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Réseaux de neurones : Contenu

« Origine, inspirations, jalons historiques
« Le perceptron : ancétres, définition du perceptron, fonction
d’activation, représentations graphiques et tensorielles,

algorithme du perceptron, convergence, comparaison avec les
SVM

. Limitations des modeles linéaires

« Shallow learning ( pré-traitement

« Modeles profonds : le perceptron multi-couche

« Formalisme, fonctions d'activation et approximation universelle
« Rappel du descente de gradient

« Entrainement du perceptron multi-couche :

« propagation vers |'avant
« rétropropagation du gradient

« Colit computational et interprétation des opérations
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Origines de I'idée de neurone artificiel
e
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Réseau de “Threshold Logic Unit"

(McCulloch and Pitts, 1943)

Francois Fleuret (ML : modifs 2022-24) EE-311—Apprentissage machine / 8. Perceptron multi-couches 2/76



Historique : quelques étapes importantes

1949 — Donald Hebb propose une régle (qui porte son nom) suggérant la
formation de connections entre des unités (neurones) qui s'activent
en méme temps (ou séquentiellement) : “cells that fire together,
wire together”

1951 — Marvin Minsky crée le premier réseau de neurones artificiels (regle
de Hebb, 40 neurones).
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Historique : quelques étapes importantes

1949 — Donald Hebb propose une régle (qui porte son nom) suggérant la
formation de connections entre des unités (neurones) qui s'activent
en méme temps (ou séquentiellement) : “cells that fire together,
wire together”

1951 — Marvin Minsky crée le premier réseau de neurones artificiels (regle
de Hebb, 40 neurones).

1958 — Frank Rosenblatt créer un perceptron pour classifier des images
20 x 20.

1959 — David H. Hubel et Torsten Wiesel exposent les processus du cortex
visuel des chats (similarités avec opérations en traitement du signal).

1982 — Paul Werbos propose la rétro-propagation du gradient.
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Le perceptron
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Threshold Logic Unit

Le premier modele mathématique d'un neurone est la “Threshold

Logic Unit,” (McCulloch and Pitts, 1943) qui a des entrées et sorties
booléennes (0 ou 1) :

f()?)ZI{WZXH—bZO}.
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Threshold Logic Unit

Le premier modele mathématique d'un neurone est la “Threshold
Logic Unit,” (McCulloch and Pitts, 1943) qui a des entrées et sorties
booléennes (0 ou 1) :

f()?)ZI{WZXH—bZO}.

Elle est en particulier capable de calculer les trois opérations de
I'algebre booléenne :

Of(LI7 V) = 1{u+v—0.520} (W = ].7 b = —05)
and(u, V) = 1{u+v71‘520} (W = ].7 b= —15)
not(u) = 1{7u+0.520} (W = —]., b= 05)
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Threshold Logic Unit

Le premier modele mathématique d'un neurone est la “Threshold
Logic Unit,” (McCulloch and Pitts, 1943) qui a des entrées et sorties
booléennes (0 ou 1) :

f()?)ZI{WZXH—bZO}.

Elle est en particulier capable de calculer les trois opérations de
I'algebre booléenne :

OI’(LI7 V) = 1{u+v—0.520} (W = ].7 b = —05)
and(u, V) = 1{u+v71‘520} (W = ].7 b= —15)
not(u) = 1{7u+0.520} (W = —]., b= 05)

Donc, on peut construire n’importe quelle fonction booléenne,
donc arithmétique, avec de telles unités élémentaires.
(McCulloch and Pitts, 1943)
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Perceptron

Le perceptron, défini par :

1 si ZW,‘X,'—i-bZO
f(xX) = ;

0 sinon

est trés similaire a la Threshold Logic Unit, mais ses entrées x; sont
des valeurs réelles et chacune a un poids spécifique w;. On appelle
biais le parameétre b.
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Perceptron

Le perceptron, défini par :

1 si ZW,‘X,'—i-bZO
f(xX) = ;

0 sinon

est trés similaire a la Threshold Logic Unit, mais ses entrées x; sont
des valeurs réelles et chacune a un poids spécifique w;. On appelle
biais le parameétre b.

Ce modele a été motivé initialement par la biologie, avec w; jouant
le role des poids synaptiques, et les x; et f des fréquences de
potentiels d'action. C'est un modéle tres grossier.

(Rosenblatt, 1957)
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Fonction signe et fonction d’activation

Pour simplifier les choses, nous considérons des sorties +1. Soit

1 sit>0

—1 sinon.

o(t) =

-1

La regle de classification du perceptron peut alors étre formalisée par

f(X) = o(W - X+ b).
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Fonction signe et fonction d’activation

Pour simplifier les choses, nous considérons des sorties +1. Soit

1 sit>0
—1 sinon.

o(t) =

-1

La regle de classification du perceptron peut alors étre formalisée par
f(X) =o(w- X+ b).

Dans le cas des réseaux de neurones, la fonction o qui suit un
opérateur linéaire est classiquement appelée la fonction

y . .
d’activation.
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Représentation graphique

Nous pouvons représenter un “neurone” de la maniére suivante :

Valeur

wy _

T Paramétre
I—X o

- Opération

. s -

T [ ~

w3

T
I—X
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Représentation tensorielle

Nous pouvons aussi utiliser des opérateurs tensoriels

f(X) = o(W - X+ b).

;
A B-H B
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Algorithme du perceptron pour ajuster les poids w; de w
Etant donné un ensemble d’apprentissage

D={xy'}_,  aecx eRPety €{-11}

une technique trés simple pour entrainer un tel modele linéaire est
I'algorithme du perceptron :
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Algorithme du perceptron pour ajuster les poids w; de w
Etant donné un ensemble d’apprentissage
D = {)?i’yi}le,...,n’ avec X' € RP et y' € {—1,1}

une technique trés simple pour entrainer un tel modele linéaire est
I'algorithme du perceptron :

(k) 5 - k : index de mise a jour des poids
L by ; k : état de I'index k avant chaque
L. Initialiser k <=0, W' <=0, 1 <= 0, k <= K | pomm o e
données
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Algorithme du perceptron pour ajuster les poids w; de w
Etant donné un ensemble d’apprentissage
D = {)?i’yi}le,...,n’ avec X' € RP et y' € {—1,1}

une technique trés simple pour entrainer un tel modele linéaire est
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L by ; k : état de I'index k avant chaque
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. i —(k = . (k) . . e -2me
2‘ S| y (W( ) % ) S 0 les poids w'"/ produisent une mauvaise classification de la /

observation X
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k< k+1
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Algorithme du perceptron pour ajuster les poids w; de w

Etant donné un ensemble d’apprentissage

D={xy'}_,  aecx eRPety €{-11}

une technique trés simple pour entrainer un tel modele linéaire est

I'algorithme du perceptron :

1. Initialiser k «+ 0, w9 « 0, i «+ 0, k + k

k : index de mise a jour des poids
k : état de I'index k avant chaque
nouveau passage en revue des
données

