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Réseaux de neurones : Contenu

« Origine, inspirations, jalons historiques

« Le perceptron : ancétres, définition du perceptron, fonction
d’activation, représentations graphiques et tensorielles,

algorithme du perceptron, convergence, comparaison avec les
SVM

 Limitations des modéles linéaires

- Shallow learning ( pré-traitement

« Modeles profonds : le perceptron multi-couche

« Formalisme, fonctions d’activation et approximation universelle
« Rappel du descente de gradient

« Entrainement du perceptron multi-couche :

o propagation vers |'avant
 rétropropagation du gradient

« Colit computational et interprétation des opérations
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Origines de I'idée de neurone artificiel

Réseau de “Threshold Logic Unit"

(McCulloch and Pitts, 1943)
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Historique : quelques étapes importantes

1949 — Donald Hebb propose une régle (qui porte son nom) suggérant la
formation de connections entre des unités (neurones) qui s'activent
en méme temps (ou séquentiellement) : “cells that fire together,
wire together”

1951 — Marvin Minsky crée le premier réseau de neurones artificiels (réegle
de Hebb, 40 neurones).

1958 — Frank Rosenblatt créer un perceptron pour classifier des images
20 x 20.

1959 — David H. Hubel et Torsten Wiesel exposent les processus du cortex
visuel des chats (similarités avec opérations en traitement du signal).

1982 — Paul Werbos propose la rétro-propagation du gradient.
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Le perceptron
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Threshold Logic Unit

Le premier modeéle mathématique d'un neurone est la “Threshold
Logic Unit,” (McCulloch and Pitts, 1943) qui a des entrées et sorties
booléennes (0 ou 1) :

f()?)zl{WZXierZO}.

Elle est en particulier capable de calculer les trois opérations de
|"algebre booléenne :

OI’(U, V) = 1{u—|—v—0.520} (W = 1, b = —05)
and(u,v) = 14 v_1550) (w=1b=-1.5)
not(u) — 1{—u+0.520} (W = —1, b = 05)

Donc, on peut construire n'importe quelle fonction booléenne,
donc arithmétique, avec de telles unités élémentaires.
(McCulloch and Pitts, 1943)
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Perceptron

Le perceptron, défini par :
1 si Z Wi X; + b 2 0
0 sinon

est tres similaire a la Threshold Logic Unit, mais ses entrées x; sont
des valeurs réelles et chacune a un poids spécifique w;. On appelle
biais le paramétre b.

Ce modele a été motivé initialement par la biologie, avec w; jouant
le role des poids synaptiques, et les x; et f des fréquences de
potentiels d'action. C'est un modele tres grossier.

(Rosenblatt, 1957)
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Fonction signe et fonction d’activation

Pour simplifier les choses, nous considérons des sorties £1. Soit

1 sit>0

—1 sinon.

o(t) =

—1

La regle de classification du perceptron peut alors étre formalisée par
f(xX) =o(w- X+ b).

Dans le cas des réseaux de neurones, la fonction o qui suit un
opérateur linéaire est classiquement appelée la fonction
d’activation.
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Représentation graphique

Nous pouvons représenter un “neurone” de la maniere suivante :

Valeur

w1

T Parametre

X1 |[F—— X

Opération
" o -
)3

X2 |k

w3

X3 |F——" X
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Représentation tensorielle

Nous pouvons aussi utiliser des opérateurs tensoriels

f(X) = o(W - X + b).

=]
—
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Algorithme du perceptron pour ajuster les poids w; de w

Etant donné un ensemble d’'apprentissage

2={x"y'}_, _,avecx eRPety e{-11}

une technique trés simple pour entrainer un tel modele linéaire est
I'algorithme du perceptron :

1

2.

. Initialiser k «— 0, W) « 0 [« 0, k < k

données

k : index de mise a jour des poids
k : état de I'index k avant chaque
nouveau passage en revue des

- i =(k —i ) . . T .
S| y (W( ) Y% ) S O les poids w\"/ produisent une mauvaise classification de la i

observation X'

eme

W(k+1) YA V‘_;(k) _|_ yi)?i ainsi, yi (W(k+1) ~>‘<‘i) sera moins négatif

k—k+1
Si i< n—1, incrémenter i < i + 1 puis répéter 2.

