EE-311—Apprentissage et intelligence artificielle

9. Réseaux profonds et convolutifs

Francois Fleuret (ML : modifs 2022-25)
https://moodle.epfl.ch/course/view.php?id=16090
2 Mai 2025 (compiled 1°" mai 2025)

N (w] =T EPFL

https://moodle.epfl.ch/course/view.php?id=16090

Réseaux profonds et convolutifs : Contenu

Extension des perceptrons multi-couches et apprentissage profond :

« Généralisation des architectures

« Autograd

« Descente de gradient stochastique
« Convolutions et pooling

« Réseaux neuronaux convolutionnels

« Exemples de réseaux
« Auto-encodeurs, représentations latentes
« Modeles génératifs antagonistes
« Analyse des modeles profonds
« Images d’entrées qui maximisent I'activité d'unités du réseau
« Cartographie des régions d'une images qui contribuent le plus
a la prédiction

Francois Fleuret (ML : modifs 2022-25) EE-311—Apprentissage machine / 9. Réseaux profonds et convolutifs 1/75

Graphe acyclique orienté (Directed Acyclic Graph (DAG)) :
une généralisation du perceptron multi-couche

Un perceptron multi-couche

W@ | pD w@
[1 [1
BB

peut étre généralisé a un “graphe acyclique orienté” d'opérateurs

w(D) |
o) \ S f(x)
E}: e
w® /

Francois Fleuret (ML : modifs 2022-25) EE-311—Apprentissage machine / 9. Réseaux profonds et convolutifs 2/75

Propagation vers I'avant pour un exemple de DAG

w() |F
W > x() \ @) >|f(x) = x®
x(©) = x| \ »@ > x@ /

w® /

x©) = x

X — 0 (x(0).)

x@ = g (@D, ()
F(x) = x® = B (xD_x). (V)

Francois Fleuret (ML : modifs 2022-25) EE-311—Apprentissage machine / 9. Réseaux profonds et convolutifs 3/75

Convention de notation pour dérivations

Si (a1,...,3¢9) = ¢(b1,...,br), on note :

da1

0a aél
5=+,

dag
oby

Si (31,...,2Q):¢(b1,...,bR,C1,...

day

[6a] J 8_C1
a- | = Jdolc = :

dc Dae

ey

Francois Fleuret (ML : modifs 2022-25) EE-311—Apprentissage machine / 9. Réseaux profonds et convolutifs

Oai
Obg
dag
Obgr

,Cs), on note :

dar
dcs

9aq
dcs

Rétro-propagation du gradient pour exemple de DAG (1/2)

D'abord on regarde les dérivées par rapport aux activations

w(®) |} \
> x(1) :\ &3 5| f(x) = x)

o)
x(0) = x| 3@ > x? /
W(2) /
roe] [ox®] [or 7 [or
7| = > 3| = Js0x@ 3
8)(() Bx() _8)(()_ _ax()_
'af'_ax@)'af‘+ax<3>'af'_ or 1., or
Lox® |~ | ax@ | [ax@] 7 [axMW | [ax®) | ~ TP | 5x@) | T IO | 5,6)
[0] JoxW] o [ox®]T ac 7 a7, , o¢
19x@ | = |9x@ | |ax® | T | 550 | [ax®@ | = Te00 | g | T o010 | 5

Francois Fleuret (ML : modifs 2022-25) EE-311—Apprentissage machine / 9. Réseaux profonds et convolutifs 5/75

Rétro-propagation du gradient pour exemple GAO (2/2)

Puis les dérivées par rapport aux parametres

w(l) |F \
6@ 5| ¢O >/ £(x) = x()

«© — x| > 40 Is|,@ /

2)

o¢ 1 [ox) | T o¢ x| [ar] y o¢ y o¢
w® | = |aw® | [ax® | T |aw®@ | |5x®@ | = eOm® | 5@ | T e0m® | 5@

oc 1 _|o@ 11007 _ or
aw@ | = | aw®@ | |ax@ | T TePIw? | 5,

Francois Fleuret (ML : modifs 2022-25) EE-311—Apprentissage machine / 9. Réseaux profonds et convolutifs 6 /75

Outils nécessaire pour faire une descente de gradient

Donc en pratique, si nous disposons d'une librairie “d’opérateurs
tensoriels” pour calculer

(X1, ooy Xgy W) = O(X1, .oy Xgs W)
Ve, (X1, Xds W) = g (X1, - -2 Xah W)
(X1, Xdy, W) = g (X1, .. 5 Xa; W),

nous pouvons construire des modeles ayant la forme de graphes
orientés acycliques quelconques, et nous pourrons calculer la réponse
et faire une descente de gradient pour en optimiser les parametres.

Francois Fleuret (ML : modifs 2022-25) EE-311—Apprentissage machine / 9. Réseaux profonds et convolutifs 7/75

Outils permettant de combiner des opérateurs tensoriels,
d’effectuer des dérivations automatiquement

Implémenter un modele de type DAG arbitraire est complexe et
sujet a de nombreuses erreurs.

