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Ouvrage de référence et source

Ces transparents sont basés en grande partie sur le
texte de Chloé-Agathe Azencott “Introduction au
Machine Learning”, Dunod, 2019
ISBN 978-210-080153-4

L’auteure a mis le texte (sans les exercices) à disposition ici :
http://cazencott.info/dotclear/public/lectures/

IntroML_Azencott.pdf

Avertissement : Bien que ces transparents partagent la notation
mathématique, la structure de l’exposition (en partie), et certains
exemples avec le livre, ils ne constituent qu’un complément et non
un remplacement ou une source unique pour la couverture des
matières du cours. À ce titre, ces transparents ne se substituent pas
au texte.
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Arbres de décision et méthodes ensemblistes

Arbres de décisions
• Introduction : motivation et définitions
• Algorithme CART : “Classification And Regression Tree”

Méthodes ensemblistes (combinaison de prédicteurs)
méthodes parallèles : bagging

forêts par bootstrapping
forêts aléatoires

méthodes séquentielles : boosting
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Les méthodes vues jusqu’ici reposent fortement sur la structure

Euclidienne de l’espace : distance, produits scalaires.

Les techniques à noyaux permettent de profiter d’une métrique plus
pertinente, mais dans certains cas cela n’est pas suffisant, et il est
nécessaire de recourir à des méthodes plus souples, telles que les
arbres de décision.
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Les arbres de décisions en apprentissage automatique peuvent être
vus comme une formalisation des stratégies pour le “jeu des 20
questions” :

Q : Est-ce un humain ?

R : Oui

Q : Est-elle/il encore
vivant ?

R : Non

Q : Est-ce un homme ?

R : Oui

Q : Était-il européen ?

...

Note : voir par exemple https://fr.akinator.com/
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La stratégie complète peut-être définie avant de commencer la
partie, selon les statistiques que l’on connâıt des choix des gens.

Elle peut être représentée à l’aide d’un arbre :

Est-ce un humain ?

Non

...

Oui

Est-elle/il encore vivant ?

Non

Est-ce un homme ?

... ...

Oui

...
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Pour la prédiction, un arbre de décision peut être vu comme une
forme simple de “test adaptatif”, dans lequel la propriété à tester
dépend de ce qui a déjà été testé et des réponses obtenues.
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Pour la prédiction, un arbre de décision peut être vu comme une
forme simple de “test adaptatif”, dans lequel la propriété à tester
dépend de ce qui a déjà été testé et des réponses obtenues.

Pour l’apprentissage, comme dans le jeu des 20 questions, on essaye
de poser la question “la plus efficace”, pour arriver à une décision le
plus rapidement possible.
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Bien que cette méthode soit simple et remonte aux années 80s, les
arbres de décisions restent une méthode très performante pour des
problème concrets d’apprentissage automatique.

We evaluate 179 classifiers arising from 17 families (discriminant analysis,
Bayesian, neural networks, support vector machines, decision trees,
rule-based classifiers, boosting, /. . ./

The random forest is clearly the best family of classifiers (3 out of 5

bests classifiers are RF), /. . ./

(Fernández-Delgado et al., 2014)
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Exemple : arbre de décision pour diagnostic médical

Le concept d’arbre de décision est général et n’est pas limité à
l’apprentissage automatique.

Source : C Saegerman, et al. “Amélioration de la détection d’une maladie émergente : exemple de l’encéphalopathie
spongiforme bovine,” Epidémiologie et Santé Animale, Vol. 44 pp. 61–77, 2003
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Exemple : identification d’un fruit

ronde

Couleur ?