Sl k — k . StOp ; k n’a plus changé (donc les poids w(¥) non plus)

sinon : i < 0, k < k, répéter 2.

Le biais b est ici absent mais peut €tre introduit comme une des
composantes de w en rajoutant une composante constante égale a 1

a tous les x'.
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Algorithme du perceptron (NumPy)

def

train_perceptron(X, y, nb_epochs_max):
n = X.shape[O] # number of examples

p = X.shape[1] # number of features

w = np.zeros((p,))

for e in range(nb_epochs_max):
nb_changes = 0
for i in range(n):
if X[i].dot(w) * y[i] <= O:

# prediction is wrong for ith observation vector X[i]
w=w + y[i] = X[i]
nb_changes = nb_changes + 1

if nb_changes == 0: break;

return w
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(Rosenblatt, 1957)
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Classification de chiffres manuscrits avec algo. perceptron

Cet algorithme tres simple fonctionne remarquablement bien. Par
exemple, avec les images de “1" de MNIST comme classe positive
et de “0" comme classe négative (images de p = 784 = 28 x 28

ixels) :

P o/\Vi110/4
001007787
Q8116770
600/ 1 \ /O

epoch O nb_changes 64 train_error 0.23% test_error 0.19%

epoch 1 nb_changes 24 train_error 0.07} test_error 0.00%

epoch 2 nb_changes 10 train_error 0.06% test_error 0.05%

epoch 3 nb_changes 6 train_error 0.03), test_error 0.14J
epoch 4 nb_changes 5 train_error 0.03% test_error 0.09%
epoch 5 nb_changes 4 train_error 0.02), test_error 0.14J
epoch 6 nb_changes 3 train_error 0.017 test_error 0.14}
epoch 7 nb_changes 2 train_error 0.00% test_error 0.14%
epoch 8 nb_changes 0 train_error 0.00% test_error 0.14}
_—— g
u
N
N 1
w =
u
e
" ¥ " . .
— bleu : -, rouge : +
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Convergence de I'algorithme du perceptron

Il est possible d'obtenir une garantie de convergence sous deux
hypothéses :

1. Les X' sont dans une sphére de rayon R :
dR >0, Vi, [|X']| < R.
2. Les deux populations peuvent étre séparée par une marge
v >0:
Jw*, ||w*|| =1, 3y > 0,t.q.Vi, y' (X' - w*) > ~/2.
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Preuve de convergence de I'algorithme du perceptron (1/3)
Pour prouver la convergence, faisons |'hypotheése qu'il y a encore un
exemple mal classifié apres k itérations, et que w(¥*1) est le vecteur
de poids, selon la mise 3 jour de w(¥) 3 I'étape 2.

On a: VT/*(k+1) v Algo perc. étape 2 (M_;(k) 4+ yi)?i) W
w4y (R W)

Hyp. 2
>

wk) w4 /2
récursion sur k
> WD W /2 +4/2
récursion sur k et
w© =0
> (k+1)v/2.

Puisque  ||[w®|||lw*|| > w¥.w*,  (inégalité de Cauchy-Schwarz)

nous obtenons : (k)12 LK) e\ 2 |2
WOl = (W W) /W
2 2
> k7 /4 (1)
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Preuve de convergence de I'algorithme du perceptron (2/3)

... D'autre part :
H |/|7(k+1)H2 déf pro:d. scal. M7(k+1) . W(k+1)
Algo perc. étape 2 (M—/»(k) + yi)?i) _ (M—;(k) 4 yi)?i)
i lynd — — | — — —
expansion polynome W(k) ) W(k) 42 y, W(k) X+ HX1H2
N———

w12 . <0 <R?
car X' mal classif.  car hyp. 1

< w92 + R?
récursig sur k HVT/)(k_l)HZ + R2 + R2
récursion sur k et
9] =0 2
< (k+1)R% (%)
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Preuve de convergence de I'algorithme du perceptron (3/3)

En combinant ces deux résultats, (1) et (1), nous obtenons :
K24 < | FHP < kR?
d’'ol
k< A4R?/v*,

il ne peut donc pas y avoir d’exemple mal classifié apres [4R?/~?]
itérations.

