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Ouvrage de référence et source

Ces transparents sont basés en grande partie sur le
texte de Chloé-Agathe Azencott “Introduction au
Machine Learning”, Dunod, 2019
ISBN 978-210-080153-4

L’auteure a mis le texte (sans les exercices) à disposition ici :
http://cazencott.info/dotclear/public/lectures/

IntroML_Azencott.pdf

Avertissement : Bien que ces transparents partagent la notation
mathématique, la structure de l’exposition (en partie), et certains
exemples avec le livre, ils ne constituent qu’un complément et non
un remplacement ou une source unique pour la couverture des
matières du cours. À ce titre, ces transparents ne se substituent pas
au texte.
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Objectifs de cette leçon

1. Formaliser le concept de classe grâce à des modèles
probabilistes

2. Définir des règles de décision, sur la base de tests de rapport de
vraisemblance :

2.1 décision par maximum de vraisemblance
2.2 décision par maximum a posteriori
2.3 décision par minimisation du risque de Bayes

3. Deux techniques d’estimation de densités de probabilité

3.1 par maximum de vraisemblance (MLE : maximum likelihood
estimator)

3.2 par estimateur de Bayes
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Partie 1 : Formalisme probabiliste pour la classification
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Modèles génératifs pour la classification binaire

L’approche statistique de la classification formalise le concept de
classe grâce à des modèles probabilistes.

Nous allons dès lors considérer que :

• les n observations x⃗1, x⃗2, . . . , x⃗n sont la réalisation d’une
variable aléatoire X ∈ X.

• leurs étiquettes y1, y2, . . . , yn sont la réalisation d’une variable
aléatoire

• classification binaire : Y ∈ {0, 1}
• classification multi-classe : Y ∈ {1, 2, . . . ,C} (où C est le
nombre total de classes)
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Modélisation générative

La modélisation générative consiste à considérer une loi de
probabilité jointe P(X ,Y ) pour l’ensemble des variables entrant
dans le modèle (donc à la fois X et Y ).

Interprétation : La modélisation générative répond à la question :

Comment les données que l’on observe auraient-elles pu être
générées ?

En les modélisant comme la réalisation d’une variable aléatoire, on a
une façon efficace de représenter l’information complexe qu’elles
contiennent.
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Exemple : modélisation d’un test médical

Les résultats d’un test de dépistage médical seront plus facilement
représentés si on considère qu’un résultat est modélisé par une loi de
Bernoulli plutôt que par un processus biochimique complexe (dont
on ne connâıtrait pas forcément tous les paramètres).

Source (Roche rapid antigen test) : https://diagnostics.roche.com/ Photo : ML

Attention cependant :
• La loi aléatoire ne modélisera que la distribution des résultats (mais pas le test
lui-même) : en tant qu’individu, le lancer de la pièce n’est pas une alternative
viable à faire un test (sérieux) !
• En pratique, les données ne sont pas toujours le fruit d’un processus aléatoire.
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Définition des concepts d’inférence et prédiction

Probabilité d’appartenance à une classe : la probabilité qu’une
observation x⃗ appartienne à la classe c est déterminée par

P (Y = c |X = x⃗)

Inférence : un problème d’inférence consiste à déterminer les lois
de probabilité P (Y = c |X = x⃗) à partir de nos observations et
hypothèses

Prédiction (ou décision) : un problème de prédiction utilise les
lois de probabilité pour déterminer la classe y d’une observation x⃗
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Règle de décision simple (principe de base)

Étant données les probabilités d’appartenance à une classe suite à
l’observation de x⃗ :

• P (Y = 1|X = x⃗)

• P (Y = 0|X = x⃗)

nous considérons la règle de décision simple (classification binaire) :

ŷ =

{

1 si P (Y = 1|X = x⃗) > P (Y = 0|X = x⃗)

0 sinon

et dans le cas de la classification multi-classe :

ŷ = argmax
c=1,...,C

P (Y = c |X = x⃗)
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Convention d’écriture des probabilités

Nous écrirons parfois
P (x⃗)

au lieu de
P (X = x⃗)

quand il n’y a pas d’ambiguité.
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Loi de Bayes

Théorème 4.1 (Loi de Bayes)

P (Y = c |x⃗) =
P (Y = c)P (x⃗ |Y = c)

P (x⃗)

Avec

• P (Y = c |x⃗) : la distribution a posteriori des étiquettes
(après avoir observé une réalisation x⃗)

• P (Y = c) : la distribution a priori des étiquettes
(connue avant d’avoir observé x⃗)

• P (x⃗ |Y = c) : la vraisemblance
(que l’on observe la réalisation x⃗

de X sachant que la classe est c)

• P (x⃗) : la probabilité marginale que x⃗ soit observée
(indépendamment de sa classe)
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Probabilité marginale

P (x⃗), la probabilité marginale que x⃗ soit observée (indépendamment
de sa classe) peut s’écrire sous la forme (classification binaire) :

P (x⃗) = P (x⃗ |Y = 0)P (Y = 0) + P (x⃗ |Y = 1)P (Y = 1)

ou (cas multi-classe) :

P (x⃗) =
C∑

c=1

P (x⃗ |Y = c)P (Y = c)
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Exemple : dépistage cancer col de l’utérus

Un test de dépistage du cancer du col de l’utérus a les
caractéristiques suivantes :

• test positif suggère présence du cancer

• test négatif suggère absence de cancer

• sensibilité : 70% (parmi les personnes vraiment atteintes, la
proportion pour lesquelles le test est positif)

• spécificité : 98% (parmi les personnes non-atteintes, la
proportion pour lesquelles le test est négatif)

L’incidence de la maladie est d’environ 1 femme sur 10’000.

