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Réseaux profonds et convolutifs : Contenu

Extension des perceptrons multi-couches et apprentissage profond :

Généralisation des architectures

Autograd

Descente de gradient stochastique

Convolutions et pooling
Réseaux neuronaux convolutionnels

Exemples de réseaux

« Auto-encodeurs, représentations latentes
o Modeles génératifs antagonistes

Analyse des modeles profonds

« Images d’entrées qui maximisent |'activité d'unités du réseau
« Cartographie des régions d'une images qui contribuent le plus
a la prédiction
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Graphe acyclique orienté (Directed Acyclic Graph (DAG)) :
une généralisation du perceptron multi-couche

Un perceptron multi-couche

WO W@ | p@

|— X + B X + {EI% f(x)

peut étre généralisé a un “graphe acyclique orienté” d'opérateurs

e \ o3 —|f(x)
: \ ) /
w(?) /
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w(D) |t

Propagation vers I'avant pour un exemple de DAG

dM) |>| (1) :\ \ #B) > f(x) = xC)
#2) >| x(2) /
W@ /
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x(0) — x|t

x0 = x
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Convention de notation pour dérivations

Si(a1,...,a9) = ¢(b1,...,bg), on note :

da Oa;
I
db bag 0o

Ooby """  Obgr

Si(a1,...,ag9) = ¢(b1,...,br,c1,...,Cs), On note :

day Oap
Oa o 9¢s
2| =de=| &
9aq 9aq
ocy "t Ocg
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Rétro-propagation du gradient pour exemple de DAG (1/2)

D’abord on regarde les dérivées par rapport aux activations

w@ [t
> (D) |t \ #B) > f(x) = x()
x(0) — x| \ $2) > x(2) /
w2 /
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Far ] [ox@ ] [ o ] . (ox® | [ ar 1 o ], a¢
LoxM ]~ |axM | [ax® ] T [ax(M | [axG) | — TP [ 5@) | T TP | 556)
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Rétro-propagation du gradient pour exemple GAO (2/2)

Puis les dérivées par rapport aux parametres

W(l) I \
dM) |>| (1) :\ #B) > f(x) = x()
/ 2 > x©2) /

x(0) — x|

w(?)

ac 1 [ox ][ o X1 or ] _ o ] %
aw® | = 1 aw® | |ax® | T 1 aw® | | 5x@ | = Ze®@mw® | 5@ | T 7@ 1w | 5:3)
o 1 [ox® 107 %
ow@ | T law@ | |ax@ | — T¢PIv® | 552)

Francois Fleuret (ML : modifs 2022-25) EE-311—Apprentissage machine / 9. Réseaux profonds et convolutifs 6 /75

Outils nécessaire pour faire une descente de gradient

Donc en pratique, si nous disposons d'une librairie “d’opérateurs
tensoriels” pour calculer

(X17 ey Xd, W) — ¢(X17 ooy Xdy W)
Ve, (X1, Xd, W) = Dy (X1, -+ - Xa; W)
(X1, X, W) = S (X, .o, Xas w),

nous pouvons construire des modeles ayant la forme de graphes
orientés acycliques quelconques, et nous pourrons calculer la réponse
et faire une descente de gradient pour en optimiser les parameétres.

Francois Fleuret (ML : modifs 2022-25) EE-311—Apprentissage machine / 9. Réseaux profonds et convolutifs 7/ 75



Outils permettant de combiner des opérateurs tensoriels,
d’effectuer des dérivations automatiquement

Implémenter un modele de type DAG arbitraire est complexe et
sujet a de nombreuses erreurs.

Plusieurs librairies existent qui fournissent les fonctionnalités
nécessaires et permettent de combiner des opérateurs tensoriels de
maniére arbitraire et de calculer des dérivations automatiquement.