Ce résultat est cohérent :

« La borne ne change pas si toute la population est re-scalée,

. plus la marge est importante, plus I'algorithme converge
rapidement.
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Différence entre perceptron et SVM

L"algorithme du perceptron s'arréte des qu'il trouve une frontiere de
séparation.

Il se comporte donc différemment d'autres algorithmes, comme par
exemple les machines a vecteur de support, qui eux maximisent la
distance entre les exemples et la séparation, et sont en conséquence
plus robustes au bruit.
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Limitation des modeles linéaires
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Limitation des modeles linéaires

La principale faiblesse des modeles linéaires est leur manque de
capacité a approximer des données arbitraires. En classification par
exemple, ils ne peuvent pas traiter des problemes ou les populations
ne sont pas linéairement séparables :
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Solution possible pour surmonter limitation des modeles
linéaires

L'exemple du xor peut étre résolu en pré-traitant les données pour
rendre les populations linéairement séparables.

D (x4, %) — (X, Xy, XuXy)-

‘4
(1,1,1)
I (5 P OO I R (51
T (0,00 (1,0) "40,0,0) (1,0,0)
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Pré-traitement pour rendre séparable les entrées du
perceptron

—i %

B
[

Ol

Perceptron

Francois Fleuret (ML : modifs 2022-24)  EE-311—Apprentissage machine / 8. Perceptron multi-couches 21 /73



Analogie : régression polynomiale calculée par un
pré-traitement suivie d’une régression linéaire

Pour prédire les valeurs d'une fonction f : [0,1] = R, x — f(x) a
partir des paires {x’,y" = f (x')} . on peut utiliser la
régression polynomiale plutot que linéaire : avec un degré D du
polynome suffisant, on peut approximer n'importe quelle fonction
continue réelle sur un compact (théoreme de Stone-Weierstrass).

Fixons la transformation :
¢ x— (1,x,x%...,x°)
et les paramétres de la régression
a = (Oéo,...,OéD).

Alors, la régression polynomiale sur la variable x peut se faire par
une régression linéaire sur les D + 1 variables de ®(x) :

D
Z agx® = a - d(x).
d=0
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Application a un probleme de classification d’'images

Nous pouvons appliquer la méme idée a un probléme un peu plus
réaliste : séparer les “8" manuscrits de MNIST des autres chiffres
avec un perceptron.

Nous rajoutons aux 784 = 28 x 28 caractéristiques originales
(correspondant aux 28 x 28 pixels) des produits de paires de pixels,
prises au hasard :

o - R28X28 _, R282+K
x = (x[1, 1], x[1,2], ..., x[28,28], x[ir, ju)x[if, il - - - X[, jiIx ik jk])

~
Pixels K produits
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Erreur en fonction du nombre de charactéristiques (pixels +
pixels ajoutés)

Train error

Test error
6 - -
5 - -
S 4r 7
>
S
G sl i}
2 - -
1 - -
0 1 NI | 1 1 1 1 1 M |
103 10*
Nb. of features
Francois Fleuret (ML : modifs 2022-24) EE-311—Apprentissage machine / 8. Perceptron multi-couches 24 /73
1 1 7 - - /[ | I 1 . 1\ . AN

Avantages de I'augmentation avec des caractéristiques
supplémentaires

Au dela d'augmenter la capacité pour mieux approximer les données
d’'apprentissage, la conception de caractéristique est aussi une
technique pour rendre le processus d'apprentissage plus robuste au
bruit.

En particulier un bon pre-processing doit rendre le signal invariant a
des perturbations si I'on sait que celles-ci ne doivent pas changer la
prédiction.
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Nous pouvons illustrer |'utilisation de caractéristiques invariantes
avec le plus proche voisin sur une tache avec une symétrie radiale.

Points d'apprentissage ~ Votes (K=11) Prédiction (K=11)

- 1.

L § ._ , Using 2d coordinates
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Application en vision par ordinateur
Un exemple classique de caractéristiques concues pour fournir une
invariance complexe sont les “Histogram of Oriented Gradient” (HOG).