Quelle est la probabilité qu’une personne testée soit atteinte d’un
cancer si le test est positif ? (positive predictive value)
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Solution (dépistage cancer de l’utérus)
Notation :

• résultat du test : X variable aléatoire binaire
(1 : test positif, 0 test négatif)

• statut de la personne : Y variable aléatoire binaire
(1 : atteinte, 0 non-atteinte)

La question : “Quelle est la probabilité qu’une personne testée soit
atteinte d’un cancer si le test est positif ?” revient à inférer

P (Y = 1|X = 1) i.e. : ‘atteinte’ (Y = 1) sachant que ’test positif’ (X = 1)

que l’on calcule selon la loi de Bayes par

P (Y = 1|X = 1) =
P (Y = 1)P (X = 1|Y = 1)

P (X = 1)
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Solution (suite)
Or on reconnâıt :

• sensibilité : 70% (la proportion de personnes vraiment atteintes
pour lesquelles le test est positif) ≡ P (X = 1|Y = 1)

• spécificité : 98% (la proportion de personnes non-atteintes pour
lesquelles le test est négatif)
≡ P (X = 0|Y = 0) = 1− P (X = 1|Y = 0)

• L’incidence de la maladie est d’environ 1 femme sur 10’000
≡ P (Y = 1) = 1− P (Y = 0)

• Marginale (test positif) :
P (X = 1) = P (X = 1|Y = 0)P (Y = 0) + P (X = 1|Y = 1)P (Y = 1)

Ce qui nous donne :

P (Y = 1|X = 1) =
P (Y = 1)P (X = 1|Y = 1)

P (X = 1)

=
10−4 × 0.7

(1− 0.98)× (1− 10−4) + 0.7× 10−4

= 0.0035 = 0.35%
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Application näıve de la règle de décision simple lors du
dépistage
Avec la probabilité calculée ci-dessus, si on appliquait la règle de
décision simple évoquée plus haut :

ŷ =

{

1 si P (Y = 1|X = x⃗) > P (Y = 0|X = x⃗)

0 sinon

vu que la probabilité qu’une personne ne soit pas atteinte si le test
est positif est :

P (Y = 0|X = 1) = 1− P (Y = 1|X = 1)

= 0.9965 = 99.65%

on prédirait la classe négative (pas atteint) pour presque tous les
tests positifs !
⇒ le dépistage est utilisé pour identifier les personnes qui
devraient faire un test plus fiable, pas pour faire un
diagnostique.
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Dépistage peu fiable également si résultat négatif ?

La probabilité qu’une personne soit atteinte si le test est négatif est
très basse :

P (Y = 1|X = 0) =
P (Y = 1)P (X = 0|Y = 1)

P (X = 0)

=
P (Y = 1)P (X = 0|Y = 1)

P (X = 0|Y = 0)P (Y = 0) + P (X = 0|Y = 1)P (Y = 1)

=
10−4 × (1− 0.7)

0.98× (1− 10−4) + (1− 0.7)× 10−4

= 3.06× 10−5 = 0.003%

Par conséquent, il est raisonable de faire un diagnostic
‘non-atteinte’ sur la base d’un test de dépistage négatif.
(Comme vu au slide précédent, on se gardera par contre de faire un
diagnostic sur l’unique base d’un test positif et on prescrira un test
plus fiable (mais potentiellement plus coûteux, lent, etc.))
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Vertus de tester un grand nombre en limitant le nombre de
test couteux/lents

Ne vaudrait-il pas la peine d’utiliser un test plus fiable dès le départ ?

Lors d’une campagne de dépistage on mesurera P (X = 0) =
P (X = 0|Y = 0)P (Y = 0) + P (X = 0|Y = 1)P (Y = 1) =
0.98× (1− 10−4) + (1− 0.7)× 10−4 = 0.9799 = 97.99% de test
négatifs, ce qui permet de libérer de test plus poussés les personnes
avec ce résultat (avec bonne confiance).

L’intérêt d’adopter un test de dépistage (avec une sensibilité et une
spécificité donnée) sera donc une fonction :
• de la prévalence (actuelle, estimée) de la maladie dans la
population,
• des conséquence d’un faux négatif (pour la personne, pour le
système de santé),
• des moyens à disposition pour des test plus poussés
• des coût induits par des test plus poussés.
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Partie 2 : Règles de décision
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Règles de décision (via calcul du rapport de vraisemblance)
Tests du rapport de vraisemblance pour décisions par :

1. maximum de vraisemblance
2. maximum a posteriori (note : sera dérivé en premier ici)
3. minimisation du risque de Bayes

↑ par ordre croissant de généralité, mais on va les dériver dans
l’ordre 2.→ 1.→ 3.