Language(s) Licence Principal développeur
PyTorch Python BSD Facebook
TensorFlow  Python, C++ Apache Google
JAX Python Apache Google
MXNet Python, C++, R, Scala  Apache Amazon
Torch Lua BSD Facebook
CNTK Python, C++ MIT Microsoft
Theano Python BSD U. of Montreal
Caffe C++ BSD 2 clauses U. of CA, Berkeley
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Parametres partagés
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Partage de poids

Cette formulation généralisée sous forme d'un graphe d'opérateurs,
autorise implicitement qu'un parametre module plusieurs opérateurs.

Dans notre exemple w®) module ¢ et ¢(3).

w(D) [k

o)

X(l) :\

f(x) — X(3)

X(O) = x|

W) /

On parle de partage de poids.
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Partage de poids : exemple des réseaux siamois

10 / 75

Cela permet en particulier de concevoir des réseaux siamois ou un
réseau complet est répliqué plusieurs fois.

("‘/}u

0 =<

— X ~|E|9u(1)|—><—+—|z|9u(2)|~
i
— X — ~|E|9V(l)|—><—+—|z|9v(2)
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Autograd
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Calcul automatique des dérivées

Conceptuellement, la propagation vers |'avant est une succession
“classique” d’'opérations tensorielles. Le graphe est nécessaire
uniquement pour calculer les dérivées en déroulant le calcul a
I"'envers.

Une maniere tres élégante de calculer des dérivées consiste a
construire automatiquement et dynamiquement, pendant le calcul,
le graphe nécessaire a calculer des dérivées.

Ce mécanisme d' “autograd” a deux avantages majeurs :

« une syntaxe plus simple, des opérations classiques de
manipulation de tenseurs en Python suffisent, et

« une plus grande flexibilité : comme le graphe est dynamique, il
peut changer a chaque calcul.
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Calcul automatique des dérivées avec PyTorch

C'est ce qu'offre par exemple PyTorch, qui est tres proche de
NumPy pour la manipulation de tenseurs.

Il suffit d'indiquer (avec requires_grad_) que I'on va avoir besoin
de calculer des dérivées par rapport aux composantes d'un tenseur
pour que PyTorch construise le graphe nécessaire.

>>> t = torch.tensor([1., 2., 4.])

>>> t.requires_grad_()

tensor([1., 2., 4.], requires_grad=True)
>>> s = sum(t**2)

>>> torch.autograd.grad(s, t)
(tensor([2., 4., 8.1),)
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Accumulation des des gradients

La fonction Tensor.backward() accumule les gradients dans les
champs grad des tenseurs et est souvent plus pratique pour traiter
des gros modéles.

>>> x = torch.tensor([ 0.0, 0.1, 0.2 ]).requires_grad_Q)
>>> u = sum(torch.log(1/(x+1)))

>>> x.grad

>>> u.backward()

>>> x.grad
tensor([-1.0000, -0.9091, -0.8333])
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autograd appliqué a I'exemple de DAG

Nous pouvons donc exécuter |'évaluation et la rétro-propagation
avec

w(l)

o) > x(1) :\ \ B 5| f(x) = x()
4@ |5 @ /
wl = torch.rand(5, 5).requires_grad_Q)

X(O) = x|
w(?) /
w2 = torch.rand(5, 5).requires_grad_()

(b(l) (X(O); W(l)) _ W(l)X(O) x = torch.empty(5) .normal_()

x0 = x

e (X(O),Xm; W(2>) — 0 L W@, - wtoxo

x2 = x0 + w2 @ x1
e (X(l),xm; W(l)) eY (X(l) n X(z))

x3 = wl @ (x1 + x2)
q = x3.norm()

q.backward ()
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Visualisation du graphe construit lors d’un calcul tensoriel
On peut visualiser le graphe qui est construit pendant un calcul
tensoriel :

x = torch.tensor([1., 2., 2.]).requires_grad_()
x.norm()

Q
I

qll

\

NormBackward0

AccumulateGrad

\

x [3]
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et un autre exemple

0]
wl = torch.rand(20, 10).requires_grad_()
bl = torch.rand(20) .requires_grad_()
w2 = torch.rand(5, 20).requires_grad_() s |
b2 = torch.rand(5) .requires_grad_() v

