
EE-311—Apprentissage et intelligence artificielle

8. Perceptron multi-couches

François Fleuret (ML : modifs 2022–24)

https://moodle.epfl.ch/course/view.php?id=16090

Vendredi 11 avril 2025 (compiled 10 avril 2025)

Réseaux de neurones : Contenu

• Origine, inspirations, jalons historiques

• Le perceptron : ancêtres, définition du perceptron, fonction
d’activation, représentations graphiques et tensorielles,
algorithme du perceptron, convergence, comparaison avec les
SVM

• Limitations des modèles linéaires

• Shallow learning ( pré-traitement

• Modèles profonds : le perceptron multi-couche

• Formalisme, fonctions d’activation et approximation universelle

• Rappel du descente de gradient

• Entrâınement du perceptron multi-couche :
• propagation vers l’avant
• rétropropagation du gradient

• Coût computational et interprétation des opérations
François Fleuret (ML : modifs 2022–24) EE-311—Apprentissage machine / 8. Perceptron multi-couches 1 / 73

https://moodle.epfl.ch/course/view.php?id=16090


Origines de l’idée de neurone artificiel

130 LOGICAL CALCULUS FOR NERVOUS ACTIVITY 

b 

e ~ ~ 

9 

h 

FIG~E 1 

d 

f 

Réseau de “Threshold Logic Unit”

(McCulloch and Pitts, 1943)
François Fleuret (ML : modifs 2022–24) EE-311—Apprentissage machine / 8. Perceptron multi-couches 2 / 73

Historique : quelques étapes importantes

1949 – Donald Hebb propose une règle (qui porte son nom) suggérant la
formation de connections entre des unités (neurones) qui s’activent
en même temps (ou séquentiellement) : “cells that fire together,
wire together”

1951 – Marvin Minsky crée le premier réseau de neurones artificiels (règle
de Hebb, 40 neurones).

1958 – Frank Rosenblatt créer un perceptron pour classifier des images
20× 20.

1959 – David H. Hubel et Torsten Wiesel exposent les processus du cortex
visuel des chats (similarités avec opérations en traitement du signal).

1982 – Paul Werbos propose la rétro-propagation du gradient.

François Fleuret (ML : modifs 2022–24) EE-311—Apprentissage machine / 8. Perceptron multi-couches 3 / 73



Le perceptron

François Fleuret (ML : modifs 2022–24) EE-311—Apprentissage machine / 8. Perceptron multi-couches 4 / 73

Threshold Logic Unit

Le premier modèle mathématique d’un neurone est la “Threshold
Logic Unit,”(McCulloch and Pitts, 1943) qui a des entrées et sorties
booléennes (0 ou 1) :

f (x⃗) = 1{
w
∑

i

xi + b g 0
}.

Elle est en particulier capable de calculer les trois opérations de
l’algèbre booléenne :

or(u, v) = 1{u+v−0.5g0} (w = 1, b = −0.5)

and(u, v) = 1{u+v−1.5g0} (w = 1, b = −1.5)

not(u) = 1{−u+0.5g0} (w = −1, b = 0.5)

Donc, on peut construire n’importe quelle fonction booléenne,
donc arithmétique, avec de telles unités élémentaires.

(McCulloch and Pitts, 1943)
François Fleuret (ML : modifs 2022–24) EE-311—Apprentissage machine / 8. Perceptron multi-couches 5 / 73



Perceptron

Le perceptron, défini par :

f (x⃗) =







1 si
∑

i

wi xi + b g 0

0 sinon

est très similaire à la Threshold Logic Unit, mais ses entrées xi sont
des valeurs réelles et chacune a un poids spécifique wi . On appelle
biais le paramètre b.

Ce modèle a été motivé initialement par la biologie, avec wi jouant
le rôle des poids synaptiques, et les xi et f des fréquences de
potentiels d’action. C’est un modèle très grossier.

(Rosenblatt, 1957)

François Fleuret (ML : modifs 2022–24) EE-311—Apprentissage machine / 8. Perceptron multi-couches 6 / 73

Fonction signe et fonction d’activation

Pour simplifier les choses, nous considérons des sorties ±1. Soit

Ã(t) =

{

1 si t g 0

−1 sinon.

−1

1

t

La règle de classification du perceptron peut alors être formalisée par

f (x⃗) = Ã(w⃗ · x⃗ + b).

Dans le cas des réseaux de neurones, la fonction Ã qui suit un
opérateur linéaire est classiquement appelée la fonction
d’activation.
François Fleuret (ML : modifs 2022–24) EE-311—Apprentissage machine / 8. Perceptron multi-couches 7 / 73



Représentation graphique

Nous pouvons représenter un “neurone” de la manière suivante :

Valeur

Paramètre

Opération

x2

x1

x3

×

×

×

w1

w2

w3

Σ

b

Ã y

François Fleuret (ML : modifs 2022–24) EE-311—Apprentissage machine / 8. Perceptron multi-couches 8 / 73

Représentation tensorielle

Nous pouvons aussi utiliser des opérateurs tensoriels

f (x⃗) = Ã(w⃗ · x⃗ + b).

x⃗ ·

w⃗

+

b

Ã y

François Fleuret (ML : modifs 2022–24) EE-311—Apprentissage machine / 8. Perceptron multi-couches 9 / 73



Algorithme du perceptron pour ajuster les poids wi de w⃗

Étant donné un ensemble d’apprentissage

Ā =
{
x⃗ i , y i

}

i=1,...,n
, avec x⃗ i ∈ R

p et y i ∈ {−1, 1}

une technique très simple pour entrâıner un tel modèle linéaire est
l’algorithme du perceptron :

1. Initialiser k ← 0, w⃗ (k) ← 0⃗, i ← 0, k ← k
k : index de mise à jour des poids
k : état de l’index k avant chaque
nouveau passage en revue des
données

2. Si y i
(
w⃗ (k) · x⃗ i

)
f 0 les poids w⃗ (k) produisent une mauvaise classification de la i ème

observation x⃗ i

w⃗ (k+1) ← w⃗ (k) + y i x⃗ i ainsi, y i
(

w⃗ (k+1) · x⃗ i
)

sera moins négatif

k ← k + 1
3. Si i < n − 1, incrémenter i ← i + 1 puis répéter 2.