Schématiquement : L'image est partitionnée en blocs de 8 x 8 pixels, et
dans chacun est calculé un histogramme de |'orientation des
caractéristiques saillantes (bords des objets) en 9 directions.

g o B A b
R ‘ s
g0 B B b
L
S oF 3 4 | oa
LI I U
O
e kR X FF
T
e d 444
ELTETTE S B o
e oW A §F B we
w ow % F & o
wow F§ A e
se & o A M o e

Dalal and Triggs (2005) ont combiné ces caractéristiques avec des

machines a vecteurs de support pour faire de la détection de personnes.
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Cette stratégie combinant des caractéristiques concues a la mains et
un prédicteur paramétrique comme la régression logistique ou une
machine a vecteurs de support est souvent qualifiée en anglais de
“shallow learning” .

Le signal traverse un seul traitement modulé par des paramétres
optimisés sur les données.
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Modeles profonds
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Généralisation : considérons une sortie multi-dimensionnelle
plutot que 1D

Un classifieur linéaire a sortie uni-dimensionnelle de la forme

R” > R
X+ o(w- X+ b),
avec w € RP, b€ R, et 0 : R — R, peut étre généralisé a une
sortie multi-dimensionnelle (note : on omet désormais la notation *)
en spécifiant :
R” — R®
x +— o(wx + b),

avec w € R¢*P b € R¢, et o appliquée composante par
composante.
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Du perceptron simple au modele multi-couches
Un modele a sortie multi-dimensionnelle et multi-couche peut étre

construit a partir d'une combinaison d'unités linéaires élémentaires,
et peut étre étendu.

f(x; w, b)

w, b

Une seule unité Une seule couche de plusieurs unités

f(x; w, b)

W) 5D 4@ @ 0 pO)

Plusieurs couches de plusieurs unités
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Formalisation

Avec x(0) =

x, ce modele peut étre formalisé comme

Ve=1,... L x =g (wOxD 4 p)

et f(x;w,b) = x(b),

w® | | p1)
X = X(O) I X “4F Bﬁ
Layer 1

C'est un perceptron multi-couche.
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x(1)

i

wD | | pD)
X(L_l) I X “4F
Layer L

x(D = f(x; w, b)
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Importance de I'activation non-linéaire

Il est important de remarquer que si o est une transformation affine,
le modele complet est une composition de transformations affines,
et donc lui méme une transformation affine.

La fonction d’activation ¢ doit donc étre non-linéaire,

Francois Fleuret (ML : modifs 2022-24)

sinon le modele complet se réduira a un simple modeéle affine
avec une paramétrisation inhabituelle.
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Fonctions d’activation classiques

Les deux fonctions d’activation classiques sont la tangente

hyperbolique
2
—»— 1
ST + e~

—1
et la Rectified Linear Unit (ReLU)

x +— max(0, x)

0
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Approximation universelle
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N'importe quelle 1) € €([a, b], R) peut étre approximée avec une
combinaison linéaire de RelLU scalées / translatées.

f(x) = o(wix + by) + o(wax + by) + o(wsx + bs) + ...

N/ N

C'est également vrai pour d'autres fonctions d'activation sous des
hypothéses raisonnables.
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Pour étendre ce résultat au cas multi-dimensionnel,
Y € €([0,1]°,R), on peut d’abord approximer sin avec une
combinaison de RelLU, et utiliser la densité des séries de Fourier

pour obtenir le résultat final :
Ve > 0,3K,w € RF*P p e RKw € RX tel que

max X)—w-olwx+b)| <
max [U(x) —w-o{wx+ b)| < e
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Nous pouvons donc approximer n'importe quelle fonction continue

Y :[0,1]° = R

avec un perceptron a une couche cachée

X+ w-o(wx+ b),

ou b e RK we RKXP ot we RK,

i

I

4

I

X

_|_

—Le |

_B_ .

Couche cachée

%

C'est le théoreme d’approximation universelle.
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Il est important de noter que ce théoréme ne dit rien sur la

dimension de la représentation dans la couche cachée.