[AodBackvrdo |
o [ 1

x = torch.rand(10)

h = torch.tanh(wl @ x + bil) N [ pop
(o1 ]
y = torch.tanh(w2 @ h + b2) | //H |
target = torch.rand(5)
| MvBackward AccumulateGrad
loss = (y - target).pow(2) .mean() ] |

AccumulateGrad
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| bl [20]7

exemple, suite

w = torch.rand(3, 10, 10).requires_grad_()
def blah(k, x): o]
for i in range(k): R

x = torch.tanh(w[i] @ x) == ==

return X

u = blah(1l, torch.rand(10))
blah(3, torch.rand(10))
q = u.dot(v)

<
I

SelectBackward

TanhBackward

’ SelectBackward ‘

SelectBackward SelectBackward

AccumulateGrad

w[3, 10, 10]

Ir
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Descente de gradient stochastique
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Rappel : algorithme de descente de gradient classique

Nous avons vu que pour minimiser un colit

g

L(w) =) £(f(x0iw), yn)

£n(w)

I'algorithme classique itératif de descente de gradient a la forme

Wer1 = wy — nVE (wy).
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Limitation de I'implémentation directe et mini-batches

Une implémentation directe serait

for k in range(nb_epochs):
output = model.forward(x)
model.compute_grad(dloss(y, output))
model .gradient_descent_step(eta)

L'occupation mémoire de cet algorithme est proportionnelle au
nombre d'exemples. Cela peut étre évité en traitant des “mini
batches” :

for k in range(nb_epochs):
model.zero_grad()
for b in range(0, x.shape[O], nb):
output = model.forward(x[b:b+nb])
model.accumulate_grad(dloss(y[b:b+nb], output))
model.gradient_descent_step(eta)
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Considérations a propos du gradient

Bien que cela soit formellement raisonnable de calculer un gradient
exactement, en pratique :

« Cela prend énormément de temps.

« C'est une estimation empirique et toute somme partielle serait
un estimateur sans biais de la méme quantité (avec une
variance plus grande).

o |l est calculé itérativement

VZ(we) = Ve we).

et quand 7, est calculé, nous avons déja ¢1,...,¢,_1 a
disposition et pourrions obtenir un estimé de w* plus a jour
que W;.
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Argument intuitif pour approximer le gradient

Prenons un cas idéal ou |I'ensemble d’apprentissage est en réalité
composé du méme ensemble de M exemples repliqué K fois.
Nous avons alors :

Z(w) =) (f(xa;w), ¥n)

M= 11

S E(F(mi W), i)

1 m=1

Z £(f(Xm; W), Yim)-

m=1

>
Il

|
X

Donc, au lieu de faire la somme compléte, nous pouvons faire la
somme sur seulement M exemples, et multiplier le résultat par K.

Bien que cela soit un cas idéal, la redondance dans tout ensemble
d'exemples est telle que des comportements de ce type se

rencontrent en prathue.
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Descente de gradient stochastique

La descente de gradient stochastique consiste a mettre a jour
les paramétres en utilisant le gradient du colit calculé sur des
exemples individuels

Wit1 = Wr — 77VLﬂn(t)(Wt)-

Cette approche est peu efficace computationellement car elle utilise
mal la mémoire cache. |l vaut donc mieux traiter les exemples par
groupes.
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Descente de gradient stochastique par mini-batches

La descente de gradient stochastique par mini-batches est |a
procédure standard d'optimisation des parametres pour
|'apprentissage profond. Elle consiste a parcourir les exemples
d’apprentissage par groupes, et a mettre a jour les parameétres du
modele a chaque fois :

B
Wip1 = W — 1) Z Vl/ﬂn(t,b)(Wt)-

b=1

L'ordre n(t, b) dans lequel les exemples sont visités peut étre
séquentiel ou aléatoire, avec ou sans remplacement.

