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Introduction

auMachine

Learning
Ces transparents sont basés en grande partie sur le i
texte de Chloé-Agathe Azencott “Introduction au
Machine Learning”, Dunod, 2019

ISBN 978-210-080153-4

L'auteure a mis le texte (sans les exercices) a disposition ici :
http://cazencott.info/dotclear/public/lectures/
IntroML_Azencott.pdf

Avertissement : Bien que ces transparents partagent la notation
mathématique, la structure de I'exposition (en partie), et certains
exemples avec le livre, ils ne constituent qu'un complément et non
un remplacement ou une source unique pour la couverture des
matiéres du cours. A ce titre, ces transparents ne se substituent pas
au texte.
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Objectifs de cette lecon

1. Formaliser le concept d'appartenance a une classe grace a des

modeles probabilistes
2. Définir des regles de décision, sur la base de tests de rapport de

vraisemblance (d'appartenir a une classe au vu des

observations) :

2.1 décision par maximum de vraisemblance

2.2 décision par maximum a posteriori

2.3 décision par minimisation du risque de Bayes
3. Deux techniques d'estimation de densités de probabilité

3.1 par maximum de vraisemblance (MLE : maximum likelihood

estimator)
3.2 par estimateur de Bayes
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Partie 1 : Formalisme probabiliste pour la classification
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Modeles génératifs pour la classification binaire

L'approche statistique de la classification formalise le concept de
classe grace a des modeles probabilistes.

Nous allons dés lors considérer que :

. les n observations x*, X2, ..., X" sont la réalisation d'une

variable aléatoire X € X.

o leurs étiquettes y1, y», ..., y, sont la réalisation d'une variable
aléatoire
« classification binaire : Y € {0,1}
o classification multi-classe : Y € {1,2,...,C} (ou C est le

nombre total de classes)
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Modélisation générative

La modélisation générative consiste a considérer une loi de
probabilité jointe (X, Y') pour I'ensemble des variables entrant
dans le modele (donc a la fois X et Y).

Interprétation : La modélisation générative répond a la question :

Comment les données que I'on observe auraient-elles pu étre
générées 7

En les modélisant comme la réalisation d'une variable aléatoire, on a

une facon efficace de représenter I'information complexe qu’elles
contiennent.
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Exemple : modélisation d’un test médical

Les résultats d'un test de dépistage médical seront plus facilement
représentés si on considere qu'un résultat est modélisé par une loi de
Bernoulli plutdt que par un processus biochimique complexe (dont
on ne connaitrait pas forcément tous les paramétres).

Source (Roche rapid antigen test) : https://diagnostics.roche.com/ Photo : ML

Attention cependant :

e La loi aléatoire ne modélisera que la distribution des résultats (mais pas le test
lui-méme) : en tant qu'individu, le lancer de la piéce n'est pas une alternative a
faire un test médical !

e En pratique, les données ne sont pas toujours le fruit d'un processus aléatoire.
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Définition des concepts d’inférence et prédiction

Probabilité d’appartenance a une classe : la probabilité qu'une
observation x appartienne a la classe ¢ est déterminée par

P(Y = c|X = X)

Inférence : un probleme d'inférence consiste a déterminer les lois
de probabilité P(Y = c|X = x). ¢ =1,...,C, a partir de nos
observations et hypotheses

Prédiction (ou décision) : un probleme de prédiction utilise les
lois de probabilité pour déterminer la classe y d’une observation X
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Regle de décision simple (principe de base)

Etant données les probabilités d'appartenance a |'une ou l'autre
classe, suite a |'observation de X :

cP(Y = 1X = %)
. P(Y = 0[X = %)

nous considérons la regle de décision simple (classification binaire) :

1 siP(Y=1X=%)>P(Y=0X=x)

y= .
0 sinon
et dans le cas de la classification multi-classe :

y =argmaxP (Y = ¢|X = X)
c=1,...,C
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Convention d’écriture des probabilités

Nous écrirons parfois

au lieu de

quand il n'y a pas d'ambiguité.
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Loi de Bayes
Théoreme 4.1 (Loi de Bayes)

Avec

« P(Y = c|X) : la distribution a posteriori des étiquettes
(aprés avoir observé une réalisation X)

« P(Y = c) : la distribution a priori des étiquettes

(connue avant d'avoir observé x)

« P(X|Y = c) : la vraisemblance
(que I'on observe la réalisation x
de X sachant que la classe est ¢)

« P(X) : la probabilité marginale que X soit observée

(indépendamment de sa classe)
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Probabilité marginale

P (x), la probabilité marginale que x soit observée (indépendamment
de sa classe) peut s'écrire sous la forme (classification binaire) :

P() =P (]Y =0)P(Y =0)+P(x]Y = 1)P(Y = 1)

ou (cas multi-classe) :
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Exemple : dépistage cancer col de |'utérus

Un test de dépistage du cancer du col de l'utérus a les
caractéristiques suivantes :

. test positif suggere présence du cancer

. test négatif suggere absence de cancer

. sensibilité : 70% (parmi les personnes vraiment atteintes, la
proportion pour lesquelles le test est positif)

. spécificité : 98% (parmi les personnes non-atteintes, la
proportion pour lesquelles le test est négatif)

L'incidence de la maladie est d’environ 1 femme sur 10°000.