Plusieurs librairies existent qui fournissent les fonctionnalités
nécessaires et permettent de combiner des opérateurs tensoriels de
maniére arbitraire et de calculer des dérivations automatiquement.

Language(s) Licence Principal développeur
PyTorch Python BSD Facebook
TensorFlow Python, C++ Apache Google
JAX Python Apache Google
MXNet Python, C++, R, Scala Apache Amazon
Torch Lua BSD Facebook
CNTK Python, C++ MIT Microsoft
Theano Python BSD U. of Montreal
Caffe CH++ BSD 2 clauses U. of CA, Berkeley

Francois Fleuret (ML : modifs 2022-25) EE-311—Apprentissage machine / 9. Réseaux profonds et convolutifs 8 /75

Parametres partagés

Francois Fleuret (ML : modifs 2022-25) EE-311—Apprentissage machine / 9. Réseaux profonds et convolutifs 9/75

Partage de poids

Cette formulation généralisée sous forme d'un graphe d'opérateurs,
autorise implicitement qu'un paramétre module plusieurs opérateurs.

Dans notre exemple w(!) module ¢ et).

w(@) |1

oM >

X(l) L

\

)

x(0) = x|t

w®

On parle de partage de poids.

Francois Fleuret (ML : modifs 2022-25) EE-311—Apprentissage machine / 9. Réseaux profonds et convolutifs

¢

J

10/ 75

Partage de poids : exemple des réseaux siamois

Cela permet en particulier de concevoir des réseaux siamois ol un
réseau complet est répliqué plusieurs fois.

B o HiieHeb)
<O — x w® [0 w@ || 5@ e
e HHEHeb o HEHE b

Francois Fleuret (ML : modifs 2022-25) EE-311—Apprentissage machine / 9. Réseaux profonds et convolutifs 11 /75

Autograd

Francois Fleuret (ML : modifs 2022-25) EE-311—Apprentissage machine / 9. Réseaux profonds et convolutifs 12 /75

Calcul automatique des dérivées

Conceptuellement, la propagation vers |'avant est une succession
“classique” d'opérations tensorielles. Le graphe est nécessaire
uniquement pour calculer les dérivées en déroulant le calcul a
I'envers.

Une maniere tres élégante de calculer des dérivées consiste a
construire automatiquement et dynamiquement, pendant le calcul,
le graphe nécessaire a calculer des dérivées.

Ce mécanisme d' “autograd” a deux avantages majeurs :

« une syntaxe plus simple, des opérations classiques de
manipulation de tenseurs en Python suffisent, et

« une plus grande flexibilité : comme le graphe est dynamique, il
peut changer a chaque calcul.

Francois Fleuret (ML : modifs 2022-25) EE-311—Apprentissage machine / 9. Réseaux profonds et convolutifs 13 /75

Calcul automatique des dérivées avec PyTorch

C'est ce qu'offre par exemple PyTorch, qui est trés proche de
NumPy pour la manipulation de tenseurs.

Il suffit d'indiquer (avec requires_grad_) que I'on va avoir besoin
de calculer des dérivées par rapport aux composantes d'un tenseur
pour que PyTorch construise le graphe nécessaire.

>>> t = torch.tensor([1., 2., 4.])

>>> t.requires_grad_()

tensor([1., 2., 4.], requires_grad=True)
>>> 5 = sum(t**2)

>>> torch.autograd.grad(s, t)
(tensor([2., 4., 8.1),)

Francois Fleuret (ML : modifs 2022-25) EE-311—Apprentissage machine / 9. Réseaux profonds et convolutifs 14 /75

Accumulation des des gradients

La fonction Tensor.backward() accumule les gradients dans les
champs grad des tenseurs et est souvent plus pratique pour traiter
des gros modeles.

>>>
>>>
>>>
>>>
>>>

X
u
X
u

torch.tensor([0.0, 0.1, 0.2]).requires_grad_Q)
sum(torch.log(1/(x+1)))

.grad
.backward ()
X.

grad

tensor([-1.0000, -0.9091, -0.8333])

Francois Fleuret (ML : modifs 2022-25) EE-311—Apprentissage machine / 9. Réseaux profonds et convolutifs 15 /75

autograd appliqué a I'exemple de DAG

Nous pouvons donc exécuter I'évaluation et la rétro-propagation
avec

w(@) |t

dD | x| \ ¢ [>|f(x) = x(3
x(0) = x| \ @ | <@ /
w® /

wl = torch.rand(5, 5).requires_grad_()
w2 = torch.rand(5, 5).requires_grad_()

¢(1) (X(O); W(l)) _ W(l)X(O) x = torch.empty(5) .normal_()
x0 = x
90 (x,x; W) = <) 4 @D 1=t e 0
x2 = x0 + w2 @ x1
x3 =

e (X(1)7X(2); W(1)> —w® (x(1) +X(2)) Wi @ (xl + x2)

q = x3.norm()

q.backward ()