. i —(k = . (k) . . e -2me
2‘ S| y (W( ) % ) S 0 les poids w'"/ produisent une mauvaise classification de la /

observation X'

M_;(k+1) < M_;(k) + y’)?’ ainsi, y' (I/V(k+1) i") sera moins négatif

k< k+1

3. Sii<n—1,incrémenter i < i + 1 puis répéter 2.

4. S| k — k . Stop; k n'a plus changé (donc les poids w(k) non plus)

sinon : /i« 0, k + k, répéter 2.
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Algorithme du perceptron pour ajuster les poids w; de w
Etant donné un ensemble d’apprentissage
D={xy'}_,  aecx eRPety €{-11}

une technique trés simple pour entrainer un tel modele linéaire est
I'algorithme du perceptron :

k : index de mise a jour des poids

1' Initialiser k Y 0, W(k) Y. 0, /% 0’ E — k k : état de I'index k avant chaque

nouveau passage en revue des
données

. i —(k = . (k) . . e -2me
2‘ S| y (W( ) % ) S 0 les poids w'"/ produisent une mauvaise classification de la /

observation X'

M_;(k+1) < M_;(k) + y’)?’ ainsi, y' (W(k+1) i") sera moins négatif

k< k+1
3. Sii<n—1, incrémenter i < | + 1 puis répéter 2.
4. S| k — k . Stop; k n'a plus changé (donc les poids w(k) non plus)

sinon : /i« 0, k + k, répéter 2.
Le biais b est ici absent mais peut étre introduit comme une des
composantes de w en rajoutant une composante constante égale a 1

3 tous les x'. (Rosenblatt, 1957)
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Algorithme du perceptron (NumPy)

def train_perceptron(X, y, nb_epochs_max):
n = X.shape[0] # number of examples
p = X.shape[1] # number of features
w = np.zeros((p,))

for e in range(nb_epochs_max) :
nb_changes = 0
for i in range(n):
if X[i].dot(w) * y[i] <= O:

# prediction is wrong for ith observation vector X[i]
w=w + y[i]l * X[i]
nb_changes = nb_changes + 1

if nb_changes == 0: break;

return w
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Classification de chiffres manuscrits avec algo. perceptron
Cet algorithme tres simple fonctionne remarquablement bien. Par
exemple, avec les images de “1" de MNIST comme classe positive
et de “0" comme classe négative (images de p = 784 = 28 x 28

pixels) : o/V 110674
00100/787
08118710
00/ 1\ /0O
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Classification de chiffres manuscrits avec algo. perceptron

Cet algorithme tres simple fonctionne remarquablement bien. Par
exemple, avec les images de “1" de MNIST comme classe positive
et de “0" comme classe négative (images de p = 784 = 28 x 28

pixels) :

epoch
epoch
epoch
epoch
epoch
epoch
epoch
epoch
epoch

Francois Fleuret (ML : modifs 2022-24)

nb_changes
nb_changes
nb_changes
nb_changes
nb_changes
nb_changes
nb_changes
nb_changes
nb_changes

C~%
-Q

64 train_error 0.23% test_error 0.19%
24 train_error 0.07% test_error 0.00%
10 train_error 0.06% test_error 0.05%

6 train_error 0.03% test_error 0.14Y
5 train_error 0.03J), test_error 0.09%
4 train_error 0.02J), test_error 0.14%
3 train_error 0.01% test_error 0.14%
2 train_error 0.00% test_error 0.14%
0 train_error 0.00% test_error 0.14%
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Classification de chiffres manuscrits avec algo. perceptron

Cet algorithme tres simple fonctionne remarquablement bien. Par
exemple, avec les images de “1" de MNIST comme classe positive
et de “0" comme classe négative (images de p = 784 = 28 x 28
pixels) :

C~%

epoch 0 nb_changes 64 train_error 0.23}% test_error 0.19J
epoch 1 nb_changes 24 train_error 0.07% test_error 0.00%
epoch 2 nb_changes 10 train_error 0.067 test_error 0.05}
epoch 3 nb_changes 6 train_error 0.03}, test_error 0.14}
epoch 4 nb_changes 5 train_error 0.03}, test_error 0.09%
epoch 5 nb_changes 4 train_error 0.02}, test_error 0.14Y%
epoch 6 nb_changes 3 train_error 0.017% test_error 0.14Y%
epoch 7 nb_changes 2 train_error 0.00% test_error 0.14Y%
epoch 8 nb_changes O train_error 0.00% test_error 0.14Y%
o .
.
g
- : H
W —
|
i
= o
i bleu : -, rouge : +
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Convergence de I'algorithme du perceptron

Il est possible d'obtenir une garantie de convergence sous deux
hypotheses :
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Convergence de I'algorithme du perceptron
Il est possible d'obtenir une garantie de convergence sous deux

hypotheses :

1. Les X' sont dans une sphére de rayon R :
3R >0, Vi, ||| < R.
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Convergence de I'algorithme du perceptron

Il est possible d'obtenir une garantie de convergence sous deux
hypotheses :

1. Les X' sont dans une sphére de rayon R :
3R >0, Vi, ||| < R.
2. Les deux populations peuvent étre séparée par une marge
v>0:
Jw*, W] =1, 3y > 0,t.q.Vi, y' (x' - w*) > /2.
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Preuve de convergence de I'algorithme du perceptron (1/3)
Pour prouver la convergence, faisons |'hypothése qu'il y a encore un
exemple mal classifié aprés k itérations, et que w(<*1) est le vecteur
de poids, selon la mise a jour de w(¥) 3 I'étape 2.

- - Algo perc. étape 2 N - N
Ona: wkd.w* = (W) + y'5") - w*
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Pour prouver la convergence, faisons |'hypothése qu'il y a encore un
exemple mal classifié aprés k itérations, et que w(<*1) est le vecteur
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Preuve de convergence de I'algorithme du perceptron (1/3)
Pour prouver la convergence, faisons |'hypothése qu'il y a encore un
exemple mal classifié aprés k itérations, et que w(<*1) est le vecteur
de poids, selon la mise a jour de w(¥) 3 I'étape 2.

On a: W(k+1) e Algo perc. étape 2 (W(k) +y1)?1) Wt

— w4y (W)
> wk) w4y /2

récursion sur k

WD W /2 )2
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Preuve de convergence de I'algorithme du perceptron (1/3)
Pour prouver la convergence, faisons |'hypothése qu'il y a encore un
exemple mal classifié aprés k itérations, et que w(<*1) est le vecteur
de poids, selon la mise a jour de w(¥) 3 I'étape 2.
On a: W(k+1) e Algo perc. étape 2 (W(k) +y1)?1) Wt

— w4y (W)

Hyp. 2
> w4y /2
récursion sur k

WD W /2 )2

récursion sur k et
w® =¢

= (k+1)7/2.
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Preuve de convergence de I'algorithme du perceptron (1/3)
Pour prouver la convergence, faisons |'hypothése qu'il y a encore un
exemple mal classifié aprés k itérations, et que w(<*1) est le vecteur
de poids, selon la mise a jour de w(¥) 3 I'étape 2.