38 /73

Donc bien qu'il soit important, en particulier pour montrer que ces
modeles ne souffrent pas de la limitation fondamentale des modeles
linéaire, il ne donne pas d'indice sur le colit computationnel ou le

sur-apprentissage.
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Descente de gradient
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Rappel : la fonction de coiit
Nous avons vu qu’entrainer un modele consiste a trouver des valeurs
pour ses parametres qui minimisent une fonction de colit comme,
par exemple, I'erreur quadratique moyenne :
n
1 i. i 2
Z(w,b) = - E (f(x';w,b) —y')".

i=1

D’autres fonctions sont plus adaptées a des problemes de
classification, certaines formes de régression ou d'estimation de
densité.

Nous avons aussi vu que la fonction de colit peut étre minimisée
avec des techniques exactes, par exemple dans le cas quadratique,
ou avec des procédures ad hoc comme dans le cas de I'erreur
empirique pour le perceptron.
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Rappel : fonction coiit pour régression logistique

Il n'y a généralement pas de méthode ad hoc. Nous avons vu qu’a la
régression logistique par exemple

1
PW(Y:1‘X:X):O'(WX+b), aveCU(X):m

correspond la fonction de colit

ZL(w,b)=—>) loga(y'(w-x"+ b))

i=1

qui ne peut pas étre minimisée analytiquement.

Comme nous l'avons vu, la méthode générale est la descente de
gradient.
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Rappel : définition du gradient

Etant donnée une fonction

f:RP 5 R
x = f(xqy,...,xp),
son gradient est
Vf:RP - RP
Of Of !
X — (a—Xl(X),,%(X)> .
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Descente de gradient
Pour minimiser

Z:R° - R

la descente de gradient utilise une approximation locale linéaire pour
progresser itérativement vers un minimum.
Pour wy € RP, considérons une approximation de & dans le
voisinage de wy

~ 1

T 2

L (W) =ZL(wy) + VL (W) (w — wp) + %HW — wo|%,
avec un terme quadratique qui ne dépend pas de &.
Calculons le gradient p.r. & w de cette approximation &, (w) :

V.CTZWO(W) =VZ(w) + %(W — W),

qui implique (en trouvant la solution de V&, (w) = 0) :
argmin 2L, (w) = wo — VL (wp).
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L"algorithme qui en découle met w a jour itérativement de la
maniére suivante :

Wer1 = Wy — NV (W),

qui peut étre interpretée comme “suivre la direction de la pente la
plus forte”.

Cette procédure conduit [la plupart du temps] a un minimum local,
et les choix de wy et 1 sont importants.
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Nous avons vu que le minimum de la fonction de colit de le
régression logistique

def sigmoid(x):
return 1 / (1 + numpy.exp(-x))

def loss(x, y, w, b):
return - numpy.log(sigmoid(y * (x.dot(w) + b))).sum()

n'a pas de forme analytique.
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Formulaire de dérivées, fonctions logarithme et sigmoide

dx
d
d—XU(X) = o(x)(1 — o(x))
2 log(0(x)) = (1~ 0(x)) = 0(—)
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Nous pouvons dériver

0L oo . .
==Y yo(=y'(w-x + b)),

b wox + b))
i=1 u;
0L . i i i i
\V/d, 8—V|/d:_§i<dy U(_YLW'X +b)27
vy

qui peut étre implémenté avec

def gradient(x, y, w, b):
u =y * sigmoid(- y * (x.dot(w) + b))
v = x * u.reshape(-1, 1)
return - v.sum(0), - u.sum(0)

et utilisé dans une descente de gradient de la forme
W, b = numpy.random.normal(0, 1, (x.shapel[1],)), O

eta = le-1

for k in range(nb_iterations):
print(k, loss(x, y, w, b))
dw, db = gradient(x, y, w, b)
w -= eta * dw
b -= eta * db
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Avec 100 points d’apprentissage et = 107!,

n = 102

Solution par Linear
Disciminant

3 4
n=10 n=10 - -
Analysis (optimal
pour ce probleme)
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Entrainement du perceptron multi-couche
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Entrainement d’un perceptron multi-couche a I'aide de la
descente de gradient

Nous voulons entrainer un perceptron multi-couche (=ajuster tous
ses parametres) en minimisant un coiit calculé sur un ensemble
d’'apprentissage :

Z(w,b) = Zf(f(xi; w, b),yi).