Francois Fleuret (ML : modifs 2022-25) EE-311—Apprentissage machine / 9. Réseaux profonds et convolutifs 16 /75

Visualisation du graphe construit lors d’un calcul tensoriel
On peut visualiser le graphe qui est construit pendant un calcul
tensoriel :

x = torch.temsor([1., 2., 2.]).requires_grad_()
x.norm()

Q
]

NormBackward0
AccumulateGrad

Francois Fleuret (ML : modifs 2022-25) EE-311—Apprentissage machine / 9. Réseaux profonds et convolutifs 17 /75

et un autre exemple

[sevescawco]
wl = torch.rand(20, 10).requires_grad_()

bl = torch.rand(20) .requires_grad_()

w2 = torch.rand(5, 20).requires_grad_()
b2 = torch.rand(5) .requires_grad_Q)

x = torch.rand(10)

h = torch.tanh(wl @ x + bl)
y = torch.tanh(w2 @ h + b2)

AccumulateGrad | | TanhBackward

[RdGBacowardt |
(o[t

target = torch.rand(5)

[t
loss = (y - target).pow(2).mean()

w120, 10]

Francois Fleuret (ML : modifs 2022-25) EE-311—Apprentissage machine / 9. Réseaux profonds et convolutifs 18 /75

exemple, suite

w = torch.rand(3, 10, 10).requires_grad_()
def blah(k, x):
for i in range(k): RN
x = torch.tanh(w[i] @ x)
return x
L]
u = blah(1, torch.rand(10))
v = blah(3, torch.rand(10)) [smmcmscon
q = u.dot(v)

SelectBackward

AccumulateGrad
w3, 10,10]

Francois Fleuret (ML : modifs 2022-25) EE-311—Apprentissage machine / 9. Réseaux profonds et convolutifs

SelectBackward

SelectBackward

19/75

Descente de gradient stochastique

Francois Fleuret (ML : modifs 2022-25) EE-311—Apprentissage machine / 9. Réseaux profonds et convolutifs 20/ 75

Rappel : algorithme de descente de gradient classique

Nous avons vu que pour minimiser un coiit

I'algorithme classique itératif de descente de gradient a la forme

Wer1 = Wy — VL (wy).

Francois Fleuret (ML : modifs 2022-25) EE-311—Apprentissage machine / 9. Réseaux profonds et convolutifs 21/ 75

Limitation de I'implémentation directe et mini-batches

Une implémentation directe serait

for k in range(nb_epochs):
output = model.forward(x)
model.compute_grad(dloss(y, output))
model .gradient_descent_step(eta)

L'occupation mémoire de cet algorithme est proportionnelle au
nombre d'exemples. Cela peut étre évité en traitant des “mini
batches” :

for k in range(nb_epochs):
model .zero_grad()
for b in range(0, x.shape[0], nb):
output = model.forward(x[b:b+nb])
model .accumulate_grad(dloss(y[b:b+nb], output))
model.gradient_descent_step(eta)

Francois Fleuret (ML : modifs 2022-25) EE-311—Apprentissage machine / 9. Réseaux profonds et convolutifs 22 /75

Considérations a propos du gradient

Bien que cela soit formellement raisonnable de calculer un gradient
exactement, en pratique :

« Cela prend énormément de temps.

« C'est une estimation empirique et toute somme partielle serait
un estimateur sans biais de la méme quantité (avec une
variance plus grande).

« Il est calculé itérativement

N
vg(Wt) == Z vbﬁn(wt)a
n=1
et quand 7, est calculé, nous avons déja £1,...,¢,_1 a
disposition et pourrions obtenir un estimé de w* plus a jour

que Ws.

Francois Fleuret (ML : modifs 2022-25) EE-311—Apprentissage machine / 9. Réseaux profonds et convolutifs 23 /75

Argument intuitif pour approximer le gradient

Prenons un cas idéal ou I'ensemble d'apprentissage est en réalité
composé du méme ensemble de M exemples repliqué K fois.
Nous avons alors :

ZL(w) =

M=

£(f(Xni W), ¥n)

n=1

Zf Xm;W)vym)

=1 m=1

Z C(f (Xm; W), Yim)-

=1

I
Mx

k

I
PN

Donc, au lieu de faire la somme compléte, nous pouvons faire la
somme sur seulement M exemples, et multiplier le résultat par K.

Bien que cela soit un cas idéal, la redondance dans tout ensemble
d'exemples est telle que des comportements de ce type se

rencontrent en pratique.
Francois Fleuret (ML : modifs 2022-25) EE-311—Apprentissage machine / 9. Réseaux profonds et convolutifs 24 /75

Descente de gradient stochastique

La descente de gradient stochastique consiste a mettre a jour
les parameétres en utilisant le gradient du colit calculé sur des
exemples individuels

Wt—‘,—l == Wt - HVKn(t)(Wt)

Cette approche est peu efficace computationellement car elle utilise
mal la mémoire cache. Il vaut donc mieux traiter les exemples par
groupes.

