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Réseaux profonds et convolutifs : Contenu

Extension des perceptrons multi-couches et apprentissage profond :

• Généralisation des architectures

• Autograd

• Descente de gradient stochastique

• Convolutions et pooling

• Réseaux neuronaux convolutionnels

• Exemples de réseaux
• Auto-encodeurs, représentations latentes
• Modèles génératifs antagonistes

• Analyse des modèles profonds
• Images d’entrées qui maximisent l’activité d’unités du réseau
• Cartographie des régions d’une images qui contribuent le plus
à la prédiction

François Fleuret (ML : modifs 2022–25) EE-311—Apprentissage machine / 9. Réseaux profonds et convolutifs 1 / 75
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Graphe acyclique orienté (Directed Acyclic Graph (DAG)) :
une généralisation du perceptron multi-couche

Un perceptron multi-couche

x ×

w (1)

+

b(1)

σ ×

w (2)

+

b(2)

σ f (x)

peut être généralisé à un “graphe acyclique orienté” d’opérateurs

x

φ(1)

φ(2)

f (x)φ(3)

w (1)

w (2)
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Propagation vers l’avant pour un exemple de DAG

x(0) = x

x(1)φ(1)

x(2)φ(2)

f (x) = x(3)φ(3)

w (1)

w (2)

x (0) = x

x (1) = φ(1)(x (0);w (1))

x (2) = φ(2)(x (0), x (1);w (2))

f (x) = x (3) = φ(3)(x (1), x (2);w (1))
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Convention de notation pour dérivations

Si (a1, . . . , aQ) = φ(b1, . . . , bR), on note :

[
∂a

∂b

]

= Jφ =






∂a1
∂b1

. . . ∂a1
∂bR

...
. . .

...
∂aQ
∂b1

. . .
∂aQ
∂bR




 .

Si (a1, . . . , aQ) = φ(b1, . . . , bR , c1, . . . , cS), on note :

[
∂a

∂c

]

= Jφ|c =






∂a1
∂c1

. . . ∂a1
∂cS

...
. . .

...
∂aQ
∂c1

. . .
∂aQ
∂cS




 .
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Rétro-propagation du gradient pour exemple de DAG (1/2)

D’abord on regarde les dérivées par rapport aux activations

x(0) = x

x(1)φ(1)

x(2)φ(2)

f (x) = x(3)φ(3)

w (1)

w (2)

[

∂ā

∂x(2)

]

=

[

∂x(3)

∂x(2)

]

[

∂ā

∂x(3)

]

= J
φ(3)|x(2)

[

∂ā

∂x(3)

]

[

∂ā

∂x(1)

]

=

[

∂x(2)

∂x(1)

]

[

∂ā

∂x(2)

]

+

[

∂x(3)

∂x(1)

]

[

∂ā

∂x(3)

]

= J
φ(2)|x(1)

[

∂ā

∂x(2)

]

+ J
φ(3)|x(1)

[

∂ā

∂x(3)

]

[

∂ā

∂x(0)

]

=

[

∂x(1)

∂x(0)

]

[

∂ā

∂x(1)

]

+

[

∂x(2)

∂x(0)

]

[

∂ā

∂x(2)

]

= J
φ(1)|x(0)

[

∂ā

∂x(1)

]

+ J
φ(2)|x(0)

[

∂ā

∂x(2)

]
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Rétro-propagation du gradient pour exemple GAO (2/2)

Puis les dérivées par rapport aux paramètres

x(0) = x

x(1)φ(1)

x(2)φ(2)

f (x) = x(3)φ(3)

w (1)

w (2)

[

∂ā

∂w (1)

]

=

[

∂x(1)

∂w (1)

]

[

∂ā

∂x(1)

]

+

[

∂x(3)

∂w (1)

]

[

∂ā

∂x(3)

]

= J
φ(1)|w (1)

[

∂ā

∂x(1)

]

+ J
φ(3)|w (1)

[

∂ā

∂x(3)

]

[

∂ā

∂w (2)

]

=

[

∂x(2)

∂w (2)

]

[

∂ā

∂x(2)

]

= J
φ(2)|w (2)