- - Algo perc. étape 2 N - N
Ona: wkd.w* = (W) + y'5") - w*

= w o wr gy (;f . V,7*)

Hyp. 2
> w4y /2
récursion sur k L (k-1)

w4 /24 7/2

récursion sur k et

w® =0
> (k+1)~/2.
Puisque  [[w™||[|w*|| > w®.w*, (inégalité de Cauchy-Schwarz)
nous obtenons : . . e
w2 > (W) w2
> k272/4 (f)
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Preuve de convergence de I'algorithme du perceptron (2/3)

... D’autre part :

|| V|7<k+1) H2 déf pro:d. scal. W(k+1) ) M_/,(k+1)
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Preuve de convergence de I'algorithme du perceptron (2/3)

... D’autre part :

(k+1) H2 déf pro:d. scal. W(k+1) ) M_/,(k+1)

Algo perc:. étape 2 (M_/,(k) + y,')?,-) ) (M_;(k) + y,-)_(,,-)

[w
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Preuve de convergence de I'algorithme du perceptron (2/3)

... D’autre part :
= (k+1)]2 déf pro_d. scal.
W] =
Algo perc. étape 2

expansion polynéme

W(k+1) . M_;(k+1)

(M—/*(k) _‘_yi)?i) . (M—;(k) —i—yi)?i)

N

. w42y w4+ |IX71?
S——— —— ——

[|w k)2 - <o <R2
car X' mal classif.  car hyp. 1
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Preuve de convergence de I'algorithme du perceptron (2/3)

... D’autre part :
= (k+1)]2 déf pro_d. scal.
W] =
Algo perc. étape 2

expansion polynéme

W(k+1) . M_;(k+1)

(M—/*(k) _‘_yi)?i) . (M—;(k) —i—yi)?i)

N

. w42y w4+ |IX71?
S——— —— ——

[|w k)2 - <o <R2
car X' mal classif.  car hyp. 1

1wt + R?

Francois Fleuret (ML : modifs 2022-24)  EE-311—Apprentissage machine / 8. Perceptron multi-couches 16 / 76



Preuve de convergence de I'algorithme du perceptron (2/3)

... D’autre part :

|| V|7<k+1) H2 déf pro:d. scal.

Algo perc. étape 2

expansion polynéme

<

récursion sur k

récursion sur k et

[w©] =0
<

1w + R?

(k+1)R%

W(k+1) . Vv(k-&-l)

(M—/*(k) _‘_yi)?i) . (M—;(k) —i—yi)?i)

w w0yl ||X|12
S——— —— ——

. <0 <R2
car X' mal classif.  car hyp. 1

HM—/»(kfl)H2+ R2+R2

()
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Preuve de convergence de I'algorithme du perceptron (3/3)

En combinant ces deux résultats, () et (1), nous obtenons :
KP4 < [WH|* < kR?

d'ol
k < 4R? /2,

il ne peut donc pas y avoir d’exemple mal classifié apres |4R? /2]
itérations.
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Preuve de convergence de I'algorithme du perceptron (3/3)

En combinant ces deux résultats, () et (1), nous obtenons :
KP4 < [WH|* < kR?
d’ou
k < 4R? /2,

il ne peut donc pas y avoir d’exemple mal classifié apres |4R? /2]
itérations.

Ce résultat est cohérent :

« La borne ne change pas si toute la population est re-scalée,

« plus la marge est importante, plus |'algorithme converge
rapidement.
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Différence entre perceptron et SVM

L'algorithme du perceptron s’arréte des qu'il trouve une frontiere de
séparation.

Il se comporte donc différemment d’autres algorithmes, comme par
exemple les machines a vecteur de support, qui eux maximisent la
distance entre les exemples et la séparation, et sont en conséquence
plus robustes au bruit.
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Limitation des modeles linéaires
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Limitation des modeles linéaires

La principale faiblesse des modeles linéaires est leur manque de
capacité a approximer des données arbitraires. En classification par
exemple, ils ne peuvent pas traiter des problemes ou les populations
ne sont pas linéairement séparables :
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capacité a approximer des données arbitraires. En classification par
exemple, ils ne peuvent pas traiter des problemes ou les populations
ne sont pas linéairement séparables :

o ® ® oo @
° . .
° .
. .
.
° .
°
. .
. [
.
e .
. .
. °
.
.
. °
[ ] L]
° ® .
°® .
.
. ° °
) e

Francois Fleuret (ML : modifs 2022-24)  EE-311—Apprentissage machine / 8. Perceptron multi-couches 20/ 76



Limitation des modeles linéaires

La principale faiblesse des modeles linéaires est leur manque de
capacité a approximer des données arbitraires. En classification par
exemple, ils ne peuvent pas traiter des problemes ou les populations
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Solution possible pour surmonter limitation des modéles
linéaires

L'exemple du xor peut étre résolu en pré-traitant les données pour
rendre les populations linéairement séparables.

/./(07 IV.EL 1)

(0,0) T (1,0)
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Solution possible pour surmonter limitation des modéles
linéaires

L'exemple du xor peut étre résolu en pré-traitant les données pour
rendre les populations linéairement séparables.

D (xy, X)) = (X, Xuy XuXy ).
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Solution possible pour surmonter limitation des modéles
linéaires

L'exemple du xor peut étre résolu en pré-traitant les données pour
rendre les populations linéairement séparables.

D (xy, X)) = (X, Xuy XuXy ).

o
(1,1,1)

/ (0,1,0)

(0,0,0) “1(1,0,0)
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Solution possible pour surmonter limitation des modéles
linéaires

L'exemple du xor peut étre résolu en pré-traitant les données pour
rendre les populations linéairement séparables.

D (x4, %) = (X0, Xy, XuXy)-

o
(1,1,1)

“140.0,0) “1(1,0,0)
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Pré-traitement pour rendre séparable les entrées du
perceptron

:
il

Perceptron

Francois Fleuret (ML : modifs 2022-24)  EE-311—Apprentissage machine / 8. Perceptron multi-couches 22 /76



Analogie : régression polynomiale calculée par un
pré-traitement suivie d’une régression linéaire

Pour prédire les valeurs d'une fonction f : [0, 1] — R, x — f(x) a

partir des paires {x, y' = f (x")}l.zlw"n on peut utiliser la

régression polynomiale plut6t que linéaire : avec un degré D du
polyndme suffisant, on peut approximer n'importe quelle fonction
continue réelle sur un compact (théoréme de Stone-Weierstrass).

Fixons la transformation :
®:x = (1,x,x% ..., xP)
et les parameétres de la régression
a = (ag,...,ap).

Alors, la régression polynomiale sur la variable x peut se faire par
une régression linéaire sur les D + 1 variables de ®(x) :

D
Zadxd = a- d(x).
d=0
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Application a un probleme de classification d’images

Nous pouvons appliquer la méme idée a un probléme un peu plus
réaliste : séparer les “8" manuscrits de MNIST des autres chiffres
avec un perceptron.