4. Si k = k : stop ; k n’a plus changé (donc les poids w⃗ (k) non plus)

sinon : i ← 0, k ← k , répéter 2.
Le biais b est ici absent mais peut être introduit comme une des
composantes de w⃗ en rajoutant une composante constante égale à 1
à tous les x⃗ i . (Rosenblatt, 1957)
François Fleuret (ML : modifs 2022–24) EE-311—Apprentissage machine / 8. Perceptron multi-couches 10 / 73

Algorithme du perceptron (NumPy)

def train_perceptron(X, y, nb_epochs_max):

n = X.shape[0] # number of examples

p = X.shape[1] # number of features

w = np.zeros((p,))

for e in range(nb_epochs_max):

nb_changes = 0

for i in range(n):

if X[i].dot(w) * y[i] <= 0:

# prediction is wrong for ith observation vector X[i]

w = w + y[i] * X[i]

nb_changes = nb_changes + 1

if nb_changes == 0: break;

return w

François Fleuret (ML : modifs 2022–24) EE-311—Apprentissage machine / 8. Perceptron multi-couches 11 / 73



Classification de chiffres manuscrits avec algo. perceptron

Cet algorithme très simple fonctionne remarquablement bien. Par
exemple, avec les images de “1” de MNIST comme classe positive
et de “0” comme classe négative (images de p = 784 = 28× 28
pixels) :

epoch 0 nb_changes 64 train_error 0.23% test_error 0.19%

epoch 1 nb_changes 24 train_error 0.07% test_error 0.00%

epoch 2 nb_changes 10 train_error 0.06% test_error 0.05%

epoch 3 nb_changes 6 train_error 0.03% test_error 0.14%

epoch 4 nb_changes 5 train_error 0.03% test_error 0.09%

epoch 5 nb_changes 4 train_error 0.02% test_error 0.14%

epoch 6 nb_changes 3 train_error 0.01% test_error 0.14%

epoch 7 nb_changes 2 train_error 0.00% test_error 0.14%

epoch 8 nb_changes 0 train_error 0.00% test_error 0.14%

w⃗ =

bleu : -, rouge : +

François Fleuret (ML : modifs 2022–24) EE-311—Apprentissage machine / 8. Perceptron multi-couches 12 / 73

Convergence de l’algorithme du perceptron

Il est possible d’obtenir une garantie de convergence sous deux
hypothèses :

µ

w⃗ ∗

R

·

1. Les x⃗ i sont dans une sphère de rayon R :
∃R > 0, ∀i , ∥x⃗ i∥ f R .

2. Les deux populations peuvent être séparée par une marge
µ > 0 :

∃w⃗ ∗, ∥w⃗ ∗∥ = 1, ∃µ > 0, t.q.∀i , y i
(
x⃗ i · w⃗ ∗

)
g µ/2.

François Fleuret (ML : modifs 2022–24) EE-311—Apprentissage machine / 8. Perceptron multi-couches 13 / 73



Preuve de convergence de l’algorithme du perceptron (1/3)
Pour prouver la convergence, faisons l’hypothèse qu’il y a encore un
exemple mal classifié après k itérations, et que w⃗ (k+1) est le vecteur
de poids, selon la mise à jour de w⃗ (k) à l’étape 2.

On a : w⃗ (k+1) · w⃗ ∗
Algo perc. étape 2

=
(
w⃗ (k) + y i x⃗ i

)
· w⃗ ∗

= w⃗ (k) · w⃗ ∗ + y i
(
x⃗ i · w⃗ ∗

)

Hyp. 2

g w⃗ (k) · w⃗ ∗ + µ/2
récursion sur k

g w⃗ (k−1) · w⃗ ∗ + µ/2 + µ/2
récursion sur k et

w⃗ (0) = 0⃗

g (k + 1) µ/2.

Puisque ∥w (k)∥∥w⃗ ∗∥ g w⃗ (k)·w⃗ ∗, (inégalité de Cauchy-Schwarz)

nous obtenons :
∥w⃗ (k)∥2 g

(
w⃗ (k) · w⃗ ∗

)2
/∥w⃗ ∗∥2

g k2µ2/4 ( )

François Fleuret (ML : modifs 2022–24) EE-311—Apprentissage machine / 8. Perceptron multi-couches 14 / 73

Preuve de convergence de l’algorithme du perceptron (2/3)

. . . D’autre part :

∥w⃗ (k+1)∥2
déf prod. scal.

= w⃗ (k+1) · w⃗ (k+1)

Algo perc. étape 2
=

(
w⃗ (k) + y i x⃗ i

)
·
(
w⃗ (k) + y i x⃗ i

)

expansion polynôme
= w⃗ (k) · w⃗ (k)

︸ ︷︷ ︸

∥w⃗ (k)∥2

+2 y i w⃗ (k) · x⃗ i
︸ ︷︷ ︸

f0

car x⃗ i mal classif.

+ ∥x⃗ i∥2
︸ ︷︷ ︸

fR2

car hyp. 1

f ∥w⃗ (k)∥2 + R2

récursion sur k

f ∥w⃗ (k−1)∥2 + R2 + R2

récursion sur k et

∥w⃗ (0)∥ = 0

f (k + 1)R2. (!)

François Fleuret (ML : modifs 2022–24) EE-311—Apprentissage machine / 8. Perceptron multi-couches 15 / 73



Preuve de convergence de l’algorithme du perceptron (3/3)

En combinant ces deux résultats, ( ) et (!), nous obtenons :

k2µ2/4 f ∥w⃗ k∥2 f k R2

d’où
k f 4R2/µ2,

il ne peut donc pas y avoir d’exemple mal classifié après +4R2/µ2,
itérations.