[

∂ā

∂x(2)

]
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Outils nécessaire pour faire une descente de gradient

Donc en pratique, si nous disposons d’une librairie “d’opérateurs
tensoriels” pour calculer

(x1, . . . , xd ,w) 7→ φ(x1, . . . , xd ;w)

∀c , (x1, . . . , xd ,w) 7→ Jφ|xc (x1, . . . , xd ;w)

(x1, . . . , xd ,w) 7→ Jφ|w (x1, . . . , xd ;w),

nous pouvons construire des modèles ayant la forme de graphes
orientés acycliques quelconques, et nous pourrons calculer la réponse
et faire une descente de gradient pour en optimiser les paramètres.
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Outils permettant de combiner des opérateurs tensoriels,
d’effectuer des dérivations automatiquement

Implémenter un modèle de type DAG arbitraire est complexe et
sujet à de nombreuses erreurs.

Plusieurs librairies existent qui fournissent les fonctionnalités
nécessaires et permettent de combiner des opérateurs tensoriels de
manière arbitraire et de calculer des dérivations automatiquement.

Language(s) Licence Principal développeur

PyTorch Python BSD Facebook

TensorFlow Python, C++ Apache Google

JAX Python Apache Google

MXNet Python, C++, R, Scala Apache Amazon

Torch Lua BSD Facebook

CNTK Python, C++ MIT Microsoft

Theano Python BSD U. of Montreal

Caffe C++ BSD 2 clauses U. of CA, Berkeley
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Paramètres partagés
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Partage de poids

Cette formulation généralisée sous forme d’un graphe d’opérateurs,
autorise implicitement qu’un paramètre module plusieurs opérateurs.

Dans notre exemple w (1) module φ(1) et φ(3).

x(0) = x

x(1)φ(1)

x(2)φ(2)

f (x) = x(3)φ(3)

w (1)

w (2)

On parle de partage de poids.
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Partage de poids : exemple des réseaux siamois

Cela permet en particulier de concevoir des réseaux siamois où un
réseau complet est répliqué plusieurs fois.

x(0) = x

ψu × + σ u(1) × + σ u(2)

ψv × + σ v (1) × + σ v (2)

φ x(1)w (1) b(1) w (2) b(2)
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Autograd
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Calcul automatique des dérivées

Conceptuellement, la propagation vers l’avant est une succession
“classique” d’opérations tensorielles. Le graphe est nécessaire
uniquement pour calculer les dérivées en déroulant le calcul à
l’envers.

Une manière très élégante de calculer des dérivées consiste à
construire automatiquement et dynamiquement, pendant le calcul,
le graphe nécessaire à calculer des dérivées.

Ce mécanisme d’“autograd” a deux avantages majeurs :

• une syntaxe plus simple, des opérations classiques de
manipulation de tenseurs en Python suffisent, et

• une plus grande flexibilité : comme le graphe est dynamique, il
peut changer à chaque calcul.
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Calcul automatique des dérivées avec PyTorch

C’est ce qu’offre par exemple PyTorch, qui est très proche de
NumPy pour la manipulation de tenseurs.

Il suffit d’indiquer (avec requires_grad_) que l’on va avoir besoin
de calculer des dérivées par rapport aux composantes d’un tenseur
pour que PyTorch construise le graphe nécessaire.

>>> t = torch.tensor([1., 2., 4.])

>>> t.requires_grad_()

tensor([1., 2., 4.], requires_grad=True)

>>> s = sum(t**2)

>>> torch.autograd.grad(s, t)

(tensor([2., 4., 8.]),)
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Accumulation des des gradients

La fonction Tensor.backward() accumule les gradients dans les
champs grad des tenseurs et est souvent plus pratique pour traiter
des gros modèles.

