtu.be/-BiBg2e0T-17t=54
https://youtu.be/-BiBg2e0T-I17t=153

La décision binaire (par exemple, ami/ennemi) est souvent prise sur
la base d'une fonction de décision qui est seuillée. Comment choisir
ce seuillage ?
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Définition ROC (résumé des notations)

ROC: ROC = Rappel en fonction de I'anti-specificité

= TPR en fonction du FPR
Rappel = Sensitivité = True positive Rate (TPR) :

TP

Rappel = —
PP = TP EN

Spécificité = True Negative Rate (TNR)

Spécificité = TNR = FP:—NTN
Anti-Spécificité = False Positive Rate (FPR)
Anti-spécificité = FPR = l =1—TNR
FP 4+ TN
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Définition ROC (suite)
Définition 3.11 (Courbe ROC) On appelle courbe ROC de
I'anglais Receiver-Operator Characteristic la courbe décrivant
I"évolution de la sensibilité (=rappel=TPR) d'un classifieur en
fonction de la complémentaire a 1 de sa spécificité (=1-TNR =
anti-specificité = FPR) obtenue en faisant varier le seuil.

1.0 o
0.8 o
: -=-=- Modéle |
0.6 s se 9
g ",* Modéle 2
=~ ¢
0.4 !
’.'
021 1
]
!
0.01"
0.00 0. 0.50 0.75 1.00
FPR

FIGURE 3.2 - Les courbes ROC de deux modéles.
Michael Liebling

EE-311—Apprentissage machine / 11. Sélection de modéle

Azencott

e (0,0) seuil haut, tel que toutes
les étiquettes sont négatives

e (1,1) seuil bas, tel que toutes

les étiquettes sont positives

e Chaque choix de seuil engendre
une matrice de confusion !

e Classifieur idéal (aucune er-
reur) : passe par le point (0,1)
e Classifieur aléatoire : diagonale

(0,0)—(1,1)

Exemple : construction d’une courbe ROC

Index de |'objet 1 2 3 4 5 6

Etiquette (vraie, a trouver) + — + —+ — —

Score retourné par le modele 0.9 0.8 0.6 0.4 0.3 0.1 #(TP) #(FP)
Prédiction si seuil > 0.9 FN TN FN FN TN TN 0 0
Prédiction si 0.9 > seuil > 0.8 TP TN FN FN TN TN 1 0
Prédiction si 0.8 > seuil > 0.6 TP FP FN FN TN TN 1 1
Prédiction si 0.6 > seuil > 0.4 TP FP TP FN TN TN 2 1
Prédiction si 0.4 > seuil > 0.3 TP FP TP TP TN TN 3 1
Prédiction si 0.3 > seuil > 0.1 TP FP TP TP FP TN 3 2
Prédiction si seuil < 0.1 TP FP TP TP FP FP 3 3

Si le score retourné par le modele est plus grand ou égal au seuil, I'objet sera classifié comme positif et négatif sinon

(puis TP,FP, TN ou FN en comparant avec |'étiquette)

Rappel = TPR = #(TP)/(#TP+#FN) = #(TP)/#(P) = TP/P
anti-spécificité = 1-TNR = FPR = #(FP)/(#FP+#TN) = #(FP)/#(N) = FP/N

Seuil | >0.9 (08,09 (0.6,0.8] (0.406] (03,04 (0.1,03] <01
TP/P 0 1/3 1/3 2/3 1 1 1
FP/N 0 0 1/3 1/3 1/3 2/3 1
1.0
0.8
MO.G
[a]
H0.4
02 Choix du seuil en fonction
00 . de la sensibilité ou spécificité
0.00 0.25 0.50 0.75 1.00 5 ) . .
FPR S qu’on souhaite garantir.

FIGURE 3.3 - Courbe ROC correspondant a I'expérience du tableau 3.2. <N

Michael Liebling
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Courbe précision-rappel

Définition 3.12 (Courbe précision-rappel) on appelle courbe
précision-rappel ou Precision-recall curve, la courbe décrivant
I'évolution de la précision en fonction du rappel, lorsque le seuil de
décision change.

Pour résumer |'aspect de cette courbe par un seul nombre, on peut

utiliser I'aire sous celle-ci (appelée area under the precision-recall
curve (AUPR))

1.0 - 1.0
~
0.8 5 0.8
]
‘\
! =
g 0.6 \ 0.6
2 | Bz
3} N, Q
£04 t £ 04
021 = Modele 1 ;' 0.2
Modele 2
0.0 0.0 . .
00 02 04 06 08 10 o 0.0 0.5 1.0 .
iy o
Rappel S Rappel S
c c
[0} [0}
FIGURE 3.4 - Les courbes précision-rappel de deux modeles. & FIGURE 3.5 - Courbe précision-rappel correspondant  'expérience du tableau 3.2. &
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Erreurs de régression
Pour les problemes de régression, le nombre d’'erreurs n'est pas un
bon critere!
Idée : mesurer |'écart entre les prédictions et les valeurs réelles.
Définition 3.13 (Erreur quadratique moyenne (MSE)) Etant
données n étiquettes réelles y*, y?, ..., y" et n prédictions
f(xt),f(x?), -, f(X"), on appelle erreur quadratique moyenne
ou mean squared error (MSE) la valeur
IR i i\ 2