Quelle est la probabilité qu'une personne testée soit atteinte d'un
cancer si le test est positif 7 (positive predictive value)
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Solution (dépistage cancer de I'utérus)
Notation :

« résultat du test : X variable aléatoire binaire
(1 : test positif, 0 test négatif)

. statut de la personne : Y variable aléatoire binaire
(1 : atteinte, 0 non-atteinte)

La question : “Quelle est la probabilité qu'une personne testée soit
atteinte d'un cancer si le test est positif 7" revient a inférer

P(Y = 1|X = 1)ie. : ‘atteinte’ (Y = 1) sachant que 'test positif’ (X = 1)

que I'on calcule selon la loi de Bayes par

P(Y =1)P(X =1]Y =1)
P(X =1)

P(Y=1X=1)=
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Solution (suite)
Or on reconnait :

. sensibilité : 70% (la proportion de personnes vraiment atteintes
pour lesquelles le test est positif) = P (X = 1|Y = 1)

. spécificité : 98% (la proportion de personnes non-atteintes pour
lesquelles le test est négatif)
=P(X=0Y=0)=1-P(X =1|Y =0)

« L'incidence de la maladie est d'environ 1 femme sur 10'000
=P(Y=1)=1-P(Y=0)

« Marginale (test positif) :

P(X=1)=P(X =1]Y =0)P(Y =0)+P(X =1|Y = 1)P(Y =1)
Ce qui nous donne :
P(Y=1)P(X =1]Y =1)
P(X =1)
107% x 0.7
(1-0.98) x (1 —-10"%)+0.7x 104
=0.0035 = 0.35%
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Application naive de la regle de décision simple lors du
dépistage

Avec la probabilité calculée ci-dessus, si on appliquait la regle de
décision simple évoquée plus haut :

L1 siP(Y=1X=xX)>P(Y =0|X =X)
V= 0 sinon

vu que la probabilité qu'une personne ne soit pas atteinte si le test
est positif est :

P(Y=0X=1)=1-P(Y =1|X =1)
= 0.9965 = 99.65%

on prédirait la classe négative (pas atteint) pour presque tous les
tests positifs !

= le dépistage est utilisé pour identifier les personnes qui
devraient faire un test plus fiable, pas pour faire un
diagnostique.
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Dépistage peu fiable également si résultat négatif ?

La probabilité qu'une personne soit atteinte si le test est négatif est
tres basse :

P(Y =1)P(X =0]Y =1)

P(X =0)
B P(Y =1)P(X =0]Y =1)
S P(X=0Y=0)P(Y=0)+P(X=0]Y =1)P(Y =1)
B 1074 x (1 —0.7)
© 098 x (1—10"*%)+(1—-0.7) x 10-*
=3.06 x 107> = 0.003%

P(Y =1|X =0) =

Par conséquent, il est raisonable de faire un diagnostic
‘non-atteinte’ sur la base d’un test de dépistage négatif.
(Comme vu au slide précédent, on se gardera par contre de faire un
diagnostic sur I'unique base d'un test positif et on prescrira un test
plus fiable (mais potentiellement plus coliteux, lent, etc.))

Michael Liebling EE-311—Apprentissage machine / 10. Densités et inférence Bayésienne 16 / 68



Vertus de tester un grand nombre en limitant le nombre de
test couteux/lents

Ne vaudrait-il pas la peine d'utiliser un test plus fiable dés le départ ?

Lors d'une campagne de dépistage on mesurera P (X = 0) =
P(X=0Y=0)P(Y=0+P(X=0Y=1)P(Y=1)=

0.98 x (1 —107*) + (1 —0.7) x 107* = 0.9799 = 97.99% de test
négatifs, ce qui permet de libérer de test plus poussés les personnes
avec ce résultat (avec bonne confiance).

L'intérét d'adopter un test de dépistage (avec une sensibilité et une
spécificité donnée) sera donc une fonction :

e de la prévalence (actuelle, estimée) de la maladie dans la
population,

e des conséquence d'un faux négatif (pour la personne, pour le
systeme de santé),

e des moyens a disposition pour des test plus poussés

e des colit induits par des test plus poussés.
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Partie 2 : Regles de décision
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Regles de décision (via calcul du rapport de vraisemblance)
Tests du rapport de vraisemblance pour décisions par :

1. maximum de vraisemblance
2. maximum a posteriori (note : sera dérivé en premier ici)
3. minimisation du risque de Bayes

1 par ordre croissant de généralité, mais on va les dériver dans
I'ordre 2. — 1. — 3.
Rappel Loi de Bayes
P(Y=¢c)P(x]Y =c¢)
P(x)

P(Y = c|X) =

o P(Y = ¢|x) : distribution a posteriori des étiquettes (apres avoir observé
X)
o P(Y = ¢) : la distribution a priori des étiquettes (avant d'avoir observé X

« P(X|Y = ¢) : la vraisemblance (que I'on observe la réalisation x de
X sachant que la classe est c)«—

» P(X) la probabilité marginale que X soit observée (indépendamment de sa
classe)
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Dérivation des tests du rapport de vraisemblance

Idée : on veut des tests qui font intervernir les vraisemblances, i.e.
P(X]Y =c), c = 0,1, les vraisemblances que I'on observe la
réalisation x de X sachant que la classe est soit ¢ = 0 ou ¢ = 1.