Ce résultat est cohérent :

• La borne ne change pas si toute la population est re-scalée,

• plus la marge est importante, plus l’algorithme converge
rapidement.

François Fleuret (ML : modifs 2022–24) EE-311—Apprentissage machine / 8. Perceptron multi-couches 16 / 73

Différence entre perceptron et SVM

L’algorithme du perceptron s’arrête dès qu’il trouve une frontière de
séparation.

Il se comporte donc différemment d’autres algorithmes, comme par
exemple les machines à vecteur de support, qui eux maximisent la
distance entre les exemples et la séparation, et sont en conséquence
plus robustes au bruit.

François Fleuret (ML : modifs 2022–24) EE-311—Apprentissage machine / 8. Perceptron multi-couches 17 / 73



Limitation des modèles linéaires

François Fleuret (ML : modifs 2022–24) EE-311—Apprentissage machine / 8. Perceptron multi-couches 18 / 73

Limitation des modèles linéaires

La principale faiblesse des modèles linéaires est leur manque de
capacité à approximer des données arbitraires. En classification par
exemple, ils ne peuvent pas traiter des problèmes où les populations
ne sont pas linéairement séparables :

“xor”

François Fleuret (ML : modifs 2022–24) EE-311—Apprentissage machine / 8. Perceptron multi-couches 19 / 73



Solution possible pour surmonter limitation des modèles
linéaires

L’exemple du xor peut être résolu en pré-traitant les données pour
rendre les populations linéairement séparables.

Φ : (xu, xv ) 7→ (xu, xv , xuxv ).

(0, 0)

(0, 1)

(1, 0)

(1, 1)

(0, 0, 0)

(0, 1, 0)

(1, 0, 0)

(1, 1, 1)

François Fleuret (ML : modifs 2022–24) EE-311—Apprentissage machine / 8. Perceptron multi-couches 20 / 73

Pré-traitement pour rendre séparable les entrées du
perceptron

Perceptron

x⃗ Φ ×

w⃗

+

b

Ã y

François Fleuret (ML : modifs 2022–24) EE-311—Apprentissage machine / 8. Perceptron multi-couches 21 / 73



Analogie : régression polynomiale calculée par un
pré-traitement suivie d’une régression linéaire

Pour prédire les valeurs d’une fonction f : [0, 1] → R, x 7→ f (x) à
partir des paires

{
x i , y i = f

(
x i
)}

i=1,...,n
on peut utiliser la

régression polynomiale plutôt que linéaire : avec un degré D du
polynôme suffisant, on peut approximer n’importe quelle fonction
continue réelle sur un compact (théorème de Stone-Weierstrass).

Fixons la transformation :

Φ : x 7→ (1, x , x2, . . . , xD)

et les paramètres de la régression

³ = (³0, . . . , ³D).

Alors, la régression polynomiale sur la variable x peut se faire par
une régression linéaire sur les D + 1 variables de Φ(x) :

D∑

d=0

³dx
d = ³ · Φ(x).

François Fleuret (ML : modifs 2022–24) EE-311—Apprentissage machine / 8. Perceptron multi-couches 22 / 73

Application à un problème de classification d’images

Nous pouvons appliquer la même idée à un problème un peu plus
réaliste : séparer les “8” manuscrits de MNIST des autres chiffres
avec un perceptron.

Nous rajoutons aux 784 = 28× 28 caractéristiques originales
(correspondant aux 28× 28 pixels) des produits de paires de pixels,
prises au hasard :

Φ : R28×28 → R
282+K

x 7→ (x [1, 1], x [1, 2], . . . , x [28, 28]
︸ ︷︷ ︸

Pixels

, x [i1, j1]x [i
′

1, j
′

1], . . . , x [iK , jK ]x [i
′

K , j
′

K ]
︸ ︷︷ ︸

K produits

)

François Fleuret (ML : modifs 2022–24) EE-311—Apprentissage machine / 8. Perceptron multi-couches 23 / 73



Erreur en fonction du nombre de charactéristiques (pixels +
pixels ajoutés)

0

1

2

3

4

5

6

7

103 104

E
rr

o
r 

(%
)

Nb. of features

Train error
Test error

⇒ en ajoutant des charactéristiques (produits de pixels) on arrive à
rendre séparable des populations qui ne l’étaient pas.

François Fleuret (ML : modifs 2022–24) EE-311—Apprentissage machine / 8. Perceptron multi-couches 24 / 73

Avantages de l’augmentation avec des caractéristiques
supplémentaires

Au delà d’augmenter la capacité pour mieux approximer les données
d’apprentissage, la conception de caractéristique est aussi une
technique pour rendre le processus d’apprentissage plus robuste au
bruit.

En particulier un bon pre-processing doit rendre le signal invariant à
des perturbations si l’on sait que celles-ci ne doivent pas changer la
prédiction.

François Fleuret (ML : modifs 2022–24) EE-311—Apprentissage machine / 8. Perceptron multi-couches 25 / 73



Nous pouvons illustrer l’utilisation de caractéristiques invariantes
avec le plus proche voisin sur une tâche avec une symétrie radiale.

Points d’apprentissage Votes (K=11) Prédiction (K=11)

Using 2d coordinates

Using the radius

François Fleuret (ML : modifs 2022–24) EE-311—Apprentissage machine / 8. Perceptron multi-couches 26 / 73

Application en vision par ordinateur
Un exemple classique de caractéristiques conçues pour fournir une
invariance complexe sont les “Histogram of Oriented Gradient” (HOG).

Schématiquement : L’image est partitionnée en blocs de 8× 8 pixels, et
dans chacun est calculé un histogramme de l’orientation des
caractéristiques saillantes (bords des objets) en 9 directions.