Francois Fleuret (ML : modifs 2022-25) EE-311—Apprentissage machine / 9. Réseaux profonds et convolutifs 25 /75

Descente de gradient stochastique par mini-batches

La descente de gradient stochastique par mini-batches est la
procédure standard d'optimisation des parametres pour
I'apprentissage profond. Elle consiste a parcourir les exemples
d’'apprentissage par groupes, et a mettre a jour les parameétres du
modele a chaque fois :

B
Wiyl = Wy — nz an(t,b)(Wt)-
b=1

L'ordre n(t, b) dans lequel les exemples sont visités peut étre
séquentiel ou aléatoire, avec ou sans remplacement.

Le comportement aléatoire de cette procédure permet de
s’échapper de minima locaux.

Francois Fleuret (ML : modifs 2022-25) EE-311—Apprentissage machine / 9. Réseaux profonds et convolutifs 26 /75

De procédure exacte a implémentation stochastique

Notre procédure exacte par mini-batches

for k in range(nb_epochs):
model .zero_grad()
for b in range(0, x.shape[0], nb):
output = model.forward(x[b:b+nb])
model.accumulate_grad(dloss(y[b:b+nb], output))
model .gradient_descent_step(eta)

peut étre modifiée en une implémentation de la descente de gradient
stochastique par mini-batches

for k in range(nb_epochs):
for b in range(0, x.shape[0], nb):
output = model.forward(x[b:b+nb])
model . compute_grad(dloss(y[b:b+nb], output))

model.gradient_descent_step(eta)
Francois Fleuret (ML : modifs 2022-25) EE-311—Apprentissage machine / 9. Réseaux profonds et convolutifs 27 /75

Evaluation du loss en fonction du nombre d’exemples vus
pour différentes tailles de mini-batch

Mini-batch size and loss reduction (MNIST)

103 |-

102

Best train loss

1L
10° 100

10 —

1 1 1 1
0 60000 120000 180000 240000 300000
Nb. samples seen

Francois Fleuret (ML : modifs 2022-25) EE-311—Apprentissage machine / 9. Réseaux profonds et convolutifs 28 /75

Convolutions

Francois Fleuret (ML : modifs 2022-25) EE-311—Apprentissage machine / 9. Réseaux profonds et convolutifs 29 /75

Limitation des réseaux entierement connectés

S'ils étaient traités comme des signaux sans structure, les images ou
les échantillons sonores demanderaient des modéles de tailles
excessive.

Par exemple, une couche linéaire qui prendrait une image 256 x 256
couleurs en entrée et produirait un signal de méme taille en sortie

aurait
(256 x 256 x 3)? ~ 3.87 x 10'°

coefficients, avec |'occupation mémoire (~150Gb!) et I'exces de
capacité correspondants

Francois Fleuret (ML : modifs 2022-25) EE-311—Apprentissage machine / 9. Réseaux profonds et convolutifs 30/75

La stationarité des signaux motive l'utilisation de
convolutions

Un modéle entierement connecté serait incohérent avec l'intuition
que les signaux tel que les images ou sons ont une certaines
“stationarité” : une représentation qui est adéquate a un endroit I'est
ailleurs.

Une couche convolutionnelle repose sur cette idée et applique le

méme opérateur linéaire “partout” dans le signal d'entrée pour
calculer sa sortie.

Francois Fleuret (ML : modifs 2022-25) EE-311—Apprentissage machine / 9. Réseaux profonds et convolutifs 31/75

“Convolution” 1D

Sortie

W—-w-+1

Francois Fleuret (ML : modifs 2022-25) EE-311—Apprentissage machine / 9. Réseaux profonds et convolutifs 32/75

Interprétation de quelques convolutions

Une convolution peut calculer en particulier un opérateur différentiel
discret, e.g.

(0,0,0,0,1,2,3,4,4, 4 4)®(-1,1) = (0,0,0,1,1,1,1,0,0,0).

W@Lﬁ:_ﬂ_l_ﬂ_

ou “détecteur de motif”, e.g.

JL L e an-

Note : au sens “signaux et systemes,” on devrait parler ici d'opérations de
corrélation. En effet, on note que le noyau n'est pas retourné lorsqu'il est glissé.

Francois Fleuret (ML : modifs 2022-25) EE-311—Apprentissage machine / 9. Réseaux profonds et convolutifs 33/75

Convolutions en dimensions > 1

Cette opération se généralise naturellement a des signaux de plus
grande dimension.

La forme la plus fréquente dans les réseaux convolutifs opére sur un
tenseur a trois dimensions qui représente un signal 2d multi-canal.
Le noyau de convolution se déplace sur les lignes et les colonnes
mais pas sur les canaux.

Si le tenseur en entrée est de taille C x H x W, et le kernel est
C x h x w, le tenseur de sortie sera (H — h+ 1) x (W —w +1).