Pour utiliser la descente de gradient, nous devons calculer le
gradient de la fonction de coiit sur chaque exemple par
rapport aux parametres.

C'est a dire, avec &; = f(f(xi; w, b),yi),

ot ; . 0t ;
€ .
(£) (£)
Owj 0b;
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Propagation vers I'avant : calcul des sorties aux noeuds

Nous considérons un seul exemple d'apprentissage x, et nous
introduisons s ..., s(8) comme les sommations avant les
fonctions d’activation.

w0 p(1) w(@) p

(L) p(b)
X0 = x WP ) 2y (1) WP, 2) oy Wb

s(h) 2y (D) = f(x; w,b).

Nous posons x(9 = x,

S(E) — W(E)X(E—l) _|_ b(e)

Ve=1,... L 40— o (s,

et nous définissons la sortie du réseau comme f(x; w, b) = x(b),

Ceci est la propagation vers I'avant.
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Rétro-propagation du gradient :
méthode pour calculer les composantes du gradient

L"algorithme de rétro-propagation du gradient n'est qu'une
application directe de la dérivation des fonctions composées :

(g0 f) = (g o NF.

L"approximation linéaire d'une composition de fonction est le
produit de leurs approximations linéaires.

Ceci se généralise a des compositions plus complexe en grandes
dimensions

Iioty_so-ofi (X) = S (x) I (h(x)) S5 ((A(X))) - - IRy (fu-a(- - (%))

ou Jr(x) est le Jacobien de f en x, c'est a dire la matrice de
|'approximation linéaire de f dans le voisinage de x.
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Rappel d’analyse : regle de composition de fonctions pour
une variable

Soit x = g(t) et y = h(t) des fonctions différentiables de t et
z = f(x, y) une fonction différentiable de x et y.

Alors z = f (x(t), y(t)) est une fonction différentiable de t et

dz 0z dx+8z dy
dt Ox dt Oy dt
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Rappel d’analyse : regle de composition des dérivées pour
deux variables indépendantes

Soient x = g(u, v) et y = h(u, v) des fonctions différentiables de u
et v and z = f(x, y) une fonction différentiable de x et y.

Alors, f (g(u, v), h(u,v)) est une fonction différentiable de u et v et

dz 0z dx 0z dy

du 8x'du+8y.du

ainsi que
dz 0z dx N 0z dy
dv  Ox dv Oy dv
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Rétro-propagation du gradient :
dérivées du coit Z par rapport a sj(e) et x,Ee_l)

B (0), ()
(=1 WOBO S oy o (o)

(4) (4)

Comme S; n'influence £ que via X; ' avec

40— (59,

J J
nous avons ot ot 3Xj(£) or ,( (6))

= — g S.
95 axtVast)  ox? N
Et comme x“Y n'influence £ que via les SJ@ avec
0 0) (-1 0
0= S WA 1)
nous avons g
(€)
ot /4 aSj ot (0)
1 :Z 0 A (-1 :Z 0y Yk
8X,E ) F (9SJ-()8X,E ) F 85})
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Rétro-propagation du gradient :
dérivées du coiit Z par rapport aux parametres W(? et b(g)

(e=1) wb

AL NN (5

Comme W(k) et b( n'influencent £ que via s;

s = 3w 1 p,

J

() avec

k
nous avons
(£)
ot _ of 0 S _ ot (g 1)
() 90 4,6 (15) ’
Owj  0s;” 0wy O,
o ot
(0) 907
ob; Js;
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Rétro-propagation du gradient : résumé

Pour résumer : nous pouvons calculer les 88"’
J

définition de £, et récursivement propager vers l’arriere les
dérivées du colit par rapport aux activations avec :

of O /.
= — 0 | S:
ost)  ox\" (J )
08— Of 0
(9X,E£_1) EJ: 0 J-(E

@ a partir de la

Ensuite, nous pouvons calculer les dérivées par rapport aux
parametres du modele avec :

o8 o (i
ow® 950"
oF ot

0~ 550"
Ob; Js;
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Ecriture tensorielle

Pour écrire tout cela de maniére tensorielle, si ¢ : RN — RM nous
utiliserons une notation standard du Jacobien