Rappel Loi de Bayes

P (Y = c |x⃗) =
P (Y = c)P (x⃗ |Y = c)

P (x⃗)

• P (Y = c |x⃗) : distribution a posteriori des étiquettes (après avoir observé
x⃗)

• P (Y = c) : la distribution a priori des étiquettes (avant d’avoir observé x⃗

• P (x⃗ |Y = c) : la vraisemblance (que l’on observe la réalisation x⃗ de
X sachant que la classe est c)←−

• P (x⃗) la probabilité marginale que x⃗ soit observée (indépendamment de sa
classe)
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Dérivation des tests du rapport de vraisemblance
Idée : on veut des tests qui font intervernir les vraisemblances, i.e.
P (x⃗ |Y = c), c = 0, 1, les vraisemblances que l’on observe la
réalisation x⃗ de X sachant que la classe est soit c = 0 ou c = 1.

Dérivation : On part de la règle de décision simple :

ŷ =

{

1 si P (Y = 1|X = x⃗) > P (Y = 0|X = x⃗)

0 sinon,

qui consiste donc à prédire la classe la plus probable étant donnée
l’observation, ce qui correspond à séléctionner la classe ŷ qui
maximise la valeur a posteriori P (Y = y⃗ |x⃗).
Par la loi de Bayes on peut ré-écrire cette règle en faisant intervenir
les vraisemblances P (x⃗ |Y = c), c = 0, 1 :

ŷ =

{

1 si P(x⃗ |Y=1)P(Y=1)
P(x⃗)

> P(x⃗ |Y=0)P(Y=0)
P(x⃗)

0 sinon

puis finalement, en simplifiant P (x⃗) on obtient . . .
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Décision par maximum a posteriori (formulation par
vraisemblances et distribution d’étiquettes a priori)

Décision par maximum a posteriori
• Dans le cas binaire la règle de décision

ŷ =

{

1 si P (x⃗ |Y = 1)P (Y = 1) > P (x⃗ |Y = 0)P (Y = 0)

0 sinon

est appelée règle de décision par maximum a posteriori.

• Dans le cas multi-classe, cette règle s’écrit

ŷ = argmax
c=1,...,C

P (x⃗ |Y = c)P (Y = c) .

Note : Cette formulation sélectionne la classe qui maximise la
probabilité a posteriori, P (Y = c |x⃗), mais ne fait intervenir que
P (Y = c) (distribution a priori des étiquettes = avant d’avoir
observé la réalisation) et P (x⃗ |Y = c) (vraisemblance que l’on
observe la réalisation x⃗ de X sachant que la classe est c)
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Rapport de vraisemblance

Définition 4.2 (Rapport de vraisemblance)
On représente par Λ (x⃗) le rapport de vraisemblance :

Λ (x⃗) =
P (x⃗ |Y = 1)

P (x⃗ |Y = 0)
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2. (voir diapo suivante pour 1.)
Règle de décision par maximum a posteriori :
formulation comme test sur le rapport de vraisemblance

Avec la définition du rapport de vraisemblance, la règle de
décision par maximum a posteriori s’écrit :

ŷ =

{

1 si Λ (x⃗) > P(Y=0)
P(Y=1)

0 sinon.
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1. Règle de décision par maximum de vraisemblance
(= avec hypothèse d’égalité des distributions a priori)

Avec l’hypothèse que les distributions a priori sont égales,
P (Y = 0) = P (Y = 1) (c’à-d, le rapport P(Y=0)

P(Y=1)
= 1) on peut

définir :

Définition 4.3 (Décision par maximum de vraisemblance) La
règle de décision

ŷ =

{

1 si Λ (x⃗) > 1

0 sinon

est appelée règle de décision par maximum de vraisemblance.

Alternative : on préfère souvent exprimer cette règle sous forme de
log :

ŷ =

{

1 si log Λ (x⃗) > 0

0 sinon
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Exemple : déterminer le sexe de poissons à partir de leur
longueur

Données : un échantillon d’une population de poissons (de même
espèce) avec des mâles et des femelles.
But : déterminer leur sexe uniquement à partir de leur longueur.
Modèle :

• Y variable aléatoire binaire : 0 pour mâle, 1 pour femelle
• X variable aléatoire continue : longueur (en cm)

On suppose :
• Longueurs des femelles est normalement distribuée,
centrée en 6 cm, et écart-type 1 cm :

P (x |Y = 1) ∼N (6, 1)

• Longueurs des mâles est normalement distribuée,
centrée en 4 cm, et écart-type 1 cm :

P (x |Y = 0) ∼N (4, 1)
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Guppy (Poecilia reticulata)

“Poisson d’eau douce tropicale, originaire d’Amérique du Sud.” 1

Un mâle en haut, deux femelles en bas [probablement. . . 2]

Source : https://upload.wikimedia.org/wikipedia/commons/a/a2/Guppy_pho_0048.jpg

1. Wikipedia : https://fr.wikipedia.org/wiki/Guppy
2. https://mrfishkeeper.com/male-and-female-guppies/
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Distribution des longueurs (pour poissons de chaque sexe)

https://www.vd.ch/fileadmin/user_upload/themes/environnement/faune_nature/fichiers_pdf/peche/01_

Decouvrez_la_peche_dans_le_canton_de_VD/Extrait_Reglement_Leman.pdf

A
ze
n
co

tt
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Prédiction
(sous hypothèse que proportion mâles/femelles est 50/50)