Dérivation : On part de la régle de décision simple :
1 siP(Y=1X=X)>P(Y=0[X=x)
0 sinon,

qui consiste donc a prédire la classe la plus probable étant donnée
I'observation, ce qui correspond a séléctionner la classe y qui
maximise la valeur a posteriori P (Y = y|x).

Par la loi de Bayes on peut ré-écrire cette regle en faisant intervenir
les vraisemblances P (x]Y = c¢), ¢ =0,1:

. P(R]Y=1)P(Y=1) _ P(X|Y—=0)P(Y—0)
L s ™50 > 9

Y= 0 sinon

puis finalement, en simplifiant P (X) on obtient ...
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Décision par maximum a posteriori (formulation par
vraisemblances et distribution d’étiquettes a priori)

Décision par maximum a posteriori
e Dans le cas binaire la regle de décision

1 siP(x]Y=1)P(Y=1)>P(x]Y =0)P(Y =0)
0 sinon

A

est appelée regle de décision par maximum a posteriori.

e Dans le cas multi-classe, cette regle s'écrit

y =argmaxP (x]Y = c)P(Y =c¢).
c=1,...,C
Note : Cette formulation sélectionne la classe qui maximise la
probabilité a posteriori, P (Y = c|x), mais ne fait intervenir que
P(Y = ¢) (distribution a priori des étiquettes = avant d'avoir
observé la réalisation) et P (x]Y = c) (vraisemblance que I'on
observe la réalisation X de X sachant que la classe est c¢)
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Rapport de vraisemblance

Définition 4.2 (Rapport de vraisemblance)
On représente par A (X) le rapport de vraisemblance :

. P(RY =1)
ANX) = s Ry =0
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2. (voir diapo suivante pour 1.)
Regle de décision par maximum a posteriori :
formulation comme test sur le rapport de vraisemblance

Avec la définition du rapport de vraisemblance, la régle de
décision par maximum a posteriori s'écrit :

. —» P(Y=
1 siA(xX) > PEY:?;

Y= 0 sinon.
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1. Reégle de décision par maximum de vraisemblance

(= avec hypothese d’égalité des distributions a priori)

Avec I'hypothese que les distributions a priori sont égales,

E)(fY_ 0) =P(Y =1) (c'a-d, le rapport ﬁgjg = 1) on peut
éfinir :

Définition 4.3 (Décision par maximum de vraisemblance) La
regle de décision

0 sinon

R 1 siA(X)>1
y {
est appelée regle de décision par maximum de vraisemblance.

Alternative : on préfere souvent exprimer cette regle sous forme de
log :

. {1 si logA(X) >0
Yy = .
0 sinon
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Exemple : déterminer le sexe de poissons a partir de leur
longueur

Données : un échantillon d'une population de poissons (de méme
espece) avec des miles et des femelles.

But : déterminer leur sexe uniquement a partir de leur longueur.
Modéle :

« Y variable aléatoire binaire : 0 pour male, 1 pour femelle
« X variable aléatoire continue : longueur (en cm)

On suppose :
e Longueurs des femelles est normalement distribuée,
centrée en 6 cm, et écart-type 1 cm :

P(x|Y =1) ~ 4 (6,1)

e Longueurs des males est normalement distribuée,
centrée en 4 cm, et écart-type 1 cm :

P (x|Y = 0) ~ 4 (4,1)
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Guppy (Poecilia reticulata)

“Poisson d'eau douce tropicale, originaire d’Amérique du Sud.” ?

Un male en haut, deux femelles en bas [probablement. . . 2]

o

Source : https://upload.wikimedia.org/wikipedia/commons/a/a2/Guppy_pho_0048. jpg

1. Wikipedia : https://fr.wikipedia.org/wiki/Guppy

2. https://mrfishkeeper.com/male-and-female-guppies/
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Distribution des longueurs (pour poissons de chaque sexe)

COMMENT MESURER LE POISS0N

Longueur du poisson
Le la pointe du musesu
usga'E l'extrémité dz
la queas rormalerant
déplnyée

https://www.vd.ch/fileadmin/user_upload/themes/environnement/faune_nature/fichiers_pdf/peche/01_
Decouvrez_la_peche_dans_le_cant on_de_VD/Extrait_Reglement _Leman.pdf

0.4/

0.21

o
[S9]
N =
—
o
Azencott

Length6(cm}
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Prédiction
(sous hypothése que proportion males/femelles est 50/50)