Oy
L -
[a] N a1;/\//
oxq

et si ¢ : RV*M 5 R, nous utiliserons

oY

(9_’170 B 3Vlf1,1
ow| a;p

8WN71

9
8XN

My
8XN

oY

8w1,M

o

OwnN, M
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ot ot
- [[aw(@ﬂ b 6b(€)}
/“ /]\ T N
(
X(ﬁ—l) I X aF > 5(8) B > X(f)
\ i
ot - 1 o ot
][ el Bmita
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Propagation vers I'avant

Calculer les activations.
s(6) = w(Ox(=1) 1 p(®)
x(©) =x, YW=1,...,L,
x0) = & (5(5))
Rétro-propagation du gradient

Calculer les dérivées du coiit par rapport aux activations :

[a%)] d’apres la définition de Z or 1 _ |9 ® o (5(6))
ot T[_or o= .
sit <L, [m(e)} = (wlD) [W]

Calculer les dérivées du colit par rapport aux parametres :

ot ot
oc T [ of N T {_}:{ }
Haw(@ﬂ B {85(5)} (X( )> b 9s(®)

Itération de descente de gradient

o ot
© 0 _ 97 b0 pO) _ | 9
W we e Hawwﬂ < g [abw)]
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Remarques sur la rétro-propagation du gradient

Bien que la rétro-propagation du gradient semble étre complexe, elle
consiste finalement a calculer des dérivées de fonctions composées.

Comme la propagation vers |'avant, elle peut étre exprimée de
maniére tensorielle. Les calculs lourds et paramétrés sont limités a
des opérations linéaires, et les non linéarités sont calculées par
composante individuelle.
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Coiit computationnel

En ce qui concerne le coilit computationnel, comme les opérations
coliteuses sont, pour de la propagation vers |'avant :

s — W (O,=1) | p®)

et pour la rétro-propagation du gradient :

[ Of [ Of
(o (041)
_3X(6)} = (W ) [as(zﬂ)]

19,4 10,4 T
2 = (-1)
[8W(£):|] B [85(5)} <X ) ’

une approximation grossiere est que la rétro-propagation du gradient
est deux fois plus coliteuse que la propagation vers |'avant.

et
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Interprétation des opérations dans un réseau

Plus que pour d'autres modeles, il est tres difficile d'interpréter les
opérations qui sont finalement exécutées par chaque unité d'un
perceptron multi-couche une fois qu'il est entrainé.
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Exemple : classification binaire, données a 2 variables (1/2)

Considérons un réseau avec une seule couche cachée qui fait une
classification a deux classes dans R?, c'est a dire

R? — R?.

avec
f(x;w,b) =0 (W(Z)O' (W(l)X + b(l)) + b(z)) :

Si ce modeéle a D unités cachées, alors

w® e RP*2 p(1) ¢ RP w® ¢ R*D p?) ¢ R2.
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Exemple : classification binaire, données a 2 variables (2/2)

Les activations de la couche cachée pré-non-linéarité sont donc
s =wWx 4+ pt)

et a chacune des d =1,...,D composantes de s peut €tre associé
un hyperplan de R?, donc une droite :

Hd:{xeRz:Wc(,l)-x+b£,1):O}.
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Perceptron et réseaux de neurones

origine des méthodes avec neurones artificiels remontent aux années 1940
perceptron : somme pondérée et biais avec un seuillage

unités simples, mais peuvent étre interconnectées

pour modéliser un systeme complexe, les paramétre doivent étre ajustés
notation graphique ou tensorielle

algorithme du perceptron permet d'ajuster les poids (e.g. pour la classification)
garantie de convergence pour données séparables

limitation des modeles linéaires : surmonté par I'ajout de variables (apprentissage
“shallow”)

apprentissage profond :

1. entrées-sorties multidimensionnelles
2. multiple couches
3. fonctions d’activation non-linéaires

ajustement des parametres par descente de gradient
calcul des activations par propagation en avant
calcul du gradient par rétro-propagation

réseaux efficace et mais difficilement interprétable
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Guide de lecture pour ce cours

Chloé-Agathe Azencott “Introduction au Machine Learning”,
Dunod, 2019, ISBN 978-210-080153-4
Chapitre 7 : Réseaux de neurones artificiels
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