Le rapport de vraisemblance s’écrit :

Λ (x) =
P (x |Y = 1)

P (x |Y = 0)
=

e−(x−6)2/2

e−(x−4)2/2

et son logarithme vaut donc

log Λ (x) = −
1

2
(x − 6)2 +

1

2
(x − 4)2 = 2 (x − 5)

Par la règle de décision par maxi-
mum de vraisemblance on obtient

ŷ =

{

1 si log Λ (x) > 0, donc si x > 5

0 sinon

A
ze
n
co

tt
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Prédiction par maximum a posteriori

Information supplémentaire à propos
de l’échantillon :
#(femelles) = 5 × #(mâles)
Le rapport des distributions a priori :

P (Y = 0)

P (Y = 1)
=

1

5

♂

♂

La règle du maximum a posteriori (log)

ŷ =

{

1 si log Λ (x) > log
(

P(Y=0)
P(Y=1)

)

c’à-d. si x > 5− log(5)/4 ≈ 4.58

0 sinon

Connaissance a priori entrâıne le
déplacement de la valeur seuil :

A
ze
n
co

tt
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Règles de décision :
maximum de vraisemblance et maximum a posteriori

♂

♂
♀

♀

♀
♀

♂

♂

♂

♂

♀

♀ ♂

♂

A
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n
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Théorie de la décision bayésienne

Les règles de décision vues :

• maximum de vraisemblance
• maximum a posteriori

s’inscrivent dans le cadre plus général de la théorie de la décision.
Dans ce cadre,

• la variable aléatoire Y définie sur Y représente non pas une
étiquette, mais une vérité cachée, ou un état de la nature

• la variable aléatoire X définie sur X représente les données
observées ; De plus on considère :

• une variable A, définie sur un espace A qui représente
l’ensemble des décisions (actions) qui peuvent être prises.

On se donne une fonction de coût :

L : Y ×A → R

Étant donné un état caché véritable y et une action a, la fonction
de loss L (y , a) quantifie le prix à payer pour avoir choisi l’action a

alors que l’état caché véritable était y .
Michael Liebling EE-311—Apprentissage machine / 10. Densités et inférence Bayésienne 31 / 67



Décisions et météo

Dois-je prendre ou non mon parapluie ce matin ?
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Dois-je prendre mon parapluie ?
Exemple : Dois-je prendre ou non mon parapluie ce matin ?
Nous pouvons modéliser ce problème de la façon suivante :

• A contient deux actions :
prendre mon parapluie et ne pas prendre mon parapluie

• Y contient les vérités :
il ne pleut pas, il pleut un peu, il pleut fort, il y a beaucoup de vent

• X espace décrivant les informations sur lesquelles je peux
m’appuyer (prévisions météorologiques, couleur du ciel quand je
pars de chez moi)

Je peux choisir la fonction de coût suivante :
pas de pluie pluie faible pluie forte vent

parapluie 1 0 0 2
pas de parapluie 0 2 4 0

et choisir l’action a qui minimise la probabilité d’erreur, i.e.
l’espérance d’une fonction coût (suite. . .)
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Décision de Bayes

Définition 4.4 (Décision de Bayes) La règle de décision qui
consiste à choisir l’action a∗ qui minimise l’espérance de la fonction
de coût est appellée règle de décision de Bayes :

a∗ (x⃗) = argmin
a∈A

E [L (y , a)] = argmin
a∈A

∑

y∈Y

P (Y = y |x⃗) L (y , a)

Notes :

• On parlera aussi du principe de minimisation de la perte
espérée (minimum expected loss en anglais.)

• En économie : on préfère au concept de fonction de coût celui
d’utilité (peut être simplement définie comme l’opposé d’une
fonction de coût). La minimisation deviendra une maximisation
de l’utilité espérée (maximum expected utility)
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Contraste avec la minimisation du risque empirique
La minimisation de la perte espérée est à contraster avec la
minimisation du risque empirique (avec hypothèse ≈ action)

ℛn(h) =
1

n

n∑

i=1

L(h(x⃗ i), y i).

dans laquelle on remplace la distribution P (X |Y ) par sa distribution
empirique obtenue en partageant de manière égale la masse de
probabilité entre les n observations

P (X = x⃗ ,Y = y |D) =
1

n

n∑

i=1

¶(y , y i)¶
(
x⃗ , x⃗ i

)

Par contraste, dans le cadre bayésien, on paramétrise la distribution
P (X ,Y ) par un paramètre ¹⃗ optimisé sur D.
• Cadre empirique : hypothèses sur la distribution des données
potentiellement simplistes
• Cadre bayésien : distribution apprise sans considérer le processus
de décision dans lequel elle sera utilisée
Michael Liebling EE-311—Apprentissage machine / 10. Densités et inférence Bayésienne 35 / 67



Risque de Bayes

Alors que la décision de Bayes consiste à choisir, pour une
observation donnée, l’espérance de la fonction de coût, on définit le
risque de Bayes comme l’espérance globale de la fonction de coût :

Définition 4.5 (Risque de Bayes) Le risque de Bayes est
l’espérance du coût sous la règle de décision de Bayes :

r =

∫

x⃗∈X

∑

y∈Y

L (y , a∗ (x⃗))P (x⃗ , y) dx⃗

Note : Définir une stratégie qui minimise le risque de Bayes est
équivalent à appliquer la règle de décision de Bayes.