Le rapport de vraisemblance s'écrit :

ny - EGly =1) _ eteor
X) = =
P(x|Y =0) e (472

et son logarithme vaut donc

|Og/\(X)——%(X—6)2—|—%(X—4)2—2(X—5)

Par la regle de décision par maxi- szl
mum de vraisemblance on obtient

- Plely=1)

L — Plrly=0)

. 1 silogA(x) >0, doncsix > 502
Y= 0 sinon

.0

Azencott

0o 2 4 35 6 8 i
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Prédiction par maximum a posteriori

Information supplémentaire a propos

de I'échantillon :

#(femelles) = 5 x #(males) —a

Le rapport des distributions a priori : R
P(Y=0) 1 <3

P(Y=1) 5
La regle du maximum a posteriori (log)

1 si logA(x) > log @gy:o)) c'a-d. si x > 5 — log(5)/4 ~ 4.58

A

Y=1)

0 sinon

4

Connaissance a priori entraine le
déplacement de la valeur seuil :

ncott

o ae [
[ 2 158 6 ] [P
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Regles de décision

maximum de vraisemblance et maximum a posteriori

T8 é’:@?ﬂ < Q = "f'/ ,‘j
g o= ]

e e
44 2
< 3 A
e e s 9
Q\,é\ﬁ\f\\ . 9 B —7—
0.4
0.4
-~ Ply=1)
— Plxly=0)

0.2 v 02

) ; ; P, 0.0
i : 3 T 0
() Siles deusx classes sont également probables, les pois-

sons dont la taille est inférieure & 5 cm sont étiquetés
miles et les autres femelles,

(B) Si un poisson a cing feis plus de chances a priori
d'étre femelle, les poissons dont la taille est inférieure
4 4,58 cm sont étiquetds méiles et les autres femelles.

FIGURE 4.1 - Régle de décision pour le sexe d'un guppy en fonction de sa taille.
Michael Liebling

SAzencott
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Théorie de la décision bayésienne
Les regles de décision vues :

« maximum de vraisemblance
« maximum a posteriori

s'inscrivent dans le cadre plus général de la théorie de la décision.
Dans ce cadre,

« la variable aléatoire Y définie sur % représente non pas une
étiquette, mais une vérité cachée, ou un état de la nature

« la variable aléatoire X définie sur 2 représente les données
observées; De plus on considere :

« une variable A, définie sur un espace &/ qui représente
I'ensemble des décisions (actions) qui peuvent étre prises.

On se donne une fonction de coliit :

L:Y xd - R
Etant donné un état caché véritable y et une action a, la fonction
de loss L (y, a) quantifie le prix a payer pour avoir choisi I'action a
alors que I'état caché véritable était y.
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Décisions et météo

Dois-je prendre ou non mon parapluie ce matin ?
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Dois-je prendre mon parapluie ?
Exemple : Dois-je prendre ou non mon parapluie ce matin ?
Nous pouvons modéliser ce probleme de la facon suivante :

« o/ contient deux actions :
prendre mon parapluie et ne pas prendre mon parapluie
« % contient les Vérités :
il ne pleut pas, il pleut un peu, il pleut fort, il y a beaucoup de vent
« X espace décrivant les informations sur lesquelles je peux
m'appuyer (prévisions météorologiques, couleur du ciel quand je
pars de chez moi)

Je peux choisir la fonction de colit suivante :

pas de pluie | pluie faible | pluie forte | vent
parapluie 1 0 0 2

pas de parapluie 0 2 4 0

et choisir I'action a qui minimise la probabilité d'erreur, i.e.
I'espérance d'une fonction colit (suite. . .)
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Décision de Bayes

Définition 4.4 (Décision de Bayes) La régle de décision qui
consiste a choisir I'action a* qui minimise |'espérance de la fonction
de colit est appellée regle de décision de Bayes :

a* (X) = argminE[L(y, a)] = argmin Z P(Y =y|x)L(y,a)

acd acol
YeY

Notes :

« On parlera aussi du principe de minimisation de la perte
espérée (minimum expected loss en anglais.)

« En économie : on préfere au concept de fonction de coiit celui
d'utilité (peut étre simplement définie comme I'opposé d'une
fonction de colit). La minimisation deviendra une maximisation
de I'utilité espérée (maximum expected utility)
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Contraste avec la minimisation du risque empirique
La minimisation de la perte espérée est a contraster avec la

minimisation du risque empirique (avec hypothese ~ action)

1¢ o\ i
() = = S L(A(F), )
i=1
dans laquelle on remplace la distribution P (X|Y') par sa distribution
empirique obtenue en partageant de maniere égale la masse de
probabilité entre les n observations

P(X=XY =y|?)= Zayy ,X)

— Cadre empirique : hypothéses sur Ia dlstrlbutlon des données
potentiellement simplistes

Par contraste, dans le cadre bayésien, on paramétrise la distribution
P(X,Y) par un parametre 5optimisé sur la base des mesures 9.
— distribution peut étre moins simpliste mais elle est appris sans

considérer le processus de décision dans lequel elle sera utilisée
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Risque de Bayes