>>> x = torch.tensor([ 0.0, 0.1, 0.2 ]).requires_grad_()

>>> u = sum(torch.log(1/(x+1)))

>>> x.grad

>>> u.backward()

>>> x.grad

tensor([-1.0000, -0.9091, -0.8333])
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autograd appliqué à l’exemple de DAG

Nous pouvons donc exécuter l’évaluation et la rétro-propagation
avec

x(0) = x

x(1)φ(1)

x(2)φ(2)

f (x) = x(3)φ(3)

w (1)

w (2)

φ(1)
(

x(0);w (1)
)

= w (1)x(0)

φ(2)
(

x(0), x(1);w (2)
)

= x(0) + w (2)x(1)

φ(3)
(

x(1), x(2);w (1)
)

= w (1)
(

x(1) + x(2)
)

w1 = torch.rand(5, 5).requires_grad_()

w2 = torch.rand(5, 5).requires_grad_()

x = torch.empty(5).normal_()

x0 = x

x1 = w1 @ x0

x2 = x0 + w2 @ x1

x3 = w1 @ (x1 + x2)

q = x3.norm()

q.backward()
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Visualisation du graphe construit lors d’un calcul tensoriel

On peut visualiser le graphe qui est construit pendant un calcul
tensoriel :

x = torch.tensor([1., 2., 2.]).requires_grad_()

q = x.norm()

q []

NormBackward0

AccumulateGrad

x [3]
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et un autre exemple

w1 = torch.rand(20, 10).requires_grad_()

b1 = torch.rand(20).requires_grad_()

w2 = torch.rand(5, 20).requires_grad_()

b2 = torch.rand(5).requires_grad_()

x = torch.rand(10)

h = torch.tanh(w1 @ x + b1)

y = torch.tanh(w2 @ h + b2)

target = torch.rand(5)

loss = (y - target).pow(2).mean()

loss []

MeanBackward0

PowBackward0

SubBackward0

TanhBackward

AddBackward0

0 1

MvBackward

0 1
AccumulateGrad

AccumulateGrad TanhBackward

w2 [5, 20]
AddBackward0

0 1

MvBackward AccumulateGrad

AccumulateGrad

w1 [20, 10]

b1 [20]

b2 [5]
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exemple, suite

w = torch.rand(3, 10, 10).requires_grad_()

def blah(k, x):

for i in range(k):

x = torch.tanh(w[i] @ x)

return x

u = blah(1, torch.rand(10))

v = blah(3, torch.rand(10))

q = u.dot(v)

q []

DotBackward

0 1

TanhBackward TanhBackward

MvBackward

SelectBackward

AccumulateGrad

w [3, 10, 10]

MvBackward

0 1

SelectBackward

TanhBackward

MvBackward

0 1

SelectBackward

TanhBackward

MvBackward

SelectBackward
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Descente de gradient stochastique
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Rappel : algorithme de descente de gradient classique

Nous avons vu que pour minimiser un coût

ℒ(w) =
N∑

n=1

ā(f (xn;w), yn)
︸ ︷︷ ︸

ān(w)

l’algorithme classique itératif de descente de gradient a la forme

wt+1 = wt − η∇ℒ(wt).
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Limitation de l’implémentation directe et mini-batches

Une implémentation directe serait

for k in range(nb_epochs):

output = model.forward(x)

model.compute_grad(dloss(y, output))

model.gradient_descent_step(eta)

L’occupation mémoire de cet algorithme est proportionnelle au
nombre d’exemples. Cela peut être évité en traitant des “mini
batches” :

for k in range(nb_epochs):

model.zero_grad()

for b in range(0, x.shape[0], nb):

output = model.forward(x[b:b+nb])

model.accumulate_grad(dloss(y[b:b+nb], output))

model.gradient_descent_step(eta)
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Considérations à propos du gradient

Bien que cela soit formellement raisonnable de calculer un gradient
exactement, en pratique :

• Cela prend énormément de temps.

• C’est une estimation empirique et toute somme partielle serait
un estimateur sans biais de la même quantité (avec une
variance plus grande).

• Il est calculé itérativement

∇ℒ(wt) =
N∑

n=1

∇ān(wt),

et quand ān est calculé, nous avons déjà ā1, . . . ,ān−1 à
disposition et pourrions obtenir un estimé de w ∗ plus à jour
que wt .
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Argument intuitif pour approximer le gradient

Prenons un cas idéal où l’ensemble d’apprentissage est en réalité
composé du même ensemble de M exemples repliqué K fois.
Nous avons alors :

ℒ(w) =
N∑

n=1

ā(f (xn;w), yn)

=
K∑

k=1

M∑

m=1

ā(f (xm;w), ym)

= K

M∑

m=1

ā(f (xm;w), ym).