Le comportement aléatoire de cette procédure permet de
s’échapper de minima locaux.
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De procédure exacte a implémentation stochastique

Notre procédure exacte par mini-batches

for k in range(nb_epochs):
model.zero_grad()
for b in range(0, x.shape[0], nb):
output = model.forward(x[b:b+nb])
model.accumulate_grad(dloss(y[b:b+nb], output))
model.gradient_descent_step(eta)

peut étre modifiée en une implémentation de la descente de gradient
stochastique par mini-batches

for k in range(nb_epochs):
for b in range(0, x.shapel[0], nb):
output = model.forward(x[b:b+nb])
model . compute_grad(dloss(y[b:b+nb], output))

model.gradient_descent_step(eta)
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Evaluation du loss en fonction du nombre d’exemples vus
pour différentes tailles de mini-batch

Mini-batch size and loss reduction (MNIST)

o=
S—om—, .
~ -

3 1.
10 N

\.—.—.—.—.

Best train loss
H
o
N

1L
10° 100

10 —

0 60000

120000

180000

240000

300000

Nb. samples seen
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Limitation des réseaux entierement connectés

S'ils étaient traités comme des signaux sans structure, les images ou
les échantillons sonores demanderaient des modeles de tailles
excessive.

Par exemple, une couche linéaire qui prendrait une image 256 x 256
couleurs en entrée et produirait un signal de méme taille en sortie
aurait

(256 x 256 x 3)? ~ 3.87 x 10%

coefficients, avec I'occupation mémoire (~150Gb!) et |'exces de
capacité correspondants
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La stationarité des signaux motive I'utilisation de
convolutions

Un modele entierement connecté serait incohérent avec l'intuition
que les signaux tel que les images ou sons ont une certaines
“stationarité” : une représentation qui est adéquate a un endroit I'est
ailleurs.

Une couche convolutionnelle repose sur cette idée et applique le
méme opérateur linéaire “partout” dans le signal d'entrée pour
calculer sa sortie.
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“Convolution” 1D

Entrée

114 |-1/0|2(-2|1]3 |3 |1

Sortie

W—-w-++1
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Interprétation de quelques convolutions

Une convolution peut calculer en particulier un opérateur différentiel
discret, e.g.

(0,0,0,0,1,2,3,4,4,4,4)® (—1,1) = (0,0,0,1,1,1,1,0,0,0).

Jﬂm@m [T

ou “détecteur de motif”, e.g.

| .

Note : au sens “signaux et systemes,” on devrait parler ici d'opérations de
corrélation. En effet, on note que le noyau n'est pas retourné lorsqu'il est glissé.
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Convolutions en dimensions > 1

Cette opération se généralise naturellement a des signaux de plus
grande dimension.

La forme la plus fréquente dans les réseaux convolutifs opere sur un
tenseur a trois dimensions qui représente un signal 2d multi-canal.
Le noyau de convolution se déplace sur les lignes et les colonnes
mais pas sur les canaux.

Si le tenseur en entrée est de taille C x H x W, et le kernel est
C X h x w, le tenseur de sortie sera (H—h+1) x (W —w +1).

Une couche convolutionnelle classique combine D convolutions de

ce type et génere en sortie un tenseur de taille
Dx(H—h+1)x(W—-w+1).
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Convolutions en 2D (e.g. images en couleur avec 3 canaux)

Entrée
Sortie
W Noyaux W—w-=+1
v/
H hI DH-—h+1
>
C
—>
> D

C
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Exemples : Floutage (léger, fort), mise en évidence de bords
(verticaux, horizontaux, toutes orientations)

- B 1l
3335
3H2BTD
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¢ W

Pooling
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But du pooling

La maniere traditionnelle pour obtenir un signal de petite dimension
(e.g. quelques valeurs) en partant d'un signal de grande dimension
(e.g. une image) consiste a utiliser des opérations de pooling.

De telles opérations visent a regrouper plusieurs valeurs en une seule
qui est plus “informative”.
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Max- et average pooling

Le type de pooling le plus classique est le max-pooling, qui calcule
la valeur maximale dans des blocs disjoints.