Alors que la décision de Bayes consiste a choisir, pour une
observation donnée, |'espérance de la fonction de colit, on définit le
risque de Bayes comme I'espérance globale de la fonction de colit :

Définition 4.5 (Risque de Bayes) Le risque de Bayes est
I'espérance du colit sous la regle de décision de Bayes :

r—/ S Ly, () P(%.y)dx

L yey

Note : Définir une stratégie qui minimise le risque de Bayes est
équivalent a appliquer la regle de décision de Bayes.
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Classification par la régle de décision de Bayes

Cas de la classification binaire
« ¥ € Y représente la véritable classe d'une observation
« a € 9 représente sa classe prédite
. classification binaire : &/ = % = {0.1}
La fonction de coiit :
L:Y xY - R

C,k — )\ck

= Ak @ colit de prédire la classe k quand la classe véritable est c.
La regle de décision de Bayes est équivalente a la regle de décision :

1 si )\HP(Y = 1‘)?)+)\01P(Y = O|_')

J/

TV
vraie classe = 1 vraie classe = 0
classe prédite = 1 classe prédite = 1

<>
Il

< MoP(Y =1%) + AP(Y =0|%)
—_———

J/

v~

’vraie =1, prédite = 0 ‘ ‘vraie = 0; prédite = 0 ‘

0 sinon
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3. Regle de décision de Bayes sous forme de test d’un
rapport de vraisemblance et pour le cas multi-classe

La regle de décision de Bayes de la slide précédente peut se récrire
sous la forme d'un test du rapport de vraisemblance :

C Ay PERIY=1)  (lor—Ae0)P(Y=0)
1 si A(x) ~B(xIY=0) ~ (Aié%f?)ﬂ”(\’:l)

0 sinon.

Hint pour la dérivation : utiliser la loi de Bayes et le fait que (A1 — A1) < 0.
Cas de la classification multi-classe
Reégle de décision de Bayes dans le cas multi-classe :

y = g in Z AP (Y = ¢|X)

Interprétation : pour une classe candidate k, on somme A\ (le colit de prédire
k lorsque la classe véritable est ¢) pour toutes les étiquettes c = 1,..., C en
pondérent avec la probabilité a posteriori que |'étiquette est ¢ lorsqu’on observe

—

X.
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Coiit 0/1 avec la regle de décision de Bayes

On retrouve le colit 0/1 (Section 2.4) en utilisant Ao, = 1 — 0 (k, ¢).

La regle de décision de Bayes devient

1 siP(Y =0) <P(Y =1|)

0 sinon

et ainsi la regle de décision de Bayes est équivalente a la regle
décision par maximum a posteriori. Ceci est vrai aussi dans le cas
multi-classe.

Le colit 0/1 n'est pas la seule fonction de colit possible, méme pour
un probleme de classification binaire. En particulier, toutes les
erreurs de classification ne sont pas nécessairement également
coliteuses. Par exemple, prédire qu'une patiente atteinte d'un cancer
est en bonne santé peut étre largement plus problématique que

.
I'inverse.
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Regle de décision par régions de décision
Les regles de décisions peuvent aussi s'exprimer en termes de régions

de décision (cf. section 2.1) : la régle de décision consiste
simplement a étiqueter I'observation X en accord avec la région de
décision a laquelle elle appartient :

1 Si)?Ee%l

Y= 0 sinon.

Dans le cas multi-classe, cette regle revient a

C
y= Z Oz,
c=1
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Equivalence de la regle de décision par régions de décision
avec la regle de décision de Bayes

Cette regle de décision est équivalente a la regle de décision de
Bayes si I'on définit comme fonction discriminante la fonction :

g (X) = (AP (Y = 1|X) + AooP (Y = 0[X))
— (AP (Y = 1|X) + M1 P (Y = 0|x))

cela permet de définir la fonction de décision (voir cours 2) :

{0 sig® <0
yf(X){l si g(X) > 0.

ou, dans le cas multi-classe :

qu’on utilise dans la fonction de décision multi-classe (voir cours 2) :

f(X) = X).
(%) = arg, max _&(%)
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Regle de décision dans le cas du couat 0/1

Dans le cas du coiit 0/1, la fonction discriminante vaut
f(X)=P(Y =1|x) —P(Y =0|X)

et la régle de décision de Bayes est bien équivalente a la décision par
maximum a posteriori vue auparavant :

. = P(Y=0
L1 siA(X) > ng:lg
y = )

0 sinon
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Résumé : Regles de décision
=1)

Rapport de vraisemblance : A(X) = %

3. Regle de décision de Bayes :
SR (Xo1—=A00)P(Y=0)
y = 1 st A(X) > (Ar0—A11)P(Y=1)
0 sinon.
— un colit est associé a chaque décision

2. Regle de décision par maximum a posteriori
I {1 si (%) > py=p)
0 sinon.
< Bayes avec colit 0/1 associé a chaque décision
— tient compte de la distribution de

probabilités a priori des étiquettes

1. Regle de décision par maximum vraisemblance
X {1 siA(%)>1
y= )
0 sinon.
< Décision par maximum a posteriori avec
distribution a priori des étiquettes équiprobables
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Partie 3 : Estimation de densités