Michael Liebling EE-311—Apprentissage machine / 10. Densités et inférence Bayésienne 36 / 67

Classification par la règle de décision de Bayes

Cadre de la classification binaire
• y ∈ Y représente la véritable classe d’une observation
• a ∈ A représente sa classe prédite
• classification binaire : A = Y = {0, 1}

La fonction de coût :
L : Y ×Y → R

c , k 7→ ¼ck

⇒ ¼ck : coût de prédire la classe k quand la classe véritable est c .
La règle de décision de Bayes est équivalente à la règle de décision :

ŷ =







1 si ¼11P (Y = 1|x⃗)
︸ ︷︷ ︸

vraie classe = 1

classe prédite = 1

+¼01P (Y = 0|x⃗)
︸ ︷︷ ︸

vraie classe = 0

classe prédite = 1

f ¼10P (Y = 1|x⃗)
︸ ︷︷ ︸

vraie = 1 ; prédite = 0

+ ¼00P (Y = 0|x⃗)
︸ ︷︷ ︸

vraie = 0 ; prédite = 0

0 sinon
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3. Règle de décision de Bayes sous forme de test d’un
rapport de vraisemblance et pour le cas multi-classe

La règle de décision de Bayes de la slide précédente peut se récrire
sous la forme d’un test du rapport de vraisemblance :

ŷ =

{

1 si Λ(x⃗) =P(x⃗ |Y=1)
P(x⃗ |Y=0)

> (¼01−¼00)P(Y=0)
(¼10−¼11)P(Y=1)

0 sinon.

Hint pour la dérivation : utiliser la loi de Bayes et le fait que (¼11 − ¼10) < 0.

Cadre de la classification multi-classe
Règle de décision de Bayes dans le cas multi-classe :

ŷ = argmin
k=1,...,C

C∑

c=1

¼ckP (Y = c |x⃗)

Interprétation : pour une classe candidate k , on somme ¼ck (le coût de prédire
k lorsque la classe véritable est c) pour toutes les étiquettes c = 1, . . . ,C en
pondérent avec la probabilité a posteriori que l’étiquette est c lorsqu’on observe
x⃗ .
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Coût 0/1 avec la règle de décision de Bayes

On retrouve le coût 0/1 (Section 2.4) en utilisant ¼ck = 1− ¶ (k , c).

La règle de décision de Bayes devient

ŷ =

{

1 si P (Y = 0|x⃗) f P (Y = 1|x⃗)

0 sinon

et ainsi la règle de décision de Bayes est équivalente à la règle
décision par maximum a posteriori. Ceci est vrai aussi dans le cas
multi-classe.

Le coût 0/1 n’est pas la seule fonction de coût possible, même pour
un problème de classification binaire. En particulier, toutes les
erreurs de classification ne sont pas nécessairement également
coûteuses. Par exemple, prédire qu’une patiente atteinte d’un cancer
est en bonne santé peut être largement plus problématique que
l’inverse.
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Règle de décision par régions de décision
Les règles de décisions peuvent aussi s’exprimer en termes de régions
de décision (cf. section 2.1) : la règle de décision consiste
simplement à étiqueter l’observation x⃗ en accord avec la région de
décision à laquelle elle appartient :

ŷ =

{

1 si x⃗ ∈ℛ1

0 sinon.

Dans le cas multi-classe, cette règle revient à

ŷ =
C∑

c=1

¶x⃗∈ℛc
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Equivalence de la règle de décision par régions de décision
avec la règle de décision de Bayes

Cette règle de décision est équivalente à la règle de décision de
Bayes si l’on définit comme fonction discriminante la fonction :

g (x⃗) = (¼10P (Y = 1|x⃗) + ¼00P (Y = 0|x⃗))

− (¼11P (Y = 1|x⃗) + ¼01P (Y = 0|x⃗))

cela permet de définir la fonction de décision (voir cours 2) :

ŷ = f (x⃗) =

{

0 si g(x⃗) f 0

1 si g(x⃗) > 0.

ou, dans le cas multi-classe :

gk (x⃗) = −
C∑

c=1

¼ckP (Y = c |x⃗) .

qu’on utilise dans la fonction de décision multi-classe (voir cours 2) :

f (x⃗) = arg max
k=1,...,C

gk(x⃗).
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Règle de décision dans le cas du coût 0/1

Dans le cas du coût 0/1, la fonction discriminante vaut

f (x⃗) = P (Y = 1|x⃗)− P (Y = 0|x⃗)

et la règle de décision de Bayes est bien équivalente à la décision par
maximum a posteriori vue auparavant :

ŷ =

{

1 si Λ (x⃗) > P(Y=0)
P(Y=1)

0 sinon
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Résumé : Règles de décision
Rapport de vraisemblance : Λ (x⃗) = P(x⃗|Y=1)

P(x⃗|Y=0)

3. Règle de décision de Bayes :

ŷ =

{

1 si Λ(x⃗) >
(λ01−λ00)P(Y=0)
(λ10−λ11)P(Y=1)

0 sinon.