Une couche convolutionnelle classique combine D convolutions de
ce type et génére en sortie un tenseur de taille
Dx(H-—h+1)x(W-—-w+1).

Francois Fleuret (ML : modifs 2022-25) EE-311—Apprentissage machine / 9. Réseaux profonds et convolutifs 34 /75

Convolutions en 2D (e.g. images en couleur avec 3 canaux)

Entrée
Sortie
w Noyaux W—-w+1
w/)
H h] DH _h+1
>
C
<>
> D

C

Francois Fleuret (ML : modifs 2022-25) EE-311—Apprentissage machine / 9. Réseaux profonds et convolutifs 35/ 75

Exemples : Floutage (léger, fort), mise en évidence de bords
(verticaux, horizontaux, toutes orientations)

M0z #
3333
3H2BTS

Francois Fleuret (ML : modifs 2022-25) EE-311—Apprentissage machine / 9. Réseaux profonds et convolutifs 36 /75

el W -

Pooling

Francois Fleuret (ML : modifs 2022-25) EE-311—Apprentissage machine / 9. Réseaux profonds et convolutifs 37/ 75

But du pooling

La maniére traditionnelle pour obtenir un signal de petite dimension
(e.g. quelques valeurs) en partant d'un signal de grande dimension
(e.g. une image) consiste a utiliser des opérations de pooling.

De telles opérations visent a regrouper plusieurs valeurs en une seule
qui est plus “informative”.

Francois Fleuret (ML : modifs 2022-25) EE-311—Apprentissage machine / 9. Réseaux profonds et convolutifs 38 /75

Max- et average pooling

Le type de pooling le plus classique est le max-pooling, qui calcule
la valeur maximale dans des blocs disjoints.

Par exemple, en 1d avec un noyau de taille 2

Entrée

114110221]3]3]|1

rw

Sortie
4 0 2 3

r

L'average pooling calcule lui une valeur moyenne par bloc. Ce

dernier est donc un opérateur linéaire.
Francois Fleuret (ML : modifs 2022-25) EE-311—Apprentissage machine / 9. Réseaux profonds et convolutifs 39 /75

Opération de pooling en 2D

Entrée
Sortie
rw
)
s
sh
>
C
>

C

Francois Fleuret (ML : modifs 2022-25) EE-311—Apprentissage machine / 9. Réseaux profonds et convolutifs 40 /75

Exemple complet

Francois Fleuret (ML : modifs 2022-25) EE-311—Apprentissage machine / 9. Réseaux profonds et convolutifs 41/ 75

MNIST

VHYMHI SO FQA3 D rnd QYRR Yy
SN F—R - v TO e~
TTIETIYANSNDND L oy NG amQ
O =D PTMUAND Tl QNS -5
MMM T~ NI W QNN Ny
FroMNYIrTogre—RQagr—Woano®m
PO AT ANTMQAQYMN N~
O TRV MWD) N~
——— AN N NS O D3 O N RS My e
Ol —~—=nmor—d @b~
QOO ~T~T LT Q8 % QY by iy
— = =P s N—o ™, SNy
Mooy M YI MV OSNNANTAN
QorDUNENOn—-Pr—~Pro~P03m e
NG 0o Og o INDE N YT A ™) 0 BpN8 W NS
SBHWNMTWrthre A0 /0—NONT
MASROQY ST Nl o~y N\ by a0y
MIMN AT Eror=e T T e O
NYJIIMEM MM DS o~ A NN
== rwacnNITA RO Tl o~

(leCun et al., 1998)

42/ 75

Francois Fleuret (ML : modifs 2022-25) EE-311—Apprentissage machine / 9. Réseaux profonds et convolutifs

Implémentation PyTorch

model = nn.Sequential(
n.Conv2d(1, 32, 5),
nn.RelLUQ),
nn.MaxPool2d(3),
nn.Conv2d(32, 64, 5),
nn.RelLUQ),
nn.MaxPool2d(2),
Shape1D(),

nn.Linear (256, 256),
nn.ReLUQ),

nn.Linear (256, 10)

8

)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), 1lr = 1e-2)

for e in range(nb_epochs):
for input, target in data_loader_iterator(train_loader):
output = model(input)
loss = criterion(output, target)
optimizer.zero_grad()
loss.backward()
optimizer.step()

Training time <10s (GPU), error ~1%

Francois Fleuret (ML : modifs 2022-25) EE-311—Apprentissage machine / 9. Réseaux profonds et convolutifs

43/ 75

Exemple de performance

import PIL, torch, torchvision

to_tensor = torchvision.transforms.ToTensor ()

img = to_tensor (PIL.Image.open('example_images/blacklab.jpg'))
img = img.unsqueeze (0)

img = 0.5 + 0.5 * (img - img.mean()) / img.std()

alexnet = torchvision.models.alexnet (pretrained = True)
alexnet.eval()

output = alexnet(img)

scores, indexes = output.view(-1).sort(descending = True)

class_names = eval(open('imagenet1000_clsid_to_human.txt', 'r').read())

for k in range(12):
print (f '#{k+1} {scores[k].item():.02f} {class_names[indexes[k].item()]}"')