Dalal and Triggs (2005) ont combiné ces caractéristiques avec des
machines à vecteurs de support pour faire de la détection de personnes.
François Fleuret (ML : modifs 2022–24) EE-311—Apprentissage machine / 8. Perceptron multi-couches 27 / 73



Cette stratégie combinant des caractéristiques conçues à la mains et
un prédicteur paramétrique comme la régression logistique ou une
machine à vecteurs de support est souvent qualifiée en anglais de
“shallow learning”.

Le signal traverse un seul traitement modulé par des paramètres
optimisés sur les données.

François Fleuret (ML : modifs 2022–24) EE-311—Apprentissage machine / 8. Perceptron multi-couches 28 / 73

Modèles profonds

François Fleuret (ML : modifs 2022–24) EE-311—Apprentissage machine / 8. Perceptron multi-couches 29 / 73



Généralisation : considérons une sortie multi-dimensionnelle
plutôt que 1D

Un classifieur linéaire à sortie uni-dimensionnelle de la forme

R
D → R

x⃗ 7→ Ã(w⃗ · x⃗ + b),

avec w⃗ ∈ R
D , b ∈ R, et Ã : R → R, peut être généralisé à une

sortie multi-dimensionnelle (note : on omet désormais la notation ·⃗ )
en spécifiant :

R
D → R

C

x 7→ Ã(wx + b),

avec w ∈ R
C×D , b ∈ R

C , et Ã appliquée composante par
composante.

François Fleuret (ML : modifs 2022–24) EE-311—Apprentissage machine / 8. Perceptron multi-couches 30 / 73

Du perceptron simple au modèle multi-couches
Un modèle à sortie multi-dimensionnelle et multi-couche peut être
construit à partir d’une combinaison d’unités linéaires élémentaires,
et peut être étendu.

Ãx f (x ;w, b)

w, b

Ã

Ã

Ã

Ã

Ã

Ã

x f (x ;w, b)

w, b

Une seule unité Une seule couche de plusieurs unités

Ã

Ã

Ã

Ã

Ã

Ã

Ã

Ã

Ã

Ã

Ã

Ã

Ã

Ã

Ã

Ã

Ã

Ã

Ã

Ã

Ã

Ã

x f (x ;w, b)

w (1), b(1) w (2), b(2) w (3), b(3)

Plusieurs couches de plusieurs unités
François Fleuret (ML : modifs 2022–24) EE-311—Apprentissage machine / 8. Perceptron multi-couches 31 / 73



Formalisation

Avec x (0) = x , ce modèle peut être formalisé comme

∀ℓ = 1, . . . , L, x (ℓ) = Ã
(
w (ℓ)x (ℓ−1) + b(ℓ)

)

et f (x ;w , b) = x (L).

Layer 1 Layer L

x = x(0) ×

w (1)

+

b(1)

Ã x(1) . . . x(L−1) ×

w (L)

+

b(L)

Ã x(L) = f (x ;w , b)

C’est un perceptron multi-couche.

François Fleuret (ML : modifs 2022–24) EE-311—Apprentissage machine / 8. Perceptron multi-couches 32 / 73

Importance de l’activation non-linéaire

Il est important de remarquer que si Ã est une transformation affine,
le modèle complet est une composition de transformations affines,
et donc lui même une transformation affine.

La fonction d’activation Ã doit donc être non-linéaire,
sinon le modèle complet se réduira à un simple modèle affine
avec une paramétrisation inhabituelle.

François Fleuret (ML : modifs 2022–24) EE-311—Apprentissage machine / 8. Perceptron multi-couches 33 / 73



Fonctions d’activation classiques

Les deux fonctions d’activation classiques sont la tangente
hyperbolique

x 7→
2

1 + e−2x
− 1

−1

1

et la Rectified Linear Unit (ReLU)

x 7→ max(0, x)

0

François Fleuret (ML : modifs 2022–24) EE-311—Apprentissage machine / 8. Perceptron multi-couches 34 / 73

Approximation universelle

François Fleuret (ML : modifs 2022–24) EE-311—Apprentissage machine / 8. Perceptron multi-couches 35 / 73



N’importe quelle È ∈ ÿ([a, b],R) peut être approximée avec une
combinaison linéaire de ReLU scalées / translatées.

f (x) = Ã(w1x + b1) + Ã(w2x + b2) + Ã(w3x + b3) + . . .

C’est également vrai pour d’autres fonctions d’activation sous des
hypothèses raisonnables.

François Fleuret (ML : modifs 2022–24) EE-311—Apprentissage machine / 8. Perceptron multi-couches 36 / 73

Pour étendre ce résultat au cas multi-dimensionnel,
È ∈ ÿ([0, 1]D ,R), on peut d’abord approximer sin avec une
combinaison de ReLU, et utiliser la densité des séries de Fourier
pour obtenir le résultat final :

∀ϵ > 0, ∃K ,w ∈ R
K×D, b ∈ R

K, É ∈ R
K, tel que

max
x∈[0,1]D

|È(x)− É · Ã(w x + b)| f ϵ

François Fleuret (ML : modifs 2022–24) EE-311—Apprentissage machine / 8. Perceptron multi-couches 37 / 73



Nous pouvons donc approximer n’importe quelle fonction continue

È : [0, 1]D → R

avec un perceptron à une couche cachée

x 7→ É · Ã(w x + b),

où b ∈ R
K , w ∈ R

K×D , et É ∈ R
K .

Couche cachée

x ×

w

+

b

Ã ·

É

y

C’est le théorème d’approximation universelle.
François Fleuret (ML : modifs 2022–24) EE-311—Apprentissage machine / 8. Perceptron multi-couches 38 / 73

Il est important de noter que ce théorème ne dit rien sur la
dimension de la représentation dans la couche cachée.

Donc bien qu’il soit important, en particulier pour montrer que ces
modèles ne souffrent pas de la limitation fondamentale des modèles
linéaire, il ne donne pas d’indice sur le coût computationnel ou le
sur-apprentissage.