Nous rajoutons aux 784 = 28 x 28 caractéristiques originales
(correspondant aux 28 x 28 pixels) des produits de paires de pixels,
prises au hasard :

¢ R2B*28 R282+K
x = (x[1,1],x[1,2],...,x[28,28], x[i1, j1]x[i1,J1)s - - - » X[ix, jr | xlik»Jk])

Pixels K produits
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Erreur en fonction du nombre de charactéristiques (pixels +
pixels ajoutés)

Train error
Test error =

Error (%)

0 1 1
108 104

Nb. of features
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Avantages de I'augmentation avec des caractéristiques
supplémentaires

Au dela d'augmenter la capacité pour mieux approximer les données
d'apprentissage, la conception de caractéristique est aussi une
technique pour rendre le processus d'apprentissage plus robuste au
bruit.
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Avantages de I'augmentation avec des caractéristiques
supplémentaires

Au dela d'augmenter la capacité pour mieux approximer les données
d'apprentissage, la conception de caractéristique est aussi une
technique pour rendre le processus d'apprentissage plus robuste au
bruit.

En particulier un bon pre-processing doit rendre le signal invariant a
des perturbations si |'on sait que celles-ci ne doivent pas changer la
prédiction.
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Exemples d'apprentissage : vérité terrain en orange,
(points noirs hors région orange et

noter la présence de labels erronés points biancs hors région blanche)
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Votes, méthode des K plus proches voisins (K=11)
selon distance Euclidienne D = 2
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Prédiction, méthode des K plus proches voisins (K=11) :
la classification est mauvaise.
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Exemples d'apprentissage : vérité terrain en orange,
noter la présence de labels erronés
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Votes, méthode des K plus proches voisins (K=11)
distance selon composante radiale seulement
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Prédiction, méthode des K plus proches voisins (K=11)
distance selon composante radiale seul. : classification correcte !
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Application en vision par ordinateur
Un exemple classique de caractéristiques concues pour fournir une
invariance complexe sont les “Histogram of Oriented Gradient” (HOG).

Schématiquement : L'image est partitionnée en blocs de 8 x 8 pixels, et
dans chacun est calculé un histogramme de I'orientation des
caractéristiques saillantes (bords des objets) en 9 directions.

Dalal and Triggs (2005) ont combiné ces caractéristiques avec des

machines a vecteurs de support pour faire de la détection de personnes.
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Cette stratégie combinant des caractéristiques congues a la mains et
un prédicteur paramétrique comme la régression logistique ou une
machine a vecteurs de support est souvent qualifiée en anglais de
“shallow learning” .

Le signal traverse un seul traitement modulé par des parametres
optimisés sur les données.
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Modeles profonds
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Généralisation : considérons une sortie multi-dimensionnelle
plutét que 1D

Un classifieur linéaire 3 sortie uni-dimensionnelle de la forme
RP 5 R
X o(w-xX+b),

avec w € RP, b€ R, et 0 : R — R, peut étre généralisé 3 une
sortie multi-dimensionnelle (note : on omet désormais la notation -")
en spécifiant :

RP — R€
x +— o(wx + b),

avec w € R*P b c RE, et o appliquée composante par
composante.
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Du perceptron simple au modele multi-couches

Un modeéle a sortie multi-dimensionnelle et multi-couche peut étre
construit a partir d'une combinaison d'unités linéaires élémentaires,

et peut étre étendu.

f(x; w, b)

w, b

Perceptron avec une seule unité
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Du perceptron simple au modele multi-couches

Un modeéle a sortie multi-dimensionnelle et multi-couche peut étre
construit a partir d'une combinaison d'unités linéaires élémentaires,

et peut étre étendu.

f(x; w, b)

Perceptron avec une seule couche de plusieurs unités
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Un modele a sortie multi-dimensionnelle et multi-couche peut étre
construit a partir d'une combinaison d'unités linéaires élémentaires,

Du perceptron simple au modele multi-couches
et peut étre étendu.

R
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w® p3d)

)

2 2
W2 p2)
EE-311—Apprentissage machine / 8. Perceptron multi-couches

w®_ pD)
Perceptron avec plusieurs couches de plusieurs unités
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Formalisation

Avec x(© = x, ce modele peut étre formalisé comme

Ve=1,....L, xD=¢ (W(Z)X(gfl) + b(é))

et f(x;w, b) = x(b.
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Formalisation

Avec x(© = x, ce modele peut étre formalisé comme
Ve=1,....L, xD=¢ (W(e)x(efl) + b(e))

et f(x;w, b) = x(1),

wO| [0

S 8 e

Layer L

x = x(0)

C'est un perceptron multi-couche.
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Importance de I'activation non-linéaire

Il est important de remarquer que si o est une transformation affine,
le modele complet est une composition de transformations affines,
et donc lui méme une transformation affine.
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Importance de I'activation non-linéaire

Il est important de remarquer que si o est une transformation affine,
le modele complet est une composition de transformations affines,
et donc lui méme une transformation affine.

La fonction d’activation o doit donc étre non-linéaire,
. sinon le modele complet se réduira a un simple modéle affine
avec une paramétrisation inhabituelle.
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Fonctions d’activation classiques

Les deux fonctions d'activation classiques sont la tangente

hyperbolique
2

X e —
1+ e
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Fonctions d’activation classiques

Les deux fonctions d'activation classiques sont la tangente

hyperbolique
2

X e —
1+ e

» |
et la Rectified Linear Unit (ReLU)

x — max(0, x)

0 |
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Approximation universelle
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N'importe quelle ) € €([a, b],R) peut &tre approximée avec une
combinaison linéaire de RelLU scalées / translatées.
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f(x) = o(wix + by)
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N'importe quelle ) € €([a, b],R) peut &tre approximée avec une
combinaison linéaire de RelLU scalées / translatées.

f(x) = o(wix + by) + o(wax + by)

N
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N'importe quelle ) € €([a, b],R) peut &tre approximée avec une
combinaison linéaire de RelLU scalées / translatées.

f(x) = o(wix + by) + o(wax + by) + o(wsx + b3)

N
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N'importe quelle ) € €([a, b],R) peut &tre approximée avec une
combinaison linéaire de RelLU scalées / translatées.

f(X) - J(WIX + bl) + O'(WQX + b2) —+ U(W3X + b3) + ...

N

Francois Fleuret (ML : modifs 2022-24)  EE-311—Apprentissage machine / 8. Perceptron multi-couches 37/ 76



N'importe quelle ) € €([a, b],R) peut &tre approximée avec une
combinaison linéaire de RelLU scalées / translatées.

f(X) - J(WIX + bl) + O'(WQX + b2) —+ U(W3X + b3) + ...

N Nl

Francois Fleuret (ML : modifs 2022-24)  EE-311—Apprentissage machine / 8. Perceptron multi-couches 37/ 76



N'importe quelle ) € €([a, b],R) peut &tre approximée avec une
combinaison linéaire de RelLU scalées / translatées.

f(X) - J(WIX + bl) + O'(WQX + b2) —+ U(W3X + b3) + ...