Par exemple, en 1d avec un noyau de taille 2

Entrée

114(-11021}-2]1]|3 |31

rw
w
Sortie
4 0 2 3

r

L'average pooling calcule lui une valeur moyenne par bloc. Ce

dernier est donc un opérateur linéaire.
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Opération de pooling en 2D

Entrée
Sortie
rw
)
S
sh
S
C
S

C
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Exemple complet
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(leCun et al., 1998)
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Implémentation PyTorch

model = nn.Sequential(
nn.Conv2d(1, 32, 5),
nn.RelLU(),
nn.MaxPool12d(3),
nn.Conv2d (32, 64, 5),
nn.ReLU(),
nn.MaxPool2d(2),
Shape1D(),
nn.Linear (256, 256),
nn.ReLU(),
nn.Linear (256, 10)

)

criterion = nn.CrossEntropyLoss()

optimizer = torch.optim.SGD(model.parameters(), lr = le-2)

for e in range(nb_epochs):

for input, target in data_loader_iterator(train_loader):

output = model(input)

loss = criterion(output, target)
optimizer.zero_grad()
loss.backward ()

optimizer.step()

Training time <10s (GPU), error ~1%
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Exemple de performance

import PIL, torch, torchvision

to_tensor = torchvision.transforms.ToTensor ()

img = to_tensor(PIL.Image.open('example_images/blacklab.jpg'))
img = img.unsqueeze(0)

img = 0.5 + 0.5 * (img - img.mean()) / img.std()

alexnet = torchvision.models.alexnet(pretrained = True)
alexnet.eval()

output = alexnet (img)

scores, indexes = output.view(-1).sort(descending = True)

class_names = eval(open('imagenet1000_clsid_to_human.txt', 'r').read())

for k in range(12):
print (£ '#{k+1} {scores[k].item():.02f} {class_names[indexes[k].item()]1}')
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Exemple de performance

#1 (12.26) Weimaraner

#2 (10.95) Chesapeake Bay retriever

#3 (10.87) Labrador retriever

#4 (10.10) Staffordshire bullterrier, Staffordshire bull terrier
#5 (9.55) flat-coated retriever

#6 (9.40) Italian greyhound

#7 (9.31) American Staffordshire terrier, Staffordshire terrier
#8 (9.12) Great Dane

#9 (8.94) German short-haired pointer

#10 (8.53) Doberman, Doberman pinscher

#11 (8.35) Rottweiler

#12 (8.25) kelpie

Weimaraner Chesapeake Bay retriever
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Auto-encodeurs
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Auto-encodeurs : définition

Un auto-encodeur a une entrée et une sortie de méme dimension, et
se comporte comme l'identité sur les données. |l est souvent
composé d'un encodeur qui va de |'espace de départ dans un
espace latent et d'un décodeur qui revient dans I'espace de
départ.

f'
S

/g\\

7

Espace latent &

Espace original &

Si 'espace latent est de plus petite dimension, un autoencodeur doit

réduire la redondance dans le signal.
Francois Fleuret (ML : modifs 2022-25) EE-311—Apprentissage machine / 9. Réseaux profonds et convolutifs 47 / 75



Fonctions de coliit pour les auto-encodeurs

Une fonction de colit classique pour entrainer un auto-encodeur est
I'erreur quadratique. Avec g la distribution des données sur 2 on
voudrait donc

Etant donnés deux modeles 7(-; wy) et g(-;

Ex~qIX — g 0 f(X)|?] ~ 0.

w,), les entrainer

consiste a minimiser une estimation empirique de cette fonction de

colt

N

~ ~ . 1
W, Wy = argmin - Z X0 — g (F (Xn; W ); wg)||? .
WE:We n=1
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Auto-encodeurs : implémentation

AutoEncoder (
(encoder) : Sequential (

(0):
1):
(2):
(3):
(4):
(5):
(6):
(7):
(8):

)