→ un coût est associé à chaque décision

2. Règle de décision par maximum a posteriori

ŷ =

{

1 si Λ (x⃗) >
P(Y=0)
P(Y=1)

0 sinon.

ô Bayes avec coût 0/1 associé à chaque décision
→ tient compte de la distribution de
probabilités a priori des étiquettes

1. Règle de décision par maximum vraisemblance

ŷ =

{

1 si Λ (x⃗) > 1

0 sinon.

ô Décision par maximum a posteriori avec
distribution a priori des étiquettes équiprobables
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Partie 3 : Estimation de densités
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Modélisation paramétrique

Jusque là, nous avons considéré que P (X |Y ) était donnée, mais. . .
ce n’est pas toujours le cas :

parfois, il faut modéliser cette distribution !

Modélisation paramétrique Lorsque nous modéliserons une
distribution nous la contraindrons à appartenir à une famille bien
précise de lois de probabilités, avec paramètres ¹⃗ à valeurs dans un
espace Θ de dimension finie
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Description du problème d’estimation de densité et notation

On suppose disposer d’un échantillon :

D = x⃗1, x⃗2, . . . , x⃗n,

n observations d’une variable aléatoire X à valeurs sur X.

Nous supposons que la distribution de X a une forme connue,
paramétrisée par le paramètre ¹.

Comment estimer ¹ ?
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Estimation par maximum de vraisemblance

Définition 4.6 (Estimateur par maximum de vraisemblance)
L’estimateur par maximum de vraisemblance (maximum likelihood
estimator ou MLE) de ¹ est le vecteur ¹̂MLE qui maximise la
vraisemblance, autrement dit la probabilité d’observer D étant
donné ¹ :

¹̂MLE = argmax
¹

P (D|¹)

Exemple : en fonction du jeu de données D observé, on s’attend à
un ¹ différent qui le modélise :
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Procédure d’estimation MLE
(sur la base de n observations iid)

Si l’on suppose qu’on a n observations indépendentes et
identiquement distribuées (iid), on peut décomposer la
vraisemblance comme :

P (D|¹) =
n∏

i=1

P
(
X = x⃗ i |¹

)

Pour simplifier les calculs, on choisira souvent de maximiser non pas
directement la vraisemblance mais son logarithme :

¹̂MLE = argmax
¹

n∑

i=1

logP
(
X = x⃗ i |¹

)
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Exemple d’estimation MLE : jeu de pile ou face
Nous modélisons l’observation “pile” ou “face” comme la réalisation
d’une variable aléatoire X , définie sur l’univers X = {0, 1} (0 pour
pile, 1 pour face) suivant une loi de probabilité P.

Choix classique, la loi de Bernoulli
(lancé d’une pièce avec probabilités
de pile ou face non-équilibrées) :

P (X = x) =

{

p si x = 1

(1− p) si x = 0

De manière équivalente, on peut écrire

P (X = x) = px (1− p)1−x
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Estimation MLE pour jeu de pile ou face (suite)

On suppose que D = {x1, x2, . . . , xn} est constitué de n

observations iid.

L’estimateur par maximum de vraisemblance de p est :

p̂MLE = argmax
p∈[0,1]

n∑

i=1

logP
(
X = x i |p

)

= argmax
p∈[0,1]

n∑

i=1

log
(

px
i

(1− p)1−x i
)

= argmax
p∈[0,1]

n∑

i=1

x i log p +

(

n −
n∑

i=1

x i

)

log (1− p)

Michael Liebling EE-311—Apprentissage machine / 10. Densités et inférence Bayésienne 50 / 67

Estimation MLE pour jeu de pile ou face (suite et fin)

La fonction L : p 7→
∑n

i=1 x
i log p +

(
n −

∑n

i=1 x
i
)
log (1− p) est

concave, nous pouvons donc la maximiser en annulant sa dérivée :

∂L

∂p
=

n∑

i=1

x i
1

p
−

(

n −
n∑

i=1

x i

)

1

1− p

ce qui nous donne

(1− p̂MLE)
n∑

i=1

x i − p̂MLE

(

n −
n∑

i=1

x i

)

= 0

et donc

p̂MLE =
1

n

n∑

i=1

x i

L’estimateur par maximum de vraisemblance de p est tout
simplement la moyenne de l’échantillon.
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Estimation MLE pour jeu de pile ou face (interprétation)

Pour trouver

p̂MLE =
1

n

n∑

i=1

x i

pour un jeu d’observation D on compte le nombre moyen de face :
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Sensibilité, spécificité, et prévalence d’un test de dépistage

Dans quelle mesure un test rapide Corona est-il significatif ?