Michael Liebling EE-311—Apprentissage machine / 10. Densités et inférence Bayésienne 44 / 68



Modélisation paramétrique

Jusque 13, nous avons considéré que P (X|Y') était donnée, mais. ..
ce n'est pas toujours le cas :

parfois, il faut modéliser cette distribution !
Modélisation paramétrique Lorsque nous modéliserons une
distribution nous la contraindrons a appartenir a une famille bien

précise de lois de probabilités, avec parametres 0 a valeurs dans un
espace © de dimension finie

Michael Liebling EE-311—Apprentissage machine / 10. Densités et inférence Bayésienne 45 / 68



Description du probleme d’estimation de densité et notation

On suppose disposer d'un échantillon :
T on
D =x,X°,...,X",

n observations d'une variable aléatoire X a valeurs sur .

Nous supposons que la distribution de X a une forme connue,
paramétrisée par le parametre 6.

Comment estimer 67
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Estimation par maximum de vraisemblance

Définition 4.6 (Estimateur par maximum de vraisemblance)
L'estimateur par maximum de vraisemblance (maximum likelihood
estimator ou MLE) de 0 est le vecteur éMLE qui maximise la
vraisemblance, autrement dit la probabilité d'observer & étant

donné 0 : A
Omie = argmax P (210)
0

lllustration : lancé d'une piéce biaisée. Forme de la distribution
connue (loi de Bernoulli) mais parametre ¢ = p (probabilité de pile)
inconnu. En fonction des 5 jeux de données & observés ci-dessous,
on s'attend a avoir 5 @MLE différents qui modéliseraient au mieux les
données de lancé de pieces telles qu'observées (rapport Pile : Face) :
6:10 310 116

15 1

20:0
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Procédure d’estimation MLE
(sur la base de n observations iid)

Si I'on suppose qu'on a n observations indépendentes et
identiquement distribuées (iid), on peut décomposer la
vraisemblance comme :

P(2|0) = HP X'10)

Pour simplifier les calculs, on choisira souvent de maximiser non pas
directement la vraisemblance mais son logarithme :

Omie = loglP (X = X'|0
MLE arg;naxz og ( X'| )

i=1
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Exemple d’estimation MLE : jeu de pile ou face

Nous modélisons |'observation “pile” ou “face” comme la réalisation
d’'une variable aléatoire X, définie sur I'univers &° = {0,1} (0 pour
pile, 1 pour face) suivant une loi de probabilité PP.

Choix classique, la loi de Bernoulli
(lancé d'une piece avec probabilités
de pile ou face non-équilibrées) :

p six=1

P(X=x)= (1—p) six=0

De maniere équivalente, on peut écrire

P(X=x)=p (1-p)
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Estimation MLE pour jeu de pile ou face (suite)

On suppose que & = {x!, x? ... x"} est constitué de n
observations iid.

L'estimateur par maximum de vraisemblance de p est :

PMLE

Michael Liebling

n

argmaxz log P (X = xi|p)

p€[0,1] i=1
argmaxz log <pr (1- p)lfxi)

p€[0,1] i=1

argmaxei logp+ | n— in log (1 — p)
S S i=1
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Estimation MLE pour jeu de pile ou face (suite et fin)

. . n H n [
La fonction L : p > 7 x'logp+ (n— Y7, x) log (1 — p) est
concave, nous pouvons donc la maximiser en annulant sa dérivée :

o) R—
75 Z;X— n—Zx -

ce qui nous donne

(1- ﬁMLE)ZXi — pmLe | n— in =0
j i=1

i=1

et donc
1< .
) = — X’
PMLE ”,-E_l

L’estimateur par maximum de vraisemblance de p est tout

simplement la moyenne de |'échantillon.
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Estimation MLE pour jeu de pile ou face (interprétation)

Pour trouver

1 n
A i
PMLE:*§ X
n<
i=1

pour un jeu d'observation & on compte le nombre moyen de face :
0/20

1/16 10/16 10/13 16/17
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Sensibilité, spécificité, et prévalence d’un test de dépistage

Dans quelle mesure un test rapide Corona est-il significatif 7

La fiabilité du test Corona de Roche dans le cadre d’une utilisation comme autotest a été évaluée dans des études
indépendantes menées 3 I'Hépital de la Charité de Berlin et & I'université d'Heidelberg? avec des tests PCR comme méthode
de référence. Les données obtenues a cette occasion ont étayé la décision de I'OFSP sur I'ajout du SARS-CoV-2 Rapid
Antigen Test Nasal a la liste des tests validés selon les standards de dépistage a la mi-mars. Dans le cadre de ces études, le
test a atteint une sensibilité globale de 82.5% et une spécificité de 100%. Ces études ont par ailleurs montré qu’un autotest
coronavirus permet d'identifier les personnes présentant une charge virale élevée de maniére fiable, autant qu’un test rapide
coronavirus effectué par un personnel professionnel (sensibilité de 96.6% dans les deux groupes). https:
//diagnostics.roche.com/ch/fr/article-listing/sars-cov-2-rapid-antigen-test-nasal-self-testing.html
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Estimation MLE des parametres d’une loi aléatoire pour
modéliser un test de dépistage du cancer du col de I'utérus

Dans I'exemple du dépistage du cancer du col de 'utérus décrit plus
haut (slides 12-17), nous avons considéré connues P (X|Y = 0) et
P(X|Y = 1) (vraisemblance d'un résultat de test sachant la classe).