Conv2d(1, 32, kernel_size=(5, 5), stride=(1, 1))
ReLU (inplace)
Conv2d (32, 32, kernel_size=(5, 5), stride=(1, 1))
ReLU (inplace)
Conv2d (32, 32, kernel_size=(4, 4), stride=(2, 2))
ReLU (inplace)
Conv2d (32, 32, kernel_size=(3, 3), stride=(2, 2))
ReLU (inplace)
Conv2d (32, 8, kernel_size=(4, 4), stride=(1, 1))

(decoder): Sequential (

(0):
(1):
(2):
(3):
(4):
(5):
(6):
(7):
(8):

ConvTranspose2d(8, 32, kernel_size=(4, 4), stride=(1, 1))

ReLU (inplace)

ConvTranspose2d (32, 32, kernel_size=(3, 3), stride=(2, 2))
ReLU (inplace)

ConvTranspose2d (32, 32, kernel_size=(4, 4), stride=(2, 2))
ReLU (inplace)

ConvTranspose2d (32, 32, kernel_size=(5, 5), stride=(1, 1))
ReLU (inplace)

ConvTranspose2d(32, 1, kernel_size=(5, 5), stride=(1, 1))
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Reconstructions a partir de représentations réduites

X (original samples)

72/ 04 1 4Yac2?200
901 59g7%42607F
474013 \3472
g o f(X) (CNN, d = 8)
72/ 041 4Y4<9200
2015973492605
407400\ 3\3072
gof(X) (PCA, d=28)
727041398900
901 597349760656
1079861315070
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Interpolation dans I'espace latent

Pour mieux comprendre la représentation qui émerge dans cet
auto-encodeur, nous pouvons prendre au hasard deux exemples de
test x and x’ et interpoler des exemples le long du segment qui les
joint leurs images dans I'espace latent.

Vx,x' € %, a€0,1], &(x,x,a)=g((1 - a)f(x)+ af(x)).

' f(x)
\
/ g \
X X
—— f(x)
7
Latent space F

Original space &
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Interpolation avec PCA (d = 32)

(11144999999
EEEEDRR2227 77
CECEeaITIIII3
oOoooOO0COCOQQ2 2 4
)} 1 3 LT T L TTLZTLL

1179900082242 7%
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Interpolation avec I'auto-encodeur (d = 8)

2222222999999
BHSSSEE8EE T LZLLL
6666 G999 9901
9999999994944
Cc666 606000000
C6GGGGO6E O L L L\
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Modeles génératifs antagonistes

Francois Fleuret (ML : modifs 2022-25) EE-311—Apprentissage machine / 9. Réseaux profonds et convolutifs 54 /75

Modeles génératifs antagonistes : principe

Une approche tres puissante pour modéliser des distributions en grande
dimension consiste a utiliser des modeles antagonistes entrainés de
maniere couplée :

« Le discriminateur D doit classifier les exemples comme “réels” ou
“faux’,

« le générateur G doit transformer une distribution simple et fixée a
priori en une distribution de points que D classe comme “réels”.

échantillonnage 4
yé

% Hreelﬂ

Objectif de D

o . L “faux”

Z .
Dans cette approche les deux modeles ont donc des objectifs

antagonistes.
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Vraies images de la classe “bedroom” dans la

base de donnée Large-scale Scene Understanding
Francois Fleuret (ML : modifs 2022-25) EE-311—Apprentissage machine / 9. Réseaux profonds et convolutifs 56 / 75

Exemples d'images générées apres 1 époque (3M images)
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Exemples d'images générées apres 20 époques
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Exemples d’'images générées par un modele génératif
antagoniste

(Karras et al., 2018)
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Analyse d'un modéle profond
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Interprétation d’un réseau par remontée du gradient

Il est difficile de comprendre quelles sont les représentations et les
calculs qui résultent de I'entrainement d'un réseau profond.

Une maniére directe de visualiser ce que détecte une unité
particuliére consiste a optimiser |'entrée du réseau pour maximiser
I"activité de 'unité.