François Fleuret (ML : modifs 2022–24) EE-311—Apprentissage machine / 8. Perceptron multi-couches 39 / 73



Descente de gradient

François Fleuret (ML : modifs 2022–24) EE-311—Apprentissage machine / 8. Perceptron multi-couches 40 / 73

Rappel : la fonction de coût

Nous avons vu qu’entrâıner un modèle consiste à trouver des valeurs
pour ses paramètres qui minimisent une fonction de coût comme,
par exemple, l’erreur quadratique moyenne :

ℒℒℒ(w , b) =
1

n

n∑

i=1

(
f (x i ;w , b)− y i

)2
.

D’autres fonctions sont plus adaptées à des problèmes de
classification, certaines formes de régression ou d’estimation de
densité.

Nous avons aussi vu que la fonction de coût peut être minimisée
avec des techniques exactes, par exemple dans le cas quadratique,
ou avec des procédures ad hoc comme dans le cas de l’erreur
empirique pour le perceptron.

François Fleuret (ML : modifs 2022–24) EE-311—Apprentissage machine / 8. Perceptron multi-couches 41 / 73



Rappel : fonction coût pour régression logistique

Il n’y a généralement pas de méthode ad hoc. Nous avons vu qu’à la
régression logistique par exemple

Pw (Y = 1 | X = x) = Ã(w · x + b), avec Ã(x) =
1

1 + e−x

correspond la fonction de coût

ℒℒℒ(w , b) = −

n∑

i=1

log Ã(y i(w · x i + b))

qui ne peut pas être minimisée analytiquement.

Comme nous l’avons vu, la méthode générale est la descente de
gradient.

François Fleuret (ML : modifs 2022–24) EE-311—Apprentissage machine / 8. Perceptron multi-couches 42 / 73

Rappel : définition du gradient

Étant donnée une fonction

f : RD → R

x 7→ f (x1, . . . , xD),

son gradient est

∇f : RD → R
D

x 7→

(
∂f

∂x1
(x), . . . ,

∂f

∂xD
(x)

)¦

.

François Fleuret (ML : modifs 2022–24) EE-311—Apprentissage machine / 8. Perceptron multi-couches 43 / 73



Descente de gradient
Pour minimiser

ℒℒℒ : RD → R

la descente de gradient utilise une approximation locale linéaire pour
progresser itérativement vers un minimum.
Pour w0 ∈ R

D , considérons une approximation de ℒℒℒ dans le
voisinage de w0

ℒ̃ℒℒw0(w) =ℒℒℒ(w0) +∇ℒℒℒ(w0)
¦(w − w0) +

1

2¸
∥w − w0∥

2,

avec un terme quadratique qui ne dépend pas de ℒℒℒ.
Calculons le gradient p.r. à w de cette approximation ℒ̃ℒℒw0(w) :

∇ℒ̃ℒℒw0(w) = ∇ℒℒℒ(w0) +
1

¸
(w − w0),

qui implique (en trouvant la solution de ∇ℒ̃ℒℒw0(w) = 0) :

argmin
w

ℒ̃ℒℒw0(w) = w0 − ¸∇ℒℒℒ(w0).

François Fleuret (ML : modifs 2022–24) EE-311—Apprentissage machine / 8. Perceptron multi-couches 44 / 73

L’algorithme qui en découle met w à jour itérativement de la
manière suivante :

wt+1 = wt − ¸∇ℒℒℒ(wt),

qui peut être interpretée comme “suivre la direction de la pente la
plus forte”.

Cette procédure conduit [la plupart du temps] à un minimum local,
et les choix de w0 et ¸ sont importants.

François Fleuret (ML : modifs 2022–24) EE-311—Apprentissage machine / 8. Perceptron multi-couches 45 / 73



¸ = 0.125

w0

ℒ̃ℒ

w1

ℒℒ̃

w2

ℒℒ̃

w3

ℒℒ̃

w4

ℒℒ̃

w5

ℒℒ̃

w6

ℒℒ̃

w7

ℒℒ̃

w8

ℒℒ̃

w9

ℒℒ̃

w10

ℒℒ̃

w11

ℒℒ̃

François Fleuret (ML : modifs 2022–24) EE-311—Apprentissage machine / 8. Perceptron multi-couches 46 / 73

¸ = 0.125

w0

ℒ̃ℒ

w1

ℒ̃ℒ

w2

ℒ̃ℒ

w3

ℒ̃ℒ

w4

ℒ̃ℒ

w5

ℒ̃ℒ

w6

ℒ̃ℒ

w7

ℒ̃ℒ

w8

ℒ̃ℒ

w9

ℒ̃ℒ

w10

ℒ̃ℒ

w11

ℒ̃ℒ

François Fleuret (ML : modifs 2022–24) EE-311—Apprentissage machine / 8. Perceptron multi-couches 47 / 73



¸ = 0.5

w0

ℒ̃ℒ

w1

ℒℒ̃

w2

ℒ̃ℒ

w3

ℒℒ̃

w4

ℒ̃ℒ

w5

ℒℒ̃

w6

ℒ̃ℒ

w7

ℒℒ̃

w8

ℒ̃ℒ

w9

ℒℒ̃

w10

ℒ̃ℒ

w11

ℒℒ̃

François Fleuret (ML : modifs 2022–24) EE-311—Apprentissage machine / 8. Perceptron multi-couches 48 / 73

 0
 0.2

 0.4
 0.6

 0.8
 1  0

 0.2

 0.4

 0.6

 0.8

 1

 0.6

 0.8

 1

 1.2

 1.4

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

François Fleuret (ML : modifs 2022–24) EE-311—Apprentissage machine / 8. Perceptron multi-couches 49 / 73



Nous avons vu que le minimum de la fonction de coût de le
régression logistique

ℒℒℒ(w , b) = −

n∑

i=1

log Ã(y i(w · x i + b))

def sigmoid(x):

return 1 / (1 + numpy.exp(-x))

def loss(x, y, w, b):

return - numpy.log(sigmoid(y * (x.dot(w) + b))).sum()

n’a pas de forme analytique.