Donc, au lieu de faire la somme complète, nous pouvons faire la
somme sur seulement M exemples, et multiplier le résultat par K .

Bien que cela soit un cas idéal, la redondance dans tout ensemble
d’exemples est telle que des comportements de ce type se
rencontrent en pratique.
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Descente de gradient stochastique

La descente de gradient stochastique consiste à mettre à jour
les paramètres en utilisant le gradient du coût calculé sur des
exemples individuels

wt+1 = wt − η∇ān(t)(wt).

Cette approche est peu efficace computationellement car elle utilise
mal la mémoire cache. Il vaut donc mieux traiter les exemples par
groupes.
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Descente de gradient stochastique par mini-batches

La descente de gradient stochastique par mini-batches est la
procédure standard d’optimisation des paramètres pour
l’apprentissage profond. Elle consiste à parcourir les exemples
d’apprentissage par groupes, et à mettre à jour les paramètres du
modèle à chaque fois :

wt+1 = wt − η

B∑

b=1

∇ān(t,b)(wt).

L’ordre n(t, b) dans lequel les exemples sont visités peut être
séquentiel ou aléatoire, avec ou sans remplacement.

Le comportement aléatoire de cette procédure permet de
s’échapper de minima locaux.
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De procédure exacte à implémentation stochastique

Notre procédure exacte par mini-batches

for k in range(nb_epochs):

model.zero_grad()

for b in range(0, x.shape[0], nb):

output = model.forward(x[b:b+nb])

model.accumulate_grad(dloss(y[b:b+nb], output))

model.gradient_descent_step(eta)

peut être modifiée en une implémentation de la descente de gradient
stochastique par mini-batches

for k in range(nb_epochs):

for b in range(0, x.shape[0], nb):

output = model.forward(x[b:b+nb])

model.compute_grad(dloss(y[b:b+nb], output))

model.gradient_descent_step(eta)
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Evaluation du loss en fonction du nombre d’exemples vus
pour différentes tailles de mini-batch

101

102

103

 0  60000  120000  180000  240000  300000

B
e

s
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a
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o

s
s

Nb. samples seen

Mini-batch size and loss reduction (MNIST)

60k
10k

1k
100

10
1
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Convolutions
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Limitation des réseaux entièrement connectés

S’ils étaient traités comme des signaux sans structure, les images ou
les échantillons sonores demanderaient des modèles de tailles
excessive.

Par exemple, une couche linéaire qui prendrait une image 256× 256
couleurs en entrée et produirait un signal de même taille en sortie
aurait

(256× 256× 3)2 ≃ 3.87× 1010

coefficients, avec l’occupation mémoire (≃150Gb !) et l’excès de
capacité correspondants
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La stationarité des signaux motive l’utilisation de
convolutions

Un modèle entièrement connecté serait incohérent avec l’intuition
que les signaux tel que les images ou sons ont une certaines
“stationarité” : une représentation qui est adéquate à un endroit l’est
ailleurs.

Une couche convolutionnelle repose sur cette idée et applique le
même opérateur linéaire “partout” dans le signal d’entrée pour
calculer sa sortie.
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“Convolution” 1D

Sortie

W − w + 1

9 0

1 2 0 -1

w

1

1 4 -1 0 2 -2 1 3 3 1

Entrée

W
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Interprétation de quelques convolutions

Une convolution peut calculer en particulier un opérateur différentiel
discret, e.g.

(0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4)» (−1, 1) = (0, 0, 0, 1, 1, 1, 1, 0, 0, 0).

» =

ou “détecteur de motif”, e.g.

» =

Note : au sens “signaux et systèmes,” on devrait parler ici d’opérations de
corrélation. En effet, on note que le noyau n’est pas retourné lorsqu’il est glissé.
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Convolutions en dimensions > 1

Cette opération se généralise naturellement à des signaux de plus
grande dimension.