Francois Fleuret (ML : modifs 2022-25) EE-311—Apprentissage machine / 9. Réseaux profonds et convolutifs

44 /75

Exemple de performance

#1
#2
#3
#4
#5
#6
#7
#8
#9

(12.26) Weimaraner

(10.95) Chesapeake Bay retriever

(10.87) Labrador retriever

(10.10) Staffordshire bullterrier, Staffordshire bull terrier
(9.55) flat-coated retriever

(9.40) Italian greyhound

(9.31) American Staffordshire terrier, Staffordshire terrier
(9.12) Great Dane

(8.94) German short-haired pointer

#10 (8.53) Doberman, Doberman pinscher
#11 (8.35) Rottweiler
#12 (8.25) kelpie

Francois Fleuret (ML : modifs 2022—25) EE-311—Apprentissage machine / 9. Réseaux profonds et convolutifs

Weimaraner Chesapeake Bay retriever

45/ 75

Auto-encodeurs

Francois Fleuret (ML : modifs 2022-25) EE-311—Apprentissage machine / 9. Réseaux profonds et convolutifs 46 / 75

Auto-encodeurs : définition

Un auto-encodeur a une entrée et une sortie de méme dimension, et
se comporte comme |'identité sur les données. Il est souvent
composé d'un encodeur qui va de |I'espace de départ dans un
espace latent et d'un décodeur qui revient dans |'espace de
départ.

Espace latent #

Espace original &

Si I'espace latent est de plus petite dimension, un autoencodeur doit
réduire la redondance dans le signal.

Francois Fleuret (ML : modifs 2022-25) EE-311—Apprentissage machine / 9. Réseaux profonds et convolutifs 47 /75

Fonctions de coiit pour les auto-encodeurs

Une fonction de colit classique pour entrainer un auto-encodeur est
I'erreur quadratique. Avec g la distribution des données sur 2" on
voudrait donc

Exwq||IX — g 0 F(X)|[?] =0

Etant donnés deux modgles f(-; ws) et g(-; wg), les entrainer
consiste a minimiser une estimation empirique de cette fonction de
colit

Wr, Wy = argmm—ZHx,, (x,7;w,r);wg)||2

Wwr,Wg

Francois Fleuret (ML : modifs 2022-25) EE-311—Apprentissage machine / 9. Réseaux profonds et convolutifs 48 / 75

Auto-encodeurs : implémentation

AutoEncoder (
(encoder) : Sequential (

(0):
1):
(2):
(3):
(4):
(5):
(6):
(7):
(8):

)

Conv2d(1, 32, kernel_size=(5, 5), stride=(1, 1))
ReLU (inplace)
Conv2d (32, 32, kernel_size=(5, 5), stride=(1, 1))
ReLU (inplace)
Conv2d (32, 32, kernel_size=(4, 4), stride=(2, 2))
ReLU (inplace)
Conv2d (32, 32, kernel_size=(3, 3), stride=(2, 2))
ReLU (inplace)
Conv2d(32, 8, kernel_size=(4, 4), stride=(1, 1))

(decoder): Sequential (

(0):
(1):
(2):
(3):
(4):
(5):
(6):
(7):
(8):

ConvTranspose2d(8, 32, kernel_size=(4, 4), stride=(1, 1))
ReLU (inplace)
ConvTranspose2d (32, 32, kernel_size=(3, 3), stride=(2, 2))
ReLU (inplace)
ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2))
ReLU (inplace)
ConvTranspose2d (32, 32, kernel_size=(5, 5), stride=(1, 1))
ReLU (inplace)
ConvTranspose2d (32, 1, kernel_size=(5, 5), stride=(1, 1))

Francois Fleuret (ML : modifs 2022-25) EE-311—Apprentissage machine / 9. Réseaux profonds et convolutifs

49 / 75

Reconstructions a partir de représentations réduites

X (original samples)

721041445200
901 597%492607%
407401V 3\3472
g o f(X) (CNN, d = 8)
72/0414Y4<92060
901597347605
40740\ 32 \3072
g o f(X) (PCA, d =8)
72/04194@700
9012597234766 56
409408131307 2a

Francois Fleuret (ML : modifs 2022-25) EE-311—Apprentissage machine / 9. Réseaux profonds et convolutifs 50/ 75

Interpolation dans I’espace latent

Pour mieux comprendre la représentation qui émerge dans cet
auto-encodeur, nous pouvons prendre au hasard deux exemples de

test x and x’ et interpoler des exemples le long du segment qui les
joint leurs images dans I'espace latent.

Vx,x' € L% ael0,1], &(x,x,a)=g((1l—a)f(x)+af(x)).