Comment les estimer de maniére expérimentale ?
Ingrédients (données qu’on a a disposition) :

« un jeu 9y de ng personnes non-atteintes, parmi lesquelles t,
ont un test négatif

. un jeu Y; de n; personnes atteintes, parmi lesquelles t; ont un
test positif

« on sait que la prévalence de la maladie est P(Y = 1) = p,
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Estimation de la vraisemblance (suite)
Modeles choisis pour modéliser le résultat du test (modélise

le manque de fiabilité des tests) :
« P(X|Y = 0) ~ Bernoulli parametre py (s'applique pour
modéliser le résultat du test sur une personne non-atteinte)
« P(X|Y = 1) ~ Bernoulli parametre p; (s'applique pour
modéliser le résultat du test sur une personne atteinte)

Probleme d'estimation revient donc a trouver py et p;.

La loi de Bayes nous dit que la probabilité qu'une personne dont le
test est positif soit atteinte est :

P(X=1Y=1)P(Y =1)
P(X =1)
Par le choix de notre modele de Bernoulli, nous avons
P(X =x|Y=0)=pf(1—po) " et
P(X =x|Y =1)=p{(1—p)" ", ainsi...
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Estimation MLE test de dépistage (suite et fin)

.., hous avons :

P1pPr

P(Y =1|X =1) =
( | ) pip- + po (1= pr)

En remplacant py and p; par leurs estimateurs par maximum de
vraisemblance (moyenne de |'échantillon)

" N £ PP
Po = pomLE = 1 — 2 spécificité estimée du test
no

t v .,
p1 = Ppime = — sensibilité estimée du test
m

(application numérique : © = 0.98, ;—11 =0.70, et p, = 107°)

no
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Estimateur de Bayes

Point de départ : On suppose que la valeur du parametre 0 qui
caractérise notre modele n'est pas complétement inconnue.

On suppose, par exemple, qu’en tant qu'expert-e-s du domaine
d’'application, on a une bonne idée des valeurs qu'il peut prendre.

But : utiliser des observations pour I'estimation du parameétre tout
en tenant compte de l'information experte. Cela permettra, en
particulier, d'obtenir une bonne estimation méme si le nombre
d’'observations est faible.

Approche : nous allons modéliser 6 a son tour comme une variable
aléatoire, et définir sa distribution a priori IP (6).
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Estimateur de Bayes : définition

Définition 4.7 (Estimateur de Bayes) Etant donnée une fonction
de coiit L, I'estimateur de Bayes (g,yes de 0 est défini par

HABayes = arg;winE [L (0,@)} .

Si I'on utilise pour L I'erreur quadratique moyenne, alors :

éBayes = arggnin]E {(9 - é) 2}
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Estimateur de Bayes (lorsque le coiit est quadratique)

Si on considere 0 déterministe et un colit quadratique, nous avons :

HBayes

Cette espérance

Interprétation : Quand la distribution a priori du paramétre est

srgmin® | (5~ )’

0
argmin 6% — 20E[0] + E[6?]
0

argmin (0 E[0])” —E[P +E[P)
P

min. quand é:IE[G] ne dépendent pas de 6

E[6]

est prise sur la distribution de # et de X qui nous
sert a estimer . Ainsi :

Ogayes = E[0X] = /ep(eyX) de

uniforme, I'estimateur de Bayes est équivalent a |'estimateur par
maximum de vraisemblance.

Michael Liebling
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lllustration : estimat. de Bayes des parameétres test de dépist.
On considére que la valeur des deux parametres p, et p; des lois
Bernoulli qui régissent les résultats des tests dans notre modele,
sont des réalisation d'une variable aléatoire de type béta :

po ~ Beta (ao, 50) p1 ~ Beta(ay, 51)

avec o, By aq, 1 fixés (grace a la connaissance d'expert-e!).
Fonction de densité de la loi Béta (définie pour o, 5 > 0, et
0<u<l):

= faslu),a =058 =05 forme du U
—— faslu),a = 1,3 =2 droite (décroissante)
=== foslu),a=1,3=1loi uniforme
fas(u),a = 18,3 = 2.5 loi unimodale
£ () w1 —u)’t
apllU) =
’ B (o, 3)
MNa)l (5
avec B (a, 3) = F((a)—i—(ﬁ))
Espérance : aiw
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lllustration : estimateur de Bayes, test de dépistage (suite)
Commencons par pg : Pour reprendre les notations générales, on

considere que py est le ¢ et pour calculer son estimateur de Bayes,
Po = Po,Bayes = UBayes. il Nous faut connaftre la loi

P (0| X), qui est, dans ce cas : P (pg|2o)

(Rappel : 9 est le jeu de données composé de ng personnes
non-atteintes, parmi lesquelles ¢y ont un test négatif)
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Calcul de la probabilité qu’un parametre p, ait généré les
données mesurées 9,

Sous-probléme : on a mesuré le jeu de données 9 (avec des
résultats de test positifs et négatifs, dans une population non
atteinte), comment calculer P (py|Zy), qui représente la probabilité
que pg était le parametre de la loi de Bernoulli qui a produit les
résultats du test de dépistage 9, ou |I'on a observé, dans une
population non-atteinte de ng personnes, t, test négatifs et ny — ty
tests positifs.