La fiabilité du test Corona de Roche dans le cadre d’une utilisation comme autotest a été évaluée dans des études
indépendantes menées à l’Hôpital de la Charité de Berlin et à l’université d’Heidelberg¹ avec des tests PCR comme méthode
de référence. Les données obtenues à cette occasion ont étayé la décision de l’OFSP sur l’ajout du SARS-CoV-2 Rapid
Antigen Test Nasal à la liste des tests validés selon les standards de dépistage à la mi-mars. Dans le cadre de ces études, le
test a atteint une sensibilité globale de 82.5% et une spécificité de 100%. Ces études ont par ailleurs montré qu’un autotest
coronavirus permet d’identifier les personnes présentant une charge virale élevée de manière fiable, autant qu’un test rapide
coronavirus effectué par un personnel professionnel (sensibilité de 96.6% dans les deux groupes). https:
//diagnostics.roche.com/ch/fr/article-listing/sars-cov-2-rapid-antigen-test-nasal-self-testing.html
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Estimation MLE des paramètres d’une loi aléatoire pour
modéliser un test de dépistage du cancer du col de l’utérus

Dans l’exemple décrit plus haut, nous avons considéré connues
P (X |Y = 0) et P (X |Y = 1) (vraisemblance d’un résultat de test
sachant la classe). Comment les estimer de manière expérimentale ?

Ingrédients (choses qu’on a à disposition) :

• un jeu D0 de n0 personnes non-atteintes, parmi lesquelles t0
ont un test négatif

• un jeu D1 de n1 personnes atteintes, parmi lesquelles t1 ont un
test positif

• on sait que la prévalence de la maladie est P (Y = 1) = pr
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Estimation de la vraisemblance (suite)
Modèle choisi pour modéliser les vraisemblances (modélise le
manque de fiabilité des tests) :

• P (X |Y = 0) ∼ Bernoulli paramètre p0
• P (X |Y = 1) ∼ Bernoulli paramètre p1

Problème d’estimation revient donc à trouver p0 et p1.

La loi de Bayes nous dit que la probabilité qu’une personne dont le
test est positif soit atteinte est :

P (Y = 1|X = 1) =
P (X = 1|Y = 1)P (Y = 1)

P (X = 1)

Par le choix de notre modèle de Bernoulli, nous avons

P (X = x |Y = 0) = px0 (1− p0)
1−x et

P (X = x |Y = 1) = px1 (1− p1)
1−x , ainsi,
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Estimation MLE test de dépistage (suite et fin)

Avec les lois du slide précédent, nous avons :

P (Y = 1|X = 1) =
p1pr

p1pr + p0 (1− pr )

En remplaçant p0 and p1 par leurs estimateurs par maximum de
vraisemblance (moyenne de l’échantillon)

p̂0 = p̂0,MLE = 1−
t0

n0
spécificité estimée du test

p̂1 = p̂1,MLE =
t1

n1
sensibilité estimée du test

(application numérique : t0
n0

= 0.98, t1
n1

= 0.70, et pr = 10−5)
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Estimateur de Bayes

Point de départ : On suppose que la valeur du paramètre ¹ qui
caractérise notre modèle n’est pas complètement inconnue.

On suppose, par exemple, qu’en tant qu’expert·e·s du domaine
d’application, on a une bonne idée des valeurs qu’il peut prendre.

But : utiliser cette information qu’on a à bon escient, par exemple
afin de palier à un nombre d’observations faible.

Approche : nous allons modéliser ¹ à son tour comme une variable
aléatoire, et définir sa distribution a priori P (¹).
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Estimateur de Bayes : définition

Définition 4.7 (Estimateur de Bayes) Étant donnée une fonction
de coût L, l’estimateur de Bayes ¹̂Bayes de ¹ est défini par

¹̂Bayes = argmin
¹̂

E
[

L
(

¹, ¹̂
)]

.

Si l’on utilise pour L l’erreur quadratique moyenne, alors :

¹̂Bayes = argmin
¹̂

E

[(

¹ − ¹̂
)2
]
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Estimateur de Bayes (lorsque le coût est quadratique)

Si on considère ¹̂ déterministe et un coût quadratique, nous avons :

¹̂Bayes = argmin
¹̂

E

[(

¹ − ¹̂
)2
]

= argmin
¹̂

¹̂2 − 2¹̂E[¹] + E[¹2]

= argmin
¹̂

(

¹̂ − E[¹]
)2

︸ ︷︷ ︸

min. quand ¹̂=E[¹]

−E[¹]2 + E[¹2]
︸ ︷︷ ︸

ne dépendent pas de ¹̂

= E[¹]

Cette espérance est prise sur la distribution de ¹ et de X

(distribution a posteriori de ¹), qui nous sert à estimer ¹. Ainsi :

¹̂Bayes = E [¹|X ] =

∫

¹ P (¹|X ) d¹

Note : Quand la distribution a priori du paramètre est uniforme,
l’estimateur de Bayes est équivalent à l’estimateur par maximum de
vraisemblance.
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Illustration : estimateur de Bayes des paramètres du test de
dépistage
On considère que la valeur des deux paramètres p0 et p1 des lois
Bernoulli qui régissent les résultats des tests dans notre modèle,
sont des réalisation d’une variable aléatoire de type Bêta :

p0 ∼ Beta (³0, ´0) p1 ∼ Beta (³1, ´1)

Loi de densité de la loi Bêta (définie pour ³, ´ > 0, et 0 f u f 1) :

f³,´ (u) =
u³−1 (1− u)´−1

B (³, ´)
avec B (³, ´) =

Γ (³) Γ (´)

Γ (³ + ´)

Commençons par p0 : Pour reprendre les notations générales, on
considère que p0 est le ¹ et pour calculer son estimateur de Bayes,
p̃0 = p̂0,Bayes = ¹̂Bayes, il nous faut connâıtre la loi

P (¹|X ) , qui est, dans ce cas : P (p0|D0)

(Rappel : D0 est le jeu de données composé de n0 personnes
non-atteintes, parmi lesquelles t0 ont un test négatif)
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Calcul de la probabilité qu’un paramètre p0 ait généré les
données mesurées D0

Sous-problème : on a mesuré le jeu de données D0 (avec des
résultats de test positifs et négatifs, dans une population non
atteinte), P (p0|D0) représente la probabilité que p0 était le
paramètre de la loi de Bernoulli qui a produit les résultats du test de
dépistage D0, où l’on a observé, dans une population non-atteinte
de n0 personnes, t0 test négatifs et n0 − t0 tests positifs.