MSE = n;(f(x) y)
Définition 3.14 (RMSE) Etant données n étiquettes réelles
vyl y?, ..., y" et n prédictions f (X1),f (x?),---,f(X"), on appelle
racine de l'erreur quadratique moyenne ou root mean squared error
(RMSE) la valeur [qui a la méme unité que I'unité cible]

RMSE — | 2 Y (F(x) = yi)’
n -
i=1
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RMSLE (si couverture de plusieurs ordres de grandeur)

Définition 3.15 (RMSLE) Etant données n étiquettes réelles
vyl y? ..., y" et n prédictions f (X1),f (x?),---,f(X"), on appelle
racine du log de I'erreur quadratique moyenne ou root mean squared
log error (RMSLE) la valeur

n

RMSLE = %Z (log ( (%) +1) — log (y{+1))’

i=1
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Coefficient de détermination

Définition 3.16 (Coefficient de détermination) Etant données n
étiquettes réelles y', y? ..., y" et n prédictions f (x*), f (xX?), ...,
f (X"), on appelle erreur carrée relative ou relative squared error
(RSE) la valeur :

2

T (F (7))
Z (y o 26_1)/ )

Le coefficient de détermination R?> = 1 — RSE est le carré du
coefficient de corrélation entre y et £ (x1),f (x?),...,f(x"):1

i (v =32y (F (?")—lZZzlf(?E))
\/211 =2 YY) \/2,1 s f (X ))2

Ce coefficient indique a quel point les valeurs prédites sont corrélées
aux valeurs réelles; attention, il sera élevé aussi si elles leur sont

anti-corrélées. " voir note]
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RSE =




Méthodes naives
Méthodes naives pour la classification :

. prédire systématiquement |'étiquette majoritaire dans le jeu
d’entrainement

o prédire une étiquette aléatoire

. prédire les scores de maniere uniforme (classification binaire)

Méthodes naives pour la régression :

. prédire une valeur aléatoire
. prédire systématiquement la médiane des étiquettes

Exemple d’utilisation : étant donné un indicateur quantitatif de
performance (MSE, rappel, précision, etc.) et une méthode (pas
naive) qu’on veut caractériser :

1. évaluer la performance sur la méthode naive, puis

2. évaluer la performance sur la méthode pas naive
permettra de mettre en perspective la valeur numérique de la

méthode pas naive en comparaison de la méthode naive (étalon).
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Résumé cours 11

o La complexité du modele engendre un dilemne (compromis)
biais-variance

 Pour éviter le sur-apprentissage, il est essentiel lors de |'étape
de sélection du modele de valider les différents modeles testés
sur un jeu de données différent de celui utilisé pour
I'entrainement.

« Pour estimer la performance en généralisation d'un modéle, il
est essentiel de I'évaluer sur des données qui n'ont été utilisées
ni pour |'entrainement, ni pour la sélection de ce modéle.

« De nombreux critéres permettent d'évaluer la performance
prédictive d'un modele. On les choisira en fonction de
I"application.

« Pour interpréter la performance d'un modele, il peut étre utile
de le comparer a une approche naive.
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Note concernant le coefficient de détermination (1)

Si les y' sont les réalisations d'une variable aléatoire y, et f' =
les estimations de y' telles qu'on a

yi=fite

(x)

avec e' la réalisation d'une variable aléatoire de moyenne nulle qui

n'est pas corrélée avec ', i.e. on a:
Cov(f,e) =0,

on peut alors réécrire

Var(e)
RSE =
Var(y)
et
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Note concernant le coefficient de détermination (2)

pe_ (Couly. F)Y

Var(y)Var(f)

~ (Cov(f +¢,f))

Var(y)Var(f)
(Cov(f, f) + Cov(e, f))?
Var(y)Var(f)

 (Var(f)y
Var(y)Var(f)

~ Var(f)
Var(y)
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Note concernant le coefficient de détermination (3)
D’autre part

Var(y) — Var(e)

L= RSE = == 3 (6)
_ Var(f)(Var(y) — Var(e)) (7)
Var(y)Var(f)
_ Var(f)(Var(f + e) — Var(e)) (8)
Var(y)Var(f)
_ Var(f)(Var(f) + Var(e) — Var(e)) (9)
Var(y)Var(f)
Var(f)(Var( )
~ Var(y)Var(f) (10)
~ Var(f)
~ Var(y)’ (11)
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