Latent space #

Original space &

Francois Fleuret (ML : modifs 2022-25) EE-311—Apprentissage machine / 9. Réseaux profonds et convolutifs 51/ 75

Interpolation avec PCA (d = 32)

EEEEEEEEREEEK
LLELZF2D2277
CLERA@@TIIII3
0000000QOR2 22
1 33 LTLLLLETLEL

1T19992222222

Francois Fleuret (ML : modifs 2022—25) EE-311—Apprentissage machine / 9. Réseaux profonds et convolutifs 52 /75

Interpolation avec I'auto-encodeur (d = 8)

3333332970709
ES58588822222
666666999977
9999999994944
(666660600000
CGG6G6G66G6E LN

Francois Fleuret (ML : modifs 2022-25) EE-311—Apprentissage machine / 9. Réseaux profonds et convolutifs 53 /75

Modeles génératifs antagonistes

Francois Fleuret (ML : modifs 2022-25) EE-311—Apprentissage machine / 9. Réseaux profonds et convolutifs 54 /75

Modeles génératifs antagonistes : principe
Une approche trés puissante pour modéliser des distributions en grande
dimension consiste a utiliser des modeles antagonistes entrainés de
maniéere couplée :
« Le discriminateur D doit classifier les exemples comme ‘“réels” ou
“faux”,

« le générateur G doit transformer une distribution simple et fixée a
priori en une distribution de points que D classe comme “réels”.

Objectif de D

—> “faux”

ﬂ\ G
—_—
4

Dans cette approche les deux modeéles ont donc des objectifs

antagonistes.
Francois Fleuret (ML : modifs 2022-25) EE-311—Apprentissage machine / 9. Réseaux profonds et convolutifs 55 /75

Vraies images de la classe “bedroom” dans la

base de donnée Large-scale Scene Understanding
Francois Fleuret (ML : modifs 2022-25) EE-311—Apprentissage machine / 9. Réseaux profonds et convolutifs 56 / 75

Exemples d'images générées apres 1 époque (3M images)

Francois Fleuret (ML : modifs 2022-25) EE-311—Apprentissage machine / 9. Réseaux profonds et convolutifs 57 /75

Exemples d'images générées apres 20 époques

Francois Fleuret (ML : modifs 2022-25) EE-311—Apprentissage machine / 9. Réseaux profonds et convolutifs 58 /75

Exemples d’images générées par un modele génératif
antagoniste

(Karras et al., 2018)

Francois Fleuret (ML : modifs 2022—25) EE-311—Apprentissage machine / 9. Réseaux profonds et convolutifs 59 /75

Analyse d'un modele profond

Francois Fleuret (ML : modifs 2022-25) EE-311—Apprentissage machine / 9. Réseaux profonds et convolutifs 60 / 75

Interprétation d’un réseau par remontée du gradient

Il est difficile de comprendre quelles sont les représentations et les
calculs qui résultent de I'entrainement d’un réseau profond.

Une maniére directe de visualiser ce que détecte une unité
particuliere consiste a optimiser I'entrée du réseau pour maximiser
I'activité de 'unité.

Cela se fait avec une remontée du gradient :

X1 = X + 0V 1c(xk)

ou f. est |'activation a maximiser, qui peut étre une valeur interne
au réseau ou un des scores de sortie, et xi est |'entrée apres k
itérations.

Francois Fleuret (ML : modifs 2022-25) EE-311—Apprentissage machine / 9. Réseaux profonds et convolutifs 61 /75

Images d’entrée optimisées chacunes pour maximiser un des
canaux de la 4éeme couche de convolutions d’un réseau
VGG-16

Francois Fleuret (ML : modifs 2022—25) EE-311—Apprentissage machine / 9. Réseaux profonds et convolutlfs 62 /75

Images d’entrée optimisées chacunes pour maximiser un des
canaux de la 7éme couche de convolutions d’un réseau
VGG-16

Fran(;c:ls Fleuret (ML : modifs 2022— 25) EE-311—Apprentissage machine / 9. Réseaux profonds et convolutifs 63 /75

Images d’entrée optimisées chacunes pour maximiser une
unité de la 10éme couche de convolutions d’un réseau
VGG-16

Francois Fleuret (ML : modifs 2022—25) EE-311—Apprentissage machine / 9. Réseaux profonds et convolutifs 64 /75

Images d’entrée optimisées chacunes pour maximiser une
unité de la 13éme, et derniére, couche de convolutions d’un
réseau VGG-16

Francois Fleuret (ML : modifs 2022—25) EE-311—Apprentissage machine / 9. Réseaux profonds et convolutifs 65/ 75

Images d’entrée optimisées chacunes pour maximiser une
unité de sortie d’un réseau VGG-16

“King crab” “Samoyed” (that's a fluffy dog)

Francois Fleuret (ML : modifs 2022—25) EE-311—Apprentissage machine / 9. Réseaux profonds et convolutifs 66 / 75