Note importante : il faut bien noter ici que tout jeu mesuré
expérimentalement pourrait étre le résultat d'un générateur aléatoire
avec n'importe quel py donné (par exemple : population n'est pas
atteinte, tous les tests sont positifs alors que py = 0.5) mais ¢a
serait trés improbable ! C'est précisément cette probabilité qu'on
cherche a déterminer ici, afin qu'on puisse assigner le py qui serait le
plus a méme d'expliquer (le plus vraisemblable) les mesures.
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Calculons cette probabilité que p, soit le bon parameétre

Par la loi de Bayes, on a :

P (2o|po) P (po)

IP>(Po’90) =
avec :
apg—1 Bo—1
Po° (1 — po)
]P p—
(pO) B (040;/30)

i

no '
P(@olpo) = [ [ p5 (1= po)' ™
i=1

Michael Liebling

P (Zo)

la probabilité que le paramétre
soit po, supposant qu'il suit une
loi Béta(&o, Bo)

la probabilité a priori que
si le parametre était py on
ait mesuré 2 : on sup-
pose que chaque résultat de
dépistage x' dans Py est iid
~ Bernoulli (po)

(voir page suivante)
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Probabilité que p, soit le bon parametre (suite)

o

.= P(@o‘po) = H Pgi (1 - pO)li)(l
i1 ~~~ S————

avec x'=1 dans np—ty cas  avec x'=0 dans t; cas
= (1= po)"
on obtient donc :
P (Zo|po) P (po)

? (Rl = (g
1 ng—to+ap—1 to+Bo—1
_ 1— 0+50
P(@O) B (Oéo, 50) pO ( pO)

J/

TV
constante de normalisation

= f(no—fo-&-ao),(to—O—%) (pO)
on voit que P (po|Zp) suit une distribution beta de parametres
(no — to + ao), (to + 60)
Note : la nouvelle constante de normalisation garantit qu'on a bien
une intégrale unité.
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Estimateur de Bayes des parametres qui modelisent le test
de dépistage

On peut maintenant utiliser |'expression ci-dessus de la probabilité
P (po|2p) dans la formule de I'estimateur de Bayes, on obtient
finalement :

ﬁO - p\O,Bayes — é\Bayes =EK [9|X]
= E [po|Z0] = /HP(,DO‘@O) dpo

. ng — to + apg

B (no_tO‘FOéo)-i-(to-i—ﬁo)
. ng — to + «p
ng + o + Bo

< 2

ou I'on a utilisé le fait que I'espérance d’'une loi béta est o L

Note : on peut faire une dérivation similaire pour pj;.
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Comparaison de I'estimateur de Bayes avec I’estimateur

maximum de vraisemblance
Rappel : I'estimateur par maximum de vraisemblance était :

to

o

po=1-—
cela nous permet d'écrire |'estimateur de Bayes comme suit :

- No . g + Bo oo
Po = Po
no + oo + Bo ny + ag + Bo ap + Po

L’estimateur de Bayes s’adapte ainsi a la taille de 9 :
« si ng est grand I'estimateur de Bayes py est proche de
I'estimateur par maximum de vraisemblance p
o si ng est petit |'estimateur de Bayes py est proche de ao‘fﬁo =
I'espérance de la distribution a priori sur pg.

= plus on a données, plus on leur fait confiance et plus on peut
potentiellement s'éloigner de I'espérance a priori du parametre (dont
on restera proche avec peu de données).

Michael Lieblin, EE-311—Apprentissage machine / 10. Densités et inférence Bayésienne 66 / 68
g



Résumé du cours 10

1. Formalisation du concept de classe : on s'appuie sur la loi de
Bayes
2. Définition des regles de décision sur la base de tests de rapport
de vraisemblance (par ordre croissant de généralité) :
2.1 décision par maximum de vraisemblance
2.2 décision par maximum a posteriori
2.3 décision par minimisation du risque de Bayes
3. Dérivation de 2 techniques d'estimation de densités de
probabilité
3.1 par maximum de vraisemblance
(MLE : maximum likelihood estimator)
3.2 par estimateur de Bayes (incorporation de connaissance expert
et adapté a toutes tailles de données d'estimation)
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Guide de lecture pour ce cours

Chloé-Agathe Azencott “Introduction au Machine Learning”,
Dunod, 2019, ISBN 978-210-080153-4
Chapitre 4 : Inférence bayésienne
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