La forme la plus fréquente dans les réseaux convolutifs opère sur un
tenseur à trois dimensions qui représente un signal 2d multi-canal.
Le noyau de convolution se déplace sur les lignes et les colonnes
mais pas sur les canaux.

Si le tenseur en entrée est de taille C × H ×W , et le kernel est
C × h × w , le tenseur de sortie sera (H − h + 1)× (W − w + 1).

Une couche convolutionnelle classique combine D convolutions de
ce type et génère en sortie un tenseur de taille
D × (H − h + 1)× (W − w + 1).
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Convolutions en 2D (e.g. images en couleur avec 3 canaux)

Entrée
Sortie

Noyaux

D H − h + 1

W − w + 1

D

H

W

C

h

w

C
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Exemples : Floutage (léger, fort), mise en évidence de bords
(verticaux, horizontaux, toutes orientations)

»

=

»

=

»

=

»

=

»

=
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Pooling
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But du pooling

La manière traditionnelle pour obtenir un signal de petite dimension
(e.g. quelques valeurs) en partant d’un signal de grande dimension
(e.g. une image) consiste à utiliser des opérations de pooling.

De telles opérations visent à regrouper plusieurs valeurs en une seule
qui est plus “informative”.
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Max- et average pooling

Le type de pooling le plus classique est le max-pooling, qui calcule
la valeur maximale dans des blocs disjoints.

Par exemple, en 1d avec un noyau de taille 2

Sortie

r

4 0 2

w

3

1 4 -1 0 2 -2 1 3 3 1

Entrée

r w

L’average pooling calcule lui une valeur moyenne par bloc. Ce
dernier est donc un opérateur linéaire.
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Opération de pooling en 2D

Entrée

Sortie

s

r

C

s h

r w

C
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Exemple complet
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MNIST

(leCun et al., 1998)
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Implémentation PyTorch

model = nn.Sequential(

nn.Conv2d(1, 32, 5),

nn.ReLU(),

nn.MaxPool2d(3),

nn.Conv2d(32, 64, 5),

nn.ReLU(),

nn.MaxPool2d(2),

Shape1D(),

nn.Linear(256, 256),

nn.ReLU(),

nn.Linear(256, 10)

)

criterion = nn.CrossEntropyLoss()

optimizer = torch.optim.SGD(model.parameters(), lr = 1e-2)

for e in range(nb_epochs):

for input, target in data_loader_iterator(train_loader):

output = model(input)

loss = criterion(output, target)

optimizer.zero_grad()

loss.backward()

optimizer.step()

Training time <10s (GPU), error ≃1%
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Exemple de performance

import PIL, torch, torchvision

to_tensor = torchvision.transforms.ToTensor()

img = to_tensor(PIL.Image.open('example_images/blacklab.jpg'))

img = img.unsqueeze(0)

img = 0.5 + 0.5 * (img - img.mean()) / img.std()

alexnet = torchvision.models.alexnet(pretrained = True)

alexnet.eval()

output = alexnet(img)

scores, indexes = output.view(-1).sort(descending = True)

class_names = eval(open('imagenet1000_clsid_to_human.txt', 'r').read())

for k in range(12):

print(f'#{k+1} {scores[k].item():.02f} {class_names[indexes[k].item()]}')
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Exemple de performance

#1 (12.26) Weimaraner

#2 (10.95) Chesapeake Bay retriever

#3 (10.87) Labrador retriever

#4 (10.10) Staffordshire bullterrier, Staffordshire bull terrier

#5 (9.55) flat-coated retriever

#6 (9.40) Italian greyhound

#7 (9.31) American Staffordshire terrier, Staffordshire terrier

#8 (9.12) Great Dane

#9 (8.94) German short-haired pointer

#10 (8.53) Doberman, Doberman pinscher

#11 (8.35) Rottweiler

#12 (8.25) kelpie

Weimaraner Chesapeake Bay retriever
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Auto-encodeurs
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Auto-encodeurs : définition

Un auto-encodeur a une entrée et une sortie de même dimension, et
se comporte comme l’identité sur les données. Il est souvent
composé d’un encodeur qui va de l’espace de départ dans un
espace latent et d’un décodeur qui revient dans l’espace de
départ.