/

N

Francois Fleuret (ML : modifs 2022-24)  EE-311—Apprentissage machine / 8. Perceptron multi-couches 37/ 76



N'importe quelle ) € €([a, b],R) peut &tre approximée avec une
combinaison linéaire de RelLU scalées / translatées.

f(X) - J(WIX + bl) + O'(WQX + b2) —+ U(W3X + b3) + ...

N

Francois Fleuret (ML : modifs 2022-24)  EE-311—Apprentissage machine / 8. Perceptron multi-couches 37/ 76



N'importe quelle ) € €([a, b],R) peut &tre approximée avec une
combinaison linéaire de RelLU scalées / translatées.

f(X) - J(WIX + bl) + O'(WQX + b2) —+ U(W3X + b3) + ...

N

Francois Fleuret (ML : modifs 2022-24)  EE-311—Apprentissage machine / 8. Perceptron multi-couches 37/ 76



N'importe quelle ) € €([a, b],R) peut &tre approximée avec une
combinaison linéaire de RelLU scalées / translatées.

f(X) - J(WIX + bl) + O'(WQX + b2) —+ U(W3X + b3) + ...

/N~

N

Francois Fleuret (ML : modifs 2022-24)  EE-311—Apprentissage machine / 8. Perceptron multi-couches 37/ 76



N'importe quelle ) € €([a, b],R) peut &tre approximée avec une
combinaison linéaire de RelLU scalées / translatées.

f(X) - J(WIX + bl) + O'(WQX + b2) —+ U(W3X + b3) + ...

N

Francois Fleuret (ML : modifs 2022-24)  EE-311—Apprentissage machine / 8. Perceptron multi-couches 37/ 76



N'importe quelle ) € €([a, b],R) peut &tre approximée avec une
combinaison linéaire de RelLU scalées / translatées.

f(X) - J(WIX + bl) + O'(WQX + b2) —+ U(W3X + b3) + ...

N

Francois Fleuret (ML : modifs 2022-24)  EE-311—Apprentissage machine / 8. Perceptron multi-couches 37/ 76



N'importe quelle ) € €([a, b],R) peut &tre approximée avec une
combinaison linéaire de RelLU scalées / translatées.

f(X) - J(WIX + bl) + O'(WQX + b2) —+ U(W3X + b3) + ...

N

Francois Fleuret (ML : modifs 2022-24)  EE-311—Apprentissage machine / 8. Perceptron multi-couches 37/ 76



N'importe quelle ) € €([a, b],R) peut &tre approximée avec une
combinaison linéaire de RelLU scalées / translatées.

f(X) - J(WIX + bl) + O'(WQX + b2) —+ U(W3X + b3) + ...

N N

Francois Fleuret (ML : modifs 2022-24)  EE-311—Apprentissage machine / 8. Perceptron multi-couches 37/ 76



N'importe quelle ) € €([a, b],R) peut &tre approximée avec une
combinaison linéaire de RelLU scalées / translatées.

f(X) - J(WIX + bl) + O'(WQX + b2) —+ U(W3X + b3) + ...

AV N

Francois Fleuret (ML : modifs 2022-24)  EE-311—Apprentissage machine / 8. Perceptron multi-couches 37/ 76



N'importe quelle ) € €([a, b],R) peut &tre approximée avec une
combinaison linéaire de RelLU scalées / translatées.

f(X) - U(WIX + bl) + 0(W2X + b2) —+ U(W3X + b3) + ...

AV N

C'est également vrai pour d'autres fonctions d’activation sous des
hypotheses raisonnables.

Francois Fleuret (ML : modifs 2022-24)  EE-311—Apprentissage machine / 8. Perceptron multi-couches 37/ 76



Pour étendre ce résultat au cas multi-dimensionnel,
Y € €([0,1]P,R), on peut d'abord approximer sin avec une
combinaison de RelL U, et utiliser la densité des séries de Fourier

pour obtenir le résultat final :

Ve > 0,3K,w € RF*P b e RKw € RX tel que

max [P(x) —w-o(wx+ b)| <e
x€[0,1]P
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Nous pouvons donc approximer n'importe quelle fonction continue
Y :[0,1]° = R
avec un perceptron a une couche cachée
x+— w-o(wx+ b),

ou b e RX we RKXD et we RX,

@
B

Couche cachée
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Nous pouvons donc approximer n'importe quelle fonction continue
Y :[0,1]° = R
avec un perceptron a une couche cachée
x+— w-o(wx+ b),

ou b e RX we RKXD et we RX,

@
B

Couche cachée

C'est le théoreme d’approximation universelle.
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Il est important de noter que ce théoreme ne dit rien sur la
dimension de la représentation dans la couche cachée.

Donc bien qu'il soit important, en particulier pour montrer que ces
modeles ne souffrent pas de la limitation fondamentale des modeles
linéaire, il ne donne pas d'indice sur le colit computationnel ou le
sur-apprentissage.
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Descente de gradient
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Rappel : la fonction de coiit
Nous avons vu qu'entrainer un modeéle consiste a trouver des valeurs
pour ses parametres qui minimisent une fonction de colit comme,
par exemple, |'erreur quadratique moyenne :
n
1 i 2
Z(w,b) = - E (F(x";w,b) —y')".

n<
i=1
D’autres fonctions sont plus adaptées a des problemes de

classification, certaines formes de régression ou d'estimation de
densité.
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Rappel : la fonction de coiit
Nous avons vu qu'entrainer un modeéle consiste a trouver des valeurs
pour ses parametres qui minimisent une fonction de colit comme,
par exemple, |'erreur quadratique moyenne :
n
1 i 2
Z(w,b) = - E (F(x";w,b) —y')".

n <
i=1

D’autres fonctions sont plus adaptées a des problemes de
classification, certaines formes de régression ou d'estimation de
densité.

Nous avons aussi vu que la fonction de colit peut étre minimisée
avec des techniques exactes, par exemple dans le cas quadratique,
ou avec des procédures ad hoc comme dans le cas de I'erreur
empirique pour le perceptron.
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Rappel : fonction coiit pour régression logistique

Il n'y a généralement pas de méthode ad hoc. Nous avons vu qu'a la
régression logistique par exemple

1
P,(Y =1|X=x)=o0(w-x+b), avec o(x) = =
e_X

correspond la fonction de coiit

n

Z(w,b) == logo(y'(w-x'+ b))

i=1

qui ne peut pas étre minimisée analytiquement.
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Rappel : fonction coiit pour régression logistique

Il n'y a généralement pas de méthode ad hoc. Nous avons vu qu'a la
régression logistique par exemple

1
P,(Y=1|X=x)=0(w-x+b), aveca(x):m

correspond la fonction de coiit

n

Z(w,b) == logo(y'(w-x'+ b))

i=1

qui ne peut pas étre minimisée analytiquement.