François Fleuret (ML : modifs 2022–24) EE-311—Apprentissage machine / 8. Perceptron multi-couches 50 / 73

Formulaire de dérivées, fonctions logarithme et sigmöıde

Ã(x) =
1

1 + e−x

d

dx
log(x) =

1

x
, x > 0

d

dx
Ã(x) = Ã(x)(1− Ã(x))

d

dx
log(Ã(x)) = (1− Ã(x)) = Ã(−x)

François Fleuret (ML : modifs 2022–24) EE-311—Apprentissage machine / 8. Perceptron multi-couches 51 / 73



Nous pouvons dériver

∂ℒℒℒ

∂b
= −

n∑

i=1

y i σ(−y i (w · x i + b))
︸ ︷︷ ︸

ui

,

∀d ,
∂ℒℒℒ

∂wd

= −

n∑

i=1

x id y
i σ(−y i (w · x i + b))

︸ ︷︷ ︸

v i
d

,

qui peut être implémenté avec
def gradient(x, y, w, b):

u = y * sigmoid(- y * (x.dot(w) + b))

v = x * u.reshape(-1, 1)

return - v.sum(0), - u.sum(0)

et utilisé dans une descente de gradient de la forme
w, b = numpy.random.normal(0, 1, (x.shape[1],)), 0

eta = 1e-1

for k in range(nb_iterations):

print(k, loss(x, y, w, b))

dw, db = gradient(x, y, w, b)

w -= eta * dw

b -= eta * db
François Fleuret (ML : modifs 2022–24) EE-311—Apprentissage machine / 8. Perceptron multi-couches 52 / 73

 0.01

 0.1

 1

 10

 100

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000  10000

L
o

s
s

Nb. of steps

François Fleuret (ML : modifs 2022–24) EE-311—Apprentissage machine / 8. Perceptron multi-couches 53 / 73



Avec 100 points d’apprentissage et ¸ = 10−1.

n = 0 n = 10 n = 102

n = 103 n = 104

Solution par Linear
Disciminant

Analysis (optimal
pour ce problème)

François Fleuret (ML : modifs 2022–24) EE-311—Apprentissage machine / 8. Perceptron multi-couches 54 / 73

Entrâınement du perceptron multi-couche

François Fleuret (ML : modifs 2022–24) EE-311—Apprentissage machine / 8. Perceptron multi-couches 55 / 73



Entrâınement d’un perceptron multi-couche à l’aide de la
descente de gradient

Nous voulons entrâıner un perceptron multi-couche (=ajuster tous
ses paramètres) en minimisant un coût calculé sur un ensemble
d’apprentissage :

ℒℒℒ(w , b) =
n∑

i=1

āāā(f (x i ;w , b), y i).

Pour utiliser la descente de gradient, nous devons calculer le
gradient de la fonction de coût sur chaque exemple par
rapport aux paramètres.

C’est à dire, avec āāāi = āāā(f (x i ;w , b), y i),

∂āāāi

∂w
(ℓ)
j ,k

et
∂āāāi

∂b
(ℓ)
j

.

François Fleuret (ML : modifs 2022–24) EE-311—Apprentissage machine / 8. Perceptron multi-couches 56 / 73

Propagation vers l’avant : calcul des sorties aux noeuds

Nous considérons un seul exemple d’apprentissage x , et nous
introduisons s(1), . . . , s(L) comme les sommations avant les
fonctions d’activation.

x(0) = x
w (1),b(1)

−−−−−→ s(1)
Ã
−→ x(1)

w (2),b(2)

−−−−−→ s(2)
Ã
−→ . . .

w (L),b(L)

−−−−−→ s(L)
Ã
−→ x(L) = f (x ;w , b).

Nous posons x (0) = x ,

∀ℓ = 1, . . . , L,

{

s(ℓ) = w (ℓ)x (ℓ−1) + b(ℓ)

x (ℓ) = Ã
(
s(ℓ)

)
,

et nous définissons la sortie du réseau comme f (x ;w , b) = x (L).

Ceci est la propagation vers l’avant.

François Fleuret (ML : modifs 2022–24) EE-311—Apprentissage machine / 8. Perceptron multi-couches 57 / 73



Rétro-propagation du gradient :
méthode pour calculer les composantes du gradient

L’algorithme de rétro-propagation du gradient n’est qu’une
application directe de la dérivation des fonctions composées :

(g ◦ f )′ = (g ′ ◦ f )f ′.

L’approximation linéaire d’une composition de fonction est le
produit de leurs approximations linéaires.

Ceci se généralise à des compositions plus complexe en grandes
dimensions

JfN◦fN−1◦···◦f1(x) = Jf1(x) Jf2(f1(x)) Jf3(f2(f1(x))) . . . JFN
(fN−1(. . . (x)))

où Jf (x) est le Jacobien de f en x , c’est à dire la matrice de
l’approximation linéaire de f dans le voisinage de x .

François Fleuret (ML : modifs 2022–24) EE-311—Apprentissage machine / 8. Perceptron multi-couches 58 / 73

Rappel d’analyse : règle de composition de fonctions pour
une variable

Soit x = g(t) et y = h(t) des fonctions différentiables de t et
z = f (x , y) une fonction différentiable de x et y .

Alors z = f (x(t), y(t)) est une fonction différentiable de t et

dz

dt
=
∂z

∂x
·
dx

dt
+
∂z

∂y
·
dy

dt

François Fleuret (ML : modifs 2022–24) EE-311—Apprentissage machine / 8. Perceptron multi-couches 59 / 73



Rappel d’analyse : règle de composition des dérivées pour
deux variables indépendantes

Soient x = g(u, v) et y = h(u, v) des fonctions différentiables de u

et v and z = f (x , y) une fonction différentiable de x et y .