Espace original Ą

Espace latent 2

f

g

Si l’espace latent est de plus petite dimension, un autoencodeur doit
réduire la redondance dans le signal.
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Fonctions de coût pour les auto-encodeurs

Une fonction de coût classique pour entrâıner un auto-encodeur est
l’erreur quadratique. Avec q la distribution des données sur Ą on
voudrait donc

EX∼q

[

∥X − g ◦ f (X )∥2
]

≃ 0.

Étant donnés deux modèles f (· ;wf ) et g(· ;wg ), les entrâıner
consiste à minimiser une estimation empirique de cette fonction de
coût

ŵf , ŵg = argmin
wf ,wg

1

N

N∑

n=1

∥xn − g(f (xn;wf );wg )∥
2
.
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Auto-encodeurs : implémentation

AutoEncoder (

(encoder): Sequential (

(0): Conv2d(1, 32, kernel_size=(5, 5), stride=(1, 1))

(1): ReLU (inplace)

(2): Conv2d(32, 32, kernel_size=(5, 5), stride=(1, 1))

(3): ReLU (inplace)

(4): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2))

(5): ReLU (inplace)

(6): Conv2d(32, 32, kernel_size=(3, 3), stride=(2, 2))

(7): ReLU (inplace)

(8): Conv2d(32, 8, kernel_size=(4, 4), stride=(1, 1))

)

(decoder): Sequential (

(0): ConvTranspose2d(8, 32, kernel_size=(4, 4), stride=(1, 1))

(1): ReLU (inplace)

(2): ConvTranspose2d(32, 32, kernel_size=(3, 3), stride=(2, 2))

(3): ReLU (inplace)

(4): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2))

(5): ReLU (inplace)

(6): ConvTranspose2d(32, 32, kernel_size=(5, 5), stride=(1, 1))

(7): ReLU (inplace)

(8): ConvTranspose2d(32, 1, kernel_size=(5, 5), stride=(1, 1))

)

)
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Reconstructions à partir de représentations réduites

X (original samples)

g ◦ f (X ) (CNN, d = 8)

g ◦ f (X ) (PCA, d = 8)
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Interpolation dans l’espace latent

Pour mieux comprendre la représentation qui émerge dans cet
auto-encodeur, nous pouvons prendre au hasard deux exemples de
test x and x ′ et interpoler des exemples le long du segment qui les
joint leurs images dans l’espace latent.

∀x , x ′ ∈ Ą
2, α ∈ [0, 1], ξ(x , x ′, α) = g((1− α)f (x) + αf (x ′)).

Original space Ą

Latent space 2

x x ′

f (x)

f (x ′)

f

g
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Interpolation avec PCA (d = 32)
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Interpolation avec l’auto-encodeur (d = 8)
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Modèles génératifs antagonistes
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Modèles génératifs antagonistes : principe

Une approche très puissante pour modéliser des distributions en grande
dimension consiste à utiliser des modèles antagonistes entrâınés de
manière couplée :

• Le discriminateur D doit classifier les exemples comme “réels” ou
“faux”,

• le générateur G doit transformer une distribution simple et fixée a

priori en une distribution de points que D classe comme “réels”.

“réel”
échantillonnage D

Z

G
“faux”

D

Objectif de D

Dans cette approche les deux modèles ont donc des objectifs
antagonistes.
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Vraies images de la classe “bedroom” dans la
base de donnée Large-scale Scene Understanding
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Exemples d’images générées après 1 époque (3M images)
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Exemples d’images générées après 20 époques
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Exemples d’images générées par un modèle génératif
antagoniste

(Karras et al., 2018)
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Analyse d’un modèle profond
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Interprétation d’un réseau par remontée du gradient

Il est difficile de comprendre quelles sont les représentations et les
calculs qui résultent de l’entrâınement d’un réseau profond.

Une manière directe de visualiser ce que détecte une unité
particulière consiste à optimiser l’entrée du réseau pour maximiser
l’activité de l’unité.