Comme nous I'avons vu, la méthode générale est la descente de
gradient.
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Rappel : définition du gradient

Etant donnée une fonction

f:RP - R
x = f(xq,. ..
son gradient est
Vf:RP - RP

of
X (aXl(x),...,

7XD)>

6’xD

af(x))T.
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Descente de gradient
Pour minimiser

Z RP SR
la descente de gradient utilise une approximation locale linéaire pour
progresser itérativement vers un minimum.
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Descente de gradient
Pour minimiser

Z RP SR
la descente de gradient utilise une approximation locale linéaire pour
progresser itérativement vers un minimum.
Pour wy € RP, considérons une approximation de & dans le
voisinage de wy

N 1
L (W) = Z(wo) + VZ(wo) " (w — wo) + LA wol?,

avec un terme quadratique qui ne dépend pas de Z.
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Descente de gradient
Pour minimiser

Z RP SR
la descente de gradient utilise une approximation locale linéaire pour
progresser itérativement vers un minimum.
Pour wy € RP, considérons une approximation de & dans le
voisinage de wy

N 1
L (W) = Z(wo) + VZ(wo) " (w — wo) + LA wol?,

avec un terme quadratique qui ne dépend pas de &.
Calculons le gradient p.r. a w de cette approximation &, (w) :

VLo (W) = VL (W) + :I(W — wp),

qui implique (en trouvant la solution de V.2, (w) = 0) :
argmin £, (w) = wo — nV.ZL(w).
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L'algorithme qui en découle met w a jour itérativement de la
maniére suivante :

Wer1 = wy — VL (wy),

qui peut étre interpretée comme “suivre la direction de la pente la
plus forte”.

Cette procédure conduit [la plupart du temps] a un minimum local,
et les choix de wy et 1) sont importants.
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n=0.125

Wo
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n=0.125

w1
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n=0.125

1%]
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n=0.125

w3
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n=0.125

Wy
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n=0.125

Ws
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n=0.125

We
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n=0.125

wr
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n=0.125

Wg
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n=0.125

Wo
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n=0.125

Wio
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n=0.125

W11
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n=0.125

Wo

Francois Fleuret (ML : modifs 2022-24)  EE-311—Apprentissage machine / 8. Perceptron multi-couches 48 / 76



n=0.125

w1
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n=0.125

W
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n=0.125

g &

w3
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n=0.125

g Z

Wy
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n=0.125

Ws
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n=0.125

We

Francois Fleuret (ML : modifs 2022-24)  EE-311—Apprentissage machine / 8. Perceptron multi-couches 48 / 76



n=0.125

wr
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n=0.125

wg
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n=0.125

24

Wo
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n=0.125

W10
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n=0.125

4

W11
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Wo
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w1
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15]
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w3
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Ws
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We
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wr
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wg
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Wo
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Wio
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W11
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Nous avons vu que le minimum de la fonction de colit de le
régression logistique

L(w,b) = — Z log o (y'(w - x' + b))

def sigmoid(x):
return 1 / (1 + numpy.exp(-x))

def loss(x, y, w, b):

return - numpy.log(sigmoid(y * (x.dot(w) + b))).sum()

n'a pas de forme analytique.
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Formulaire de dérivées, fonctions logarithme et sigmoide
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Nous pouvons dériver

0L S ; ;
ob E,-_l: y'o(=y'(w-x"+b)),
0L LA , ,
Yd _ [ ] ! b
" Dy iE—l xgy'o( y(‘W x' + b)),
v
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Nous pouvons dériver

0L G , ,
b = 2o Ly (wex 1 b)),
i=1

uj

0 ¢ i i i
vd, awd__;xdy o(=y'(w-x"+ b)),

i
Vd

qui peut étre implémenté avec

def gradient(x, y, w, b):
u =y * sigmoid(- y * (x.dot(w) + b))
v = x * u.reshape(-1, 1)
return - v.sum(0), - u.sum(0)
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Nous pouvons dériver

0L G , ,
==Y yo(—yi(w X+ b)),
ob pt
85? - i i i
vd, de = _;z—; xgy' o(—y (.W’X + b)),

d

qui peut étre implémenté avec

def gradient(x, y, w, b):
u =y * sigmoid(- y * (x.dot(w) + b))
v = x * u.reshape(-1, 1)
return - v.sum(0), - u.sum(0)

et utilisé dans une descente de gradient de la forme
w, b = numpy.random.normal(0, 1, (x.shape[1],)), O
eta = le-1

for k in range(nb_iterations):
print(k, loss(x, y, w, b))
dw, db = gradient(x, y, w, b)
w -= eta * dw
b -= eta * db
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Avec 100 points d'apprentissage et 7 = 1071

n=20
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Avec 100 points d'apprentissage et 7 = 1071

n=10
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Avec 100 points d'apprentissage et 7 = 1071

n =107
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Avec 100 points d'apprentissage et 7 = 1071

n=10%
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Avec 100 points d'apprentissage et 7 = 1071

n=10%
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Solution par Linear Disciminant Analysis (optimal pour ce probléeme)
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Entrainement du perceptron multi-couche
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Entrainement d’un perceptron multi-couche a l'aide de la
descente de gradient

Nous voulons entrainer un perceptron multi-couche (=ajuster tous
ses parametres) en minimisant un coiit calculé sur un ensemble
d'apprentissage :

Z(w,b) = Zf(f(xi; w, b), y").
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Entrainement d’un perceptron multi-couche a l'aide de la
descente de gradient

Nous voulons entrainer un perceptron multi-couche (=ajuster tous
ses parametres) en minimisant un coiit calculé sur un ensemble
d'apprentissage :

Z(w,b) = Zf(f(xi; W,b),yi).

Pour utiliser la descente de gradient, nous devons calculer le
gradient de la fonction de coiit sur chaque exemple par
rapport aux parametres.
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Entrainement d’un perceptron multi-couche a l'aide de la
descente de gradient

Nous voulons entrainer un perceptron multi-couche (=ajuster tous
ses parametres) en minimisant un coiit calculé sur un ensemble
d'apprentissage :

Z(w,b) = Zf(f(xi; w, b),yi).

Pour utiliser la descente de gradient, nous devons calculer le
gradient de la fonction de coiit sur chaque exemple par
rapport aux parametres.

C'est a dire, avec ¢; = f(f(xi; w, b),yi),

ot 0t
ow']) b
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Propagation vers I'avant : calcul des sorties aux noeuds

Nous considérons un seul exemple d'apprentissage x, et nous
introduisons sV, ..., s(t) comme les sommations avant les
fonctions d’activation.

(1) (1) W@ b2

L L
0 — oy O ) o ) WO ) o w0

s 2y k(D = f(x; w, b).
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Propagation vers I'avant : calcul des sorties aux noeuds

Nous considérons un seul exemple d'apprentissage x, et nous
introduisons sV, ..., s(t) comme les sommations avant les
fonctions d’activation.

(1) (1) W@ b2

L L
0 — oy O ) o ) WO ) o w0

s 2y k(D = f(x; w, b).