Alors, f (g(u, v), h(u, v)) est une fonction différentiable de u et v et

dz

du
=
∂z

∂x
·
dx

du
+
∂z

∂y
·
dy

du

ainsi que
dz

dv
=
∂z

∂x
·
dx

dv
+
∂z

∂y
·
dy

dv

François Fleuret (ML : modifs 2022–24) EE-311—Apprentissage machine / 8. Perceptron multi-couches 60 / 73

Rétro-propagation du gradient :
dérivées du coût āāā par rapport à s

(ℓ)
j et x

(ℓ−1)
k

x (ℓ−1)
w (ℓ), b(ℓ)

−−−−−→ s(ℓ)
Ã

−−−→ x (ℓ)

Comme s
(ℓ)
j n’influence āāā que via x

(ℓ)
j avec

x
(ℓ)
j = σ

(

s
(ℓ)
j

)

,

nous avons ∂āāā

∂s
(ℓ)
j

=
∂āāā

∂x
(ℓ)
j

∂x
(ℓ)
j

∂s
(ℓ)
j

=
∂āāā

∂x
(ℓ)
j

σ′
(

s
(ℓ)
j

)

.

Et comme x
(ℓ−1)
k n’influence āāā que via les s

(ℓ)
j avec

s
(ℓ)
j =

∑

k

w
(ℓ)
j ,k x

(ℓ−1)
k + b

(ℓ)
j ,

nous avons

∂āāā

∂x
(ℓ−1)
k

=
∑

j

∂āāā

∂s
(ℓ)
j

∂s
(ℓ)
j

∂x
(ℓ−1)
k

=
∑

j

∂āāā

∂s
(ℓ)
j

w
(ℓ)
j ,k .

François Fleuret (ML : modifs 2022–24) EE-311—Apprentissage machine / 8. Perceptron multi-couches 61 / 73



Rétro-propagation du gradient :
dérivées du coût āāā par rapport aux paramètres w

(ℓ)
j ,k et b

(ℓ)
ℓ

x (ℓ−1)
w (ℓ), b(ℓ)

−−−−→ s(ℓ)
Ã

−−−→ x (ℓ)

Comme w
(ℓ)
j ,k et b

(ℓ)
j n’influencent āāā que via s

(ℓ)
j avec

s
(ℓ)
j =

∑

k

w
(ℓ)
j ,k x

(ℓ−1)
k + b

(ℓ)
j ,

nous avons

∂āāā

∂w
(ℓ)
j ,k

=
∂āāā

∂s
(ℓ)
j

∂s
(ℓ)
j

∂w
(ℓ)
j ,k

=
∂āāā

∂s
(ℓ)
j

x
(ℓ−1)
k ,

∂āāā

∂b
(ℓ)
j

=
∂āāā

∂s
(ℓ)
j

.

François Fleuret (ML : modifs 2022–24) EE-311—Apprentissage machine / 8. Perceptron multi-couches 62 / 73

Rétro-propagation du gradient : résumé

Pour résumer : nous pouvons calculer les ∂āāā

∂x
(L)
j

à partir de la

définition de āāā, et récursivement propager vers l’arrière les
dérivées du coût par rapport aux activations avec :

∂āāā

∂s
(ℓ)
j

=
∂āāā

∂x
(ℓ)
j

Ã′
(

s
(ℓ)
j

)

∂āāā

∂x
(ℓ−1)
k

=
∑

j

∂āāā

∂s
(ℓ)
j

w
(ℓ)
j ,k .

Ensuite, nous pouvons calculer les dérivées par rapport aux
paramètres du modèle avec :

∂āāā

∂w
(ℓ)
j ,k

=
∂āāā

∂s
(ℓ)
j

x
(ℓ−1)
k

∂āāā

∂b
(ℓ)
j

=
∂āāā

∂s
(ℓ)
j

.

François Fleuret (ML : modifs 2022–24) EE-311—Apprentissage machine / 8. Perceptron multi-couches 63 / 73



Écriture tensorielle

Pour écrire tout cela de manière tensorielle, si È : RN → R
M , nous

utiliserons une notation standard du Jacobien

[
∂È

∂x

]

=






∂È1

∂x1
. . . ∂È1

∂xN
...

. . .
...

∂ÈM

∂x1
. . . ∂ÈM

∂xN




 ,

et si È : RN×M → R, nous utiliserons

[[
∂È

∂w

]]

=






∂È

∂w1,1
. . . ∂È

∂w1,M

...
. . .

...
∂È

∂wN,1
. . . ∂È

∂wN,M




 .

François Fleuret (ML : modifs 2022–24) EE-311—Apprentissage machine / 8. Perceptron multi-couches 64 / 73

x(ℓ−1) ×

w (ℓ)

+

b(ℓ)

s(ℓ) Ã x(ℓ)

[
∂āāā
∂x(ℓ)

][
∂āāā
∂s(ℓ)

]

»

Ã′

·T×

[
∂āāā

∂x(ℓ−1)

]

[
∂āāā
∂b(ℓ)

][[
∂āāā
∂w (ℓ)

]]

× ·T

François Fleuret (ML : modifs 2022–24) EE-311—Apprentissage machine / 8. Perceptron multi-couches 65 / 73



Propagation vers l’avant

Calculer les activations.

x(0) = x , ∀ℓ = 1, . . . , L,

{

s(ℓ) = w (ℓ)x(ℓ−1) + b(ℓ)

x(ℓ) = Ã
(

s(ℓ)
)

Rétro-propagation du gradient

Calculer les dérivées du coût par rapport aux activations :



















[

∂āāā

∂x(L)

]

d’après la définition de āāā

si ℓ < L,
[

∂āāā

∂x(ℓ)

]

=
(

w (ℓ+1)
)T

[

∂āāā

∂s(ℓ+1)

]

[

∂āāā

∂s(ℓ)

]

=

[

∂āāā

∂x(ℓ)

]

» Ã′
(

s(ℓ)
)

Calculer les dérivées du coût par rapport aux paramètres :

[[

∂āāā

∂w (ℓ)

]]

=

[

∂āāā

∂s(ℓ)

]

(

x(ℓ−1)
)T

[

∂āāā

∂b(ℓ)

]

=

[

∂āāā

∂s(ℓ)

]

.