Note importante : il faut bien noter ici que tout jeu mesuré
experimentalement pourrait être le résultat d’un générateur aléatoire
avec n’importe quel p0 donné (par exemple : population n’est pas
atteinte, tous les tests sont positifs alors que p0 = 0.5) mais ça
serait très improbable ! C’est précisément cette probabilité qu’on
cherche à déterminer ici, afin qu’on puisse assigner le p0 qui serait le
plus à même d’expliquer (le plus vraisemblable) les mesures.
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Calculons cette probabilité que p0 soit le bon paramètre

Par la loi de Bayes, on a :

P (p0|D0) =
P (D0|p0)P (p0)

P (D0)
.

avec :

P (p0) =
p³0−1
0 (1− p0)

´0−1

B (³0, ´0)

la probabilité que le paramètre
soit p0, supposant qu’il suit une
loi Bêta(³0, ´0)

P (D0|p0) =

n0∏

i=1

px
i

0 (1− p0)
1−x i

la probabilité a priori que
si le paramètre était p0 on
ait mesuré D0 : on sup-
pose que chaque résultat de
dépistage x i dans D0 est iid
∼ Bernoulli (p0)

= . . . (voir page suivante)
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Calcul de la probabilité a priori

. . . = P (D0|p0) =

n0∏

i=1

px
i

0
︸︷︷︸

avec x i=1 dans n0−t0 cas

(1− p0)
1−x i

︸ ︷︷ ︸

avec x i=0 dans t0 cas

= pn0−t0
0 (1− p0)

t0

on obtient donc :

P (p0|D0) =
P (D0|p0)P (p0)

P (D0)

=
1

P (D0)B (³0, ´0)
︸ ︷︷ ︸

constante de normalisation

pn0−t0+³0−1
0 (1− p0)

t0+´0−1

= f(n0−t0+³0),(t0+´0) (p0)

on voit que P (p0|D0) suit une distribution beta de paramètres
(n0 − t0 + ³0), (t0 + ´0).
Note : la nouvelle constante de normalisation garantit qu’on a bien
une intégrale unité.
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Estimateur de Bayes des paramètres qui modèlisent le test
de dépistage

. . . et en injectant ces resultat dans la formule de l’estimateur de
Bayes, on obtient finalement :

p̃0 = p̂0,Bayes = ¹̂Bayes = E [¹|X ]

= E [p0|D0] =

∫

¹ P (p0|D0) dp0

=
n0 − t0 + ³0

(n0 − t0 + ³0) + (t0 + ´0)

=
n0 − t0 + ³0

n0 + ³0 + ´0

où l’on a utilisé le fait que l’espérance d’une loi bêta est ³
³+´

.

Note : on peut faire une dérivation similaire pour p̃1.
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Comparaison de l’estimateur de Bayes avec l’estimateur
maximum de vraisemblance
Rappel : l’estimateur par maximum de vraisemblance était :

p̂0 = 1−
t0

n0

cela nous permet d’écrire l’estimateur de Bayes comme suit :

p̃0 =
n0

n0 + ³0 + ´0

p̂0 +
³0 + ´0

n0 + ³0 + ´0

³0

³0 + ´0

L’estimateur de Bayes est adapté, quelle que soit la taille de
D0 :

• si n0 est grand l’estimateur de Bayes p̃0 est proche de
l’estimateur par maximum de vraisemblance p̂0

• si n0 est petit l’estimateur de Bayes p̃0 est proche de ³0

³0+´0
=

l’espérance de la distribution a priori sur p0.

⇒ plus on a données, plus on leur fait confiance et plus on peut
potentiellement s’éloigner de l’espérance a priori du paramètre (dont
on restera proche avec peu de données).
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Résumé du cours 10

1. Formalisation du concept de classe : on s’appuie su rla loi de
Bayes

2. Définition des règles de décision sur la base de tests de rapport
de vraisemblance (par ordre croissant de généralité) :

2.1 décision par maximum de vraisemblance
2.2 décision par maximum a posteriori
2.3 décision par minimisation du risque de Bayes

3. Dérivation de 2 techniques d’estimation de densités de
probabilité

3.1 par maximum de vraisemblance (MLE : maximum likelihood
estimator)

3.2 par estimateur de Bayes (plus grande flexibilité)
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Guide de lecture pour ce cours

Chloé-Agathe Azencott “Introduction au Machine Learning”,
Dunod, 2019, ISBN 978-210-080153-4
Chapitre 4 : Inférence bayésienne

Michael Liebling EE-311—Apprentissage machine / 10. Densités et inférence Bayésienne 67 / 67