Cela se fait avec une remontée du gradient :

Xip1 = Xk + NV ie(xk)

ou f. est |'activation a maximiser, qui peut €tre une valeur interne
au réseau ou un des scores de sortie, et x; est |'entrée apres k
itérations.
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Images d’entrée optimisées chacunes pour maximiser un des
canaux de la 4eme couche de convolutions d’un réseau

VGG-16
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Images d’entrée optimisées chacunes pour maximiser un des
canaux de la 7eme couche de convolutions d’un réseau

VGG-16
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Images d’entrée optimisées chacunes pour maximiser une
unité de la 10éme couche de convolutions d’un réseau
VGG-16
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Images d’entrée optimisées chacunes pour maximiser une
unité de la 13eme, et derniére, couche de convolutions d’un
réseau VGG-16
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Images d’entrée optimisées chacunes pour maximiser une
unité de sortie d’un réseau VGG-16

“King crab” “Samoyed” (that's a fluffy dog)
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Images d’entrée optimisées chacunes pour maximiser une
unité de sortie d’un réseau VGG-16

“Hourglass” “Paper towel”
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Images d’entrée optimisées chacunes pour maximiser une
unité de sortie d’un réseau VGG-16

“Ping-pong ball” “Steel arch bridge”
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Images d’entrée optimisées chacunes pour maximiser une
unité de sortie d’un réseau VGG-16

“Sunglass” “Geyser”
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Images d’entrée optimisées pour maximiser certaines unités
d’un réseau VGG-16 : conclusions
Les résultats montrent que les paramétres d'un réseau entrainé pour

des taches de classification encodent assez d'information pour
générer des parties identifiables de grandes tailles.

lls montrent également les limitations du modele des contraintes
globales comme la symétrie ou la cardinalité.
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Détermination des parties d’'une image d’entrée qui ont
contribué le plus a la prédiction obtenue

Une autre classe de méthodes estiment I'importance des différentes
parties d'un signal d’'entrée dans la modulation de la prédiction du
modele.

Le Gradient-weighted Class Activation Mapping (Grad-CAM)
proposé par Selvaraju et al. (2016) visualise cette importance en
considérant une couche interne du réseau, en général, proche de la
sortie du modele.
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Grad-CAM : approche

On veut établir une carte qui indique quelles régions de I'image
contribuent a la valeur de sortie y© correspondant a une classe c.

On fixe une couche de convolution (e.g. la derniére couche de
convolution). Dans cette couche, on indexe les canaux par
ke{l,...,C} et Ax € R"*W sont les activation du canal k dans
la couche considérée. On calcule un poids pour chaque canal k :
H W
1 dy*©
¢ __
Y= Ow ZZ HAK

=1 _/:1 1)

qui favorise les canaux en fonction de |'importance du gradient de la
sortie y© par rapport aux activations Af"j

Et |a carte de localisation finale est obtenue en calculant une somme
pondérée (et rectifiée) des activations A :

C

c e c nk

Grad-cam = RelU E :OékA
k=1
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Images et régions d’activations pour deux classes

African elephant Hippopotamus

Ox Fountain
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Images et ré g ons d’activations pour deux classes

Coffee mug Bagel
Daisy
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Résumé : réseaux profonds et convolutionnels

o Les graphes acycliques orientés (direct acyclic graphs (DAG) sont des
généralisation du perceptron multi-couche

o Implémentation a I'aide d’opérateurs tensoriels et calculs de gradient
automatisés

o Descente de gradient stochastique et mini-batches : accélération de
convergence et évitement des minima locaux

o Opérations de convolutions et pooling : les réseaux neuronaux
convolutionnels sont souvent mieux adaptés que des réseaux entierement
connectés

o Auto-encodeurs et représentations latentes : représentations
parcimonieuses et possibilités d'interpolation

o Modeles génératifs antagonistes : générateur d'images contre
discriminateur vrai/faux

o Analyse des modeles profonds :

o Images d’entrées qui maximisent l'activité d'unités du réseau
o Cartographie des régions d'une images qui contribuent le plus a la
prédiction
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