Itération de descente de gradient

w (ℓ) ← w (ℓ) − ¸

[[

∂āāā

∂w (ℓ)

]]

b(ℓ) ← b(ℓ) − ¸

[

∂āāā

∂b(ℓ)

]

François Fleuret (ML : modifs 2022–24) EE-311—Apprentissage machine / 8. Perceptron multi-couches 66 / 73

Remarques sur la rétro-propagation du gradient

Bien que la rétro-propagation du gradient semble être complexe, elle
consiste finalement à calculer des dérivées de fonctions composées.

Comme la propagation vers l’avant, elle peut être exprimée de
manière tensorielle. Les calculs lourds et paramétrés sont limités à
des opérations linéaires, et les non linéarités sont calculées par
composante individuelle.

François Fleuret (ML : modifs 2022–24) EE-311—Apprentissage machine / 8. Perceptron multi-couches 67 / 73



Coût computationnel

En ce qui concerne le coût computationnel, comme les opérations
coûteuses sont, pour de la propagation vers l’avant :

s(ℓ) = w (ℓ)x (ℓ−1) + b(ℓ)

et pour la rétro-propagation du gradient :

[
∂āāā

∂x (ℓ)

]

=
(
w (ℓ+1)

)T
[

∂āāā

∂s(ℓ+1)

]

et [[
∂āāā

∂w (ℓ)

]]

=

[
∂āāā

∂s(ℓ)

]
(
x (ℓ−1)

)T
,

une approximation grossière est que la rétro-propagation du gradient
est deux fois plus coûteuse que la propagation vers l’avant.

François Fleuret (ML : modifs 2022–24) EE-311—Apprentissage machine / 8. Perceptron multi-couches 68 / 73

Interprétation des opérations dans un réseau

Plus que pour d’autres modèles, il est très difficile d’interpréter les
opérations qui sont finalement exécutées par chaque unité d’un
perceptron multi-couche une fois qu’il est entrâıné.

François Fleuret (ML : modifs 2022–24) EE-311—Apprentissage machine / 8. Perceptron multi-couches 69 / 73



Exemple : classification binaire, données à 2 variables (1/2)

Considérons un réseau avec une seule couche cachée qui fait une
classification à deux classes dans R2, c’est à dire

R
2 → R

2.

avec
f (x ;w , b) = Ã

(
w (2)Ã

(
w (1)x + b(1)

)
+ b(2)

)
.

Si ce modèle a D unités cachées, alors

w (1) ∈ R
D×2, b(1) ∈ R

D ,w (2) ∈ R
2×D , b(2) ∈ R

2.

François Fleuret (ML : modifs 2022–24) EE-311—Apprentissage machine / 8. Perceptron multi-couches 70 / 73

Exemple : classification binaire, données à 2 variables (2/2)

Les activations de la couche cachée pré-non-linéarité sont donc

s = w (1)x + b(1)

et à chacune des d = 1, . . . ,D composantes de s peut être associé
un hyperplan de R

2, donc une droite :

Hd =
{

x ∈ R
2 : w

(1)
d · x + b

(1)
d = 0

}

.

François Fleuret (ML : modifs 2022–24) EE-311—Apprentissage machine / 8. Perceptron multi-couches 71 / 73



François Fleuret (ML : modifs 2022–24) EE-311—Apprentissage machine / 8. Perceptron multi-couches 71 / 73

François Fleuret (ML : modifs 2022–24) EE-311—Apprentissage machine / 8. Perceptron multi-couches 71 / 73



Perceptron et réseaux de neurones
• origine des méthodes avec neurones artificiels remontent aux années 1940

• perceptron : somme pondérée et biais avec un seuillage

• unités simples, mais peuvent être interconnectées

• pour modéliser un système complexe, les paramètre doivent être ajustés

• notation graphique ou tensorielle

• algorithme du perceptron permet d’ajuster les poids (e.g. pour la classification)

• garantie de convergence pour données séparables

• limitation des modèles linéaires : surmonté par l’ajout de variables (apprentissage
“shallow”)

• apprentissage profond :

1. entrées-sorties multidimensionnelles
2. multiple couches
3. fonctions d’activation non-linéaires

• ajustement des paramètres par descente de gradient

• calcul des activations par propagation en avant

• calcul du gradient par rétro-propagation

• réseaux efficace et mais difficilement interprétable

François Fleuret (ML : modifs 2022–24) EE-311—Apprentissage machine / 8. Perceptron multi-couches 72 / 73

Guide de lecture pour ce cours

Chloé-Agathe Azencott “Introduction au Machine Learning”,
Dunod, 2019, ISBN 978-210-080153-4
Chapitre 7 : Réseaux de neurones artificiels

François Fleuret (ML : modifs 2022–24) EE-311—Apprentissage machine / 8. Perceptron multi-couches 73 / 73



References

N. Dalal and B. Triggs. Histograms of oriented gradients for human
detection. In Conference on Computer Vision and Pattern

Recognition, pages 886–893, 2005.

W. S. McCulloch and W. Pitts. A logical calculus of the ideas
immanent in nervous activity. The bulletin of mathematical

biophysics, 5(4) :115–133, 1943.

F. Rosenblatt. The perceptron–A perceiving and recognizing
automaton. Technical Report 85-460-1, Cornell Aeronautical
Laboratory, 1957.


	Le perceptron
	Limitation des modèles linéaires
	Modèles profonds
	Approximation universelle
	Descente de gradient
	Entraînement du perceptron multi-couche
	Références