Nous posons x(9 = x,
o0 — WO (D) | pO

V=1L, A0 — g (£00).

et nous définissons la sortie du réseau comme f(x; w, b) = x(1).
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Propagation vers I'avant : calcul des sorties aux noeuds

Nous considérons un seul exemple d'apprentissage x, et nous
introduisons sV, ..., s(t) comme les sommations avant les
fonctions d’activation.

(1) (1) W@ b2

L L
0 — oy O ) o ) WO ) o w0

s 2y k(D = f(x; w, b).

Nous posons x(9 = x,
o0 — WO (D) | pO

VE=1,...,L X0 = g (s,

et nous définissons la sortie du réseau comme f(x; w, b) = x(1).

Ceci est la propagation vers lI'avant.
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Rétro-propagation du gradient :
méthode pour calculer les composantes du gradient

L'algorithme de rétro-propagation du gradient n'est qu'une
application directe de la dérivation des fonctions composées :

(gof) = (g o Nf

L'approximation linéaire d'une composition de fonction est le
produit de leurs approximations linéaires.
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Rétro-propagation du gradient :
méthode pour calculer les composantes du gradient

L'algorithme de rétro-propagation du gradient n'est qu'une
application directe de la dérivation des fonctions composées :

(gof) = (g o Nf

L'approximation linéaire d'une composition de fonction est le
produit de leurs approximations linéaires.

Ceci se généralise a des compositions plus complexe en grandes
dimensions

Jtyory_r0--ofi (X) = Ja(x) Jp(A(x)) J5(R(fi(x))) - - Jry (Fn—a(- - - (X))

ol J¢(x) est le Jacobien de f en x, c'est a dire la matrice de
I'approximation linéaire de f dans le voisinage de x.
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Rappel d’analyse : régle de composition de fonctions pour
une variable

Soit x = g(t) et y = h(t) des fonctions différentiables de t et
z = f(x, y) une fonction différentiable de x et y.

Alors z = f (x(t), y(t)) est une fonction différentiable de t et

dz _ 0z dx 0z dy
dt  Ox dt Oy dt
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Rappel d’analyse : regle de composition des dérivées pour
deux variables indépendantes

Soient x = g(u, v) et y = h(u, v) des fonctions différentiables de v
et v and z = f(x, y) une fonction différentiable de x et y.

Alors, f (g(u, v), h(u, v)) est une fonction différentiable de v et v et

dz

du
ainsi que

dz

dv
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Rétro-propagation du gradient :
dérivées du coliit £ par rapport a sj(e) et xﬁ“)

w0, po) -
(1) OB () (0
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Rétro-propagation du gradient :
dérivées du coliit £ par rapport a sj(e) et xﬁ“)

w(® o -
(1) OB () N0

0 N
Comme sj( ) n'influence # que via xj( ) avec

A = (),
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Rétro-propagation du gradient :
dérivées du coliit £ par rapport a sj(e) et xﬁ“)

w(® o -
(1) OB () N0

0 N
Comme sj( ) n'influence # que via xj( ) avec

0 = (),

nous avons or or 8Xj(g)

651@ ax}@ as}@
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Rétro-propagation du gradient :
dérivées du coliit £ par rapport a sj(e) et xﬁ“)

3 4
N RSN BN ()

0 N
Comme sj( ) n'influence # que via xj( ) avec

(0 _ (0)
St
nous avons ot ot 0x; or ,( (e))

5j

(o
st oxV 95 ox
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Rétro-propagation du gradient :

dérivées du coliit £ par rapport a s( ) e (e 2

N RSN BN ()

O

Comme S;

O]

n'influence # que via X;

(0 _ (0)
St
nous avons o ot Ox; o ,( (e))

s axDas) ox(
J J

avec

)
Et comme x,(f_l) n'influence £ que via les 5@ avec
0 _ () ( 1) (¢ )
5= Wikt

k
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Rétro-propagation du gradient :

dérivées du coliit £ par rapport a s( ) e (e 2

N RSN BN ()

O

Comme S;

O]

n'influence # que via X;

0 = (),

nous avons o ot 3Xj(é) o ,( (e)>.

s axDas) ox(
J J

avec

)
Et comme x,(f_l) n'influence £ que via les 5@ avec
¢ ¢
%():ij(k) (0 )+b()
nous avons g
Z of (5)
8 k I 5)8 (Z 1)
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Rétro-propagation du gradient :

dérivées du coliit £ par rapport a s( ) e (e 2

N RSN BN ()

O

Comme s;

O]

n'influence # que via X;

0 = (),

nous avons or or 8Xj(é)

_ _ 97 (0
as)  ax() 9 w@(s)
J J

avec

)
Et comme x,(f_l) n'influence £ que via les 5@ avec
¢ ¢
sj():ZWJ(k) (0 )+b()
nous avons g
or  0s o
w. .
zj: e)a (z 1) %:asj(e) .k
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Rétro-propagation du gradient :
dérivées du coliit £ par rapport aux parametres Wj(ﬁ() et béé)

4 4
=) w09 ) o ()

Comme w(ék) et bjw n'influencent £ que via sj(g) avec

j?
4 ) (-1 l
= DA )
k
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Rétro-propagation du gradient :

dérivées du coliit £ par rapport aux parametres Wj(ﬁ() et béé)

4 4
=) w09 ) o ()

Comme w.(ék) et bjw n'influencent £ que via sj(g) avec

J?
4 ) (-1 l
= DA )
k

nous avons

ot ot 0s

0 A ‘
owiy 05wy
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Rétro-propagation du gradient :
dérivées du coliit £ par rapport aux parametres Wj(ﬁ() et béé)

4 4
=) w09 ) o ()

Comme w.(ék) et bjw n'influencent £ que via sj(g) avec

J?
4 ) (-1 l
o2 = S
k

nous avons

o of 05 ot

— X
7 7 ‘ 0"k
8Wj’k) 85} ) aszk) 05} )

Francois Fleuret (ML : modifs 2022-24)  EE-311—Apprentissage machine / 8. Perceptron multi-couches 63 /76



Rétro-propagation du gradient :
dérivées du coliit £ par rapport aux parametres W(i et b(é

4 4
=) w09 ) o ()

() )

/et b( ) n'influencent # que via S;

RO -1 ¢
=D i b

Comme w; avec

nous avons

o of 351-“ or (e 1)

0 l 4
ow') 95 ow!!) a“

Y

o of
) 4.0
8bj 8sj
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Rétro-propagation du gradient : résumé

Pour résumer : nous pouvons calculer les a , a partir de la
J

définition de Z, et récursivement propager vers l'arriére les
dérivées du colit par rapport aux activations avec :

o _ ot (5(@)

= ——0

051-“) axj(E) )
ot of
— = —w; .
8x,£€71) ; 851-(8) K
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Rétro-propagation du gradient : résumé

Pour résumer : nous pouvons calculer les a , a partir de la
J
définition de Z, et récursivement propager vers l'arriére les

dérivées du colit par rapport aux activations avec :

o _ ot ( 5(@)

= —F 0 )