Images d’entrée optimisées chacunes pour maximiser une
unité de sortie d’un réseau VGG-16

“Hourglass” “Paper towel”

Francois Fleuret (ML : modifs 2022—25) EE-311—Apprentissage machine / 9. Réseaux profonds et convolutifs 67 /75

Images d’entrée optimisées chacunes pour maximiser une
unité de sortie d’un réseau VGG-16

“Ping-pong ball” “Steel arch bridge”

Francois Fleuret (ML : modifs 2022—25) EE-311—Apprentissage machine / 9. Réseaux profonds et convolutifs 68 / 75

Images d’entrée optimisées chacunes pour maximiser une
unité de sortie d’un réseau VGG-16

“Sunglass” “Geyser”

Francois Fleuret (ML : modifs 2022—25) EE-311—Apprentissage machine / 9. Réseaux profonds et convolutifs

Images d’entrée optimisées pour maximiser certaines unités
d’un réseau VGG-16 : conclusions

Les résultats montrent que les parameétres d'un réseau entrainé pour
des taches de classification encodent assez d'information pour
générer des parties identifiables de grandes tailles.

lls montrent également les limitations du modele des contraintes
globales comme la symétrie ou la cardinalité.

Francois Fleuret (ML : modifs 2022-25) EE-311—Apprentissage machine / 9. Réseaux profonds et convolutifs 70/ 75

Détermination des parties d’'une image d’entrée qui ont
contribué le plus a la prédiction obtenue

Une autre classe de méthodes estiment |'importance des différentes
parties d'un signal d'entrée dans la modulation de la prédiction du
modele.

Le Gradient-weighted Class Activation Mapping (Grad-CAM)
proposé par Selvaraju et al. (2016) visualise cette importance en
considérant une couche interne du réseau, en général, proche de la
sortie du modéle.

Francois Fleuret (ML : modifs 2022-25) EE-311—Apprentissage machine / 9. Réseaux profonds et convolutifs 71/ 75

Grad-CAM : approche
On veut établir une carte qui indique quelles régions de I'image
contribuent a la valeur de sortie y¢ correspondant a une classe c.

On fixe une couche de convolution (e.g. la derniére couche de
convolution). Dans cette couche, on indexe les canaux par
ke{l,...,C} et Ak € R**W sont les activation du canal k dans
la couche considérée. On calcule un poids pour chaque canal k :

Y VE
i=1 j=1 i

qui favorise les canaux en fonction de I'importance du gradient de la
sortie y¢ par rapport aux activations Af{j

Et la carte de localisation finale est obtenue en calculant une somme
pondérée (et rectifiée) des activations A :

C
LGrag-cam = RelU Z ap A«

k=1
Francois Fleuret (ML : modifs 2022-25) EE-311—Apprentissage machine / 9. Réseaux profonds et convolutifs 72 /75

Images et régions d’activations pour deux classes

African elephant Hippopotamus

Ox Fountain

Francois Fleuret (ML : modifs 2022-25) EE-311—Apprentissage machine / 9. Réseaux profonds et convolutifs 73/ 75

Images et reglons d activations pour deux classes

Coffee mug Bagel

Daisy

Francois Fleuret (ML : modifs 2022-25) EE-311—Apprentissage machine / 9. Réseaux profonds et convolutifs 74 /75

Résumé : réseaux profonds et convolutionnels
o Les graphes acycliques orientés (direct acyclic graphs (DAG) sont des
généralisation du perceptron multi-couche

o Implémentation a I'aide d'opérateurs tensoriels et calculs de gradient
automatisés

o Descente de gradient stochastique et mini-batches : accélération de
convergence et évitement des minima locaux

« Opérations de convolutions et pooling : les réseaux neuronaux
convolutionnels sont souvent mieux adaptés que des réseaux entierement
connectés

o Auto-encodeurs et représentations latentes : représentations
parcimonieuses et possibilités d'interpolation

o Modeles génératifs antagonistes : générateur d’'images contre
discriminateur vrai/faux
« Analyse des modeles profonds :

« Images d’entrées qui maximisent I'activité d'unités du réseau
o Cartographie des régions d'une images qui contribuent le plus a la
prédiction

Francois Fleuret (ML : modifs 2022-25) EE-311—Apprentissage machine / 9. Réseaux profonds et convolutifs 75/ 75

References

T. Karras, S. Laine, and T. Aila. A style-based generator architecture
for generative adversarial networks. CoRR, abs/1812.04948, 2018.

Y. leCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based
learning applied to document recognition. Proceedings of the
IEEE, 86(11) :2278-2324, 1998.

R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and
D. Batra. Grad-cam : Visual explanations from deep networks via
gradient-based localization. CoRR, abs/1610.02391, 2016.

	Paramètres partagés
	Autograd
	Descente de gradient stochastique
	Convolutions
	Pooling
	Exemple complet
	Auto-encodeurs
	Modèles génératifs antagonistes
	Analyse d'un modèle profond
	Références