Cela se fait avec une remontée du gradient :

xk+1 = xk + η∇fc(xk)

où fc est l’activation à maximiser, qui peut être une valeur interne
au réseau ou un des scores de sortie, et xk est l’entrée après k
itérations.
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Images d’entrée optimisées chacunes pour maximiser un des
canaux de la 4ème couche de convolutions d’un réseau
VGG-16
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Images d’entrée optimisées chacunes pour maximiser un des
canaux de la 7ème couche de convolutions d’un réseau
VGG-16
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Images d’entrée optimisées chacunes pour maximiser une
unité de la 10ème couche de convolutions d’un réseau
VGG-16
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Images d’entrée optimisées chacunes pour maximiser une
unité de la 13ème, et dernière, couche de convolutions d’un
réseau VGG-16
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Images d’entrée optimisées chacunes pour maximiser une
unité de sortie d’un réseau VGG-16

“King crab” “Samoyed” (that’s a fluffy dog)
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Images d’entrée optimisées chacunes pour maximiser une
unité de sortie d’un réseau VGG-16

“Hourglass” “Paper towel”
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Images d’entrée optimisées chacunes pour maximiser une
unité de sortie d’un réseau VGG-16

“Ping-pong ball” “Steel arch bridge”
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Images d’entrée optimisées chacunes pour maximiser une
unité de sortie d’un réseau VGG-16

“Sunglass” “Geyser”
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Images d’entrée optimisées pour maximiser certaines unités
d’un réseau VGG-16 : conclusions

Les résultats montrent que les paramètres d’un réseau entrâıné pour
des tâches de classification encodent assez d’information pour
générer des parties identifiables de grandes tailles.

Ils montrent également les limitations du modèle des contraintes
globales comme la symétrie ou la cardinalité.
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Détermination des parties d’une image d’entrée qui ont
contribué le plus à la prédiction obtenue

Une autre classe de méthodes estiment l’importance des différentes
parties d’un signal d’entrée dans la modulation de la prédiction du
modèle.

Le Gradient-weighted Class Activation Mapping (Grad-CAM)
proposé par Selvaraju et al. (2016) visualise cette importance en
considérant une couche interne du réseau, en général, proche de la
sortie du modèle.
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Grad-CAM : approche

On veut établir une carte qui indique quelles régions de l’image
contribuent à la valeur de sortie y c correspondant à une classe c .

On fixe une couche de convolution (e.g. la dernière couche de
convolution). Dans cette couche, on indexe les canaux par
k ∈ {1, . . . ,C} et Ak ∈ R

H×W sont les activation du canal k dans
la couche considérée. On calcule un poids pour chaque canal k :

αc
k =

1

HW

H∑

i=1

W∑

j=1

∂y c

∂Ak
i ,j

,

qui favorise les canaux en fonction de l’importance du gradient de la
sortie y c par rapport aux activations Ak

i ,j

Et la carte de localisation finale est obtenue en calculant une somme
pondérée (et rectifiée) des activations Ak :

LcGrad-CAM = ReLU

(
C∑

k=1

αc
kA

k

)

.
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Images et régions d’activations pour deux classes

African elephant Hippopotamus

Ox Fountain
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Images et régions d’activations pour deux classes

Coffee mug Bagel

Bee Daisy
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Résumé : réseaux profonds et convolutionnels

• Les graphes acycliques orientés (direct acyclic graphs (DAG) sont des
généralisation du perceptron multi-couche

• Implémentation à l’aide d’opérateurs tensoriels et calculs de gradient
automatisés

• Descente de gradient stochastique et mini-batches : accélération de
convergence et évitement des minima locaux

• Opérations de convolutions et pooling : les réseaux neuronaux
convolutionnels sont souvent mieux adaptés que des réseaux entièrement
connectés

• Auto-encodeurs et représentations latentes : représentations
parcimonieuses et possibilités d’interpolation

• Modèles génératifs antagonistes : générateur d’images contre
discriminateur vrai/faux

• Analyse des modèles profonds :

• Images d’entrées qui maximisent l’activité d’unités du réseau
• Cartographie des régions d’une images qui contribuent le plus à la
prédiction
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