95 oxY
J

J

ot ot
B~ 2 g
k J J
Ensuite, nous pouvons calculer les dérivées par rapport aux
parametres du modele avec :
o ot (D)
aw(é) o Os a0 Xk

Jok 5j

of  of

0 a0
Obj Osj
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Ecriture tensorielle

Pour écrire tout cela de maniére tensorielle, si v : RN — RM nous
utiliserons une notation standard du Jacobien

(LY

o) _[ ™
ox| 81/:,\4
%

et si v : RV*M 5 R nous utiliserons

el

ai B 6V\./1,1
Ow B 0:1/1

aWNJ
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w(®) b(&)
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o¢ o¢
) |[aw(e)]] b [ab(a]

5]
KN

Y] N [+] S0
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w(®

b©)
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ot ot
w0 |[_6w(‘5) ]] b0 [ab(f) i|

£-1) |t |_><—| I:l

x(

ot
[8)(([71)} Tx

ot o (1-1)
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ot ot
w0 [l:_aw(é)]] b0 [6b(£)i|

x=1) | |_><—| ':l
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Propagation vers I'avant

Calculer les activations.
s(6) = () x(t=1) 1 p(®)

=x, W=1,...,L, ‘
X0 = g (s(0))
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Propagation vers I'avant

Calculer les activations.

. S0 = w(Ox(e=1) 4 p0)
xO =, we=1,...,L,

x0) =& (5(5))
Rétro-propagation du gradient

Calculer les dérivées du colit par rapport aux activations :

[5%5] drapres 1a définition de # or 1 [0,  (40)
. o¢ (e T [_oe 9s] — Lox® )
sit <L, [BX(«)}:(W ) [as(m)}
Calculer les dérivées du colit par rapport aux paramétres :
o [or -1\ T {(%’}:{6{].
ow || — [ as0 (X ) ob0) s
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Propagation vers I'avant

Calculer les activations.

. S0 = w(Ox(e=1) 4 p0)
xO =, we=1,...,L,

x0) =& (5(5))
Rétro-propagation du gradient

Calculer les dérivées du colit par rapport aux activations :

[aiﬁ)] d’aprés la définition de # of _ ot oo <s(£)>
ot T ot o5 ] Lox
sit< L [25] = (wen)T [205]

Calculer les dérivées du colit par rapport aux paramétres :

ot ot
sl-lmley -l
H@W([)H_{Hs(f)}()(( )> ab(0) PRO)

Itération de descente de gradient

ot ot
() 0) _ i (£) () _ | 22
w' — w U[I:OW(Z)H b\« b n[@b(z)}
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Remarques sur la rétro-propagation du gradient

Bien que la rétro-propagation du gradient semble étre complexe, elle
consiste finalement a calculer des dérivées de fonctions composées.

Comme la propagation vers |'avant, elle peut étre exprimée de
maniére tensorielle. Les calculs lourds et paramétrés sont limités a
des opérations linéaires, et les non linéarités sont calculées par
composante individuelle.
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Coiit computationnel

En ce qui concerne le colit computationnel, comme les opérations
coliteuses sont, pour de la propagation vers l'avant :

s — WO, =1 L p(0)

et pour la rétro-propagation du gradient :

o4 T ot
(o (041)
_3X(4)] = (W ) |:as(1@+1)‘|

ot ot T
| 9 e
]'8W(€):|:| N {85(5)} (X ) '

une approximation grossiére est que la rétro-propagation du gradient
est deux fois plus coliteuse que la propagation vers |'avant.

et
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Interprétation des opérations dans un réseau

Plus que pour d’autres modeles, il est tres difficile d'interpréter les
opérations qui sont finalement exécutées par chaque unité d'un
perceptron multi-couche une fois qu'il est entrainé.
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Exemple : classification binaire, données a 2 variables (1/2)

Considérons un réseau avec une seule couche cachée qui fait une
classification 3 deux classes dans R?, c'est a dire

R? — R?.

avec
f(x;w,b) =0 (W(2)0 (W(l)X + b(l)) + b(Q)) :
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Exemple : classification binaire, données a 2 variables (1/2)

Considérons un réseau avec une seule couche cachée qui fait une
classification 3 deux classes dans R?, c'est a dire

R? — R?.

avec
f(x;w,b) =0 (W(2)0 (W(l)X + b(l)) + b(Q)) :

Si ce modele a D unités cachées, alors

w e RP*2 p1) € RP W ¢ R2*P p() ¢ R2,

Francois Fleuret (ML : modifs 2022-24)  EE-311—Apprentissage machine / 8. Perceptron multi-couches 71/ 76



Exemple : classification binaire, données a 2 variables (2/2)

Les activations de la couche cachée pré-non-linéarité sont donc
s = wWx 4 p)

et a chacune des d = 1,..., D composantes de s peut étre associé
un hyperplan de R?, donc une droite :

Hd:{xeR2:W§1)-x+b§P:o}.
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Iteration 1
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Iteration 4
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Iteration 7
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Iteration 10
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Iteration 16

Francois Fleuret (ML : modifs 2022-24)  EE-311—Apprentissage machine / 8. Perceptron multi-couches 73/ 76



Iteration 34
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Iteration 77

Francois Fleuret (ML : modifs 2022-24)  EE-311—Apprentissage machine / 8. Perceptron multi-couches 73/ 76



Iteration 100
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Iteration 703
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[teration 1407
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[teration 2789
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[teration 9999
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Iteration 1
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Iteration 4
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Iteration 7
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Iteration 10
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Iteration 16
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Iteration 34

Francois Fleuret (ML : modifs 2022—24)  EE-311—Apprentissage machine / 8. Perceptron multi-couches 74/ 76



Iteration 100
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Iteration 272
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Iteration 556

Francois Fleuret (ML : modifs 2022-24)  EE-311—Apprentissage machine / 8. Perceptron multi-couches 74/ 76



[teration 2222
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[teration 4999
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[teration 9999
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Perceptron et réseaux de neurones
e origine des méthodes avec neurones artificiels remontent aux années 1940
e perceptron : somme pondérée et biais avec un seuillage
e unités simples, mais peuvent &étre interconnectées
e pour modéliser un systeme complexe, les parameétre doivent étre ajustés
e notation graphique ou tensorielle
o algorithme du perceptron permet d’ajuster les poids (e.g. pour la classification)
e garantie de convergence pour données séparables
o limitation des modeles linéaires : surmonté par I'ajout de variables (apprentissage
“shallow™)
e apprentissage profond :

1. entrées-sorties multidimensionnelles
2. multiple couches
3. fonctions d’activation non-linéaires

e ajustement des paramétres par descente de gradient
e calcul des activations par propagation en avant
e calcul du gradient par rétro-propagation

e réseaux efficace et mais difficilement interprétable
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Guide de lecture pour ce cours

Chloé-Agathe Azencott “Introduction au Machine Learning”,
Dunod, 2019, ISBN 978-210-080153-4
Chapitre 7 : Réseaux de neurones artificiels
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