Taille ? Forme ?

rouge jaune

pomme bananeForme ? pomme

cerise fraise

petite grande incurvée

ronde pointue

citron

ovale

Figure 9.1 – Exemple d’arbre de décision pour étiqueter un fruit.
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Cet exemple (non-binaire !) illustre plusieurs aspects des arbres de
décision :

• ils peuvent traiter des attributs discrets ou valeurs continues,
valeurs catégorielle

• ils peuvent faire une prédiction multi-classe,
• ils traitent naturellement des classes multi-modales (objets
peuvent apparâıtre dans plusieurs catégories) .
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Exemple avec interprétation géométrique

Méthode applicable aussi si on travaille dans un espace avec
structure euclidienne

 x2 < v
2
 ?

 x1 < u
1
 ?

oui non

R
4

R
1

R
3

R5

oui non

oui non

R2

oui non

 x1 < u
2
 ?

x
2
 < v

1
 ?

A
ze
n
co

tt

Un arbre de décision partitionne récursivement l’espace des
observations.
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Transformation d’un arbre non-binaire en un arbre binaire
(est toujours possible)

Rouge ?

Petit ? Incurvé ?

oui non

pomme citron

Rond ? pomme

cerise fraise

oui non

nonoui non

banane

oui

 Rond ?

non

oui

Figure 9.3 – Version binaire de l’arbre de décision de la figure 9.1.
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Pour la suite, et sans perte de généralité, on ne considérera que des
arbres binaires, c’est à dire dont chaque nœud possède exactement
deux enfants.
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Algorithme CART (“Classification And Regression Tree”)

Une méthode pour construire un arbre de décision

• publié par Leo Breiman et al. en 1984 1

• produit des arbres binaires

• critère de segmentation : indice de diversité de Gini.

• seule une propriété est considéré à chaque étape

1. Breiman, L., Friedman, J.H., Olshen, R.A., and Stone, C.J. “Classification
and Regression Trees,” Chapman & Hall (Boca Raton), 1984
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Définitions : arbre binaire, feuilles, noeuds, arbres enfants

Soit Ą l’espace des observations, et ą l’espace des valeurs à
prédire (classe discrète ou vecteur de valeurs continues).

On peut définir un arbre binaire Ā (qui associe Ą et ą) de
manière récursive. Un arbre binaire est soit :

• Une feuille, qui porte une valeur ŷ ∈ ą.

La prédiction de Ā est alors ∀x ∈ Ą,Ā(x) = ŷ

• Un nœud, qui constitue la racine de l’arbre, et qui porte deux
régions RL et RR avec RL ∩ RR = ∅ et RL ∪ RR = Ą,
et deux arbres enfants ĀL et ĀR .

La prédiction de Ā est alors

∀x ∈ Ą, Ā(x) =

{
ĀL(x) si x ∈ RL

ĀR(x) si x ∈ RR.

La profondeur d’un arbre (depth) est la distance maximale entre la
racine et toute feuille.
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Tests booléens considérés

Un des principaux avantages des arbres de décision est leur capacité
à traiter des observations combinant des grandeurs discrètes /
catégorielles et continues.

Bien que les tests placés aux nœuds puissent être arbitraires, nous
considérerons dans la suite ceux de l’algorithme le plus classique :
CART (“Classification And Regression Tree”).
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Tests booléens dans l’algorithme CART

Chaque nœud d’un arbre construit par CART ne considère qu’une
coordonnée xj de x , appelée “variable séparatrice”.

Selon le type de cette variable xj , les régions sont définie comme
suit :

• Si xj est booléenne, la région RL est

RL = {x ∈ Ą, xj = 0}.

• Si xj est discrète la région RL dépend de l’appartenance de xj à un
ensemble de valeurs ÿ :

RL = {x ∈ Ą, xj ∈ ÿ}.

• Si xj est continue RL est définie par un seuil s :

RL = {x ∈ Ą, xj < s}.
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Motivation : comment choisir quoi mettre aux noeuds,
quand s’arrêter et mettre des feuilles ?

Les algorithmes d’apprentissage classiques (tel que CART) pour
construire un arbre de décision sont gloutons et récursifs.

Chaque nœud est construit selon les données d’apprentissage qui y
parviennent. Il dépend donc des nœuds qui ont été construits
au-dessus, et l’arbre résultant n’est globalement pas optimal, en
général.
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Critère pour décider si un noeud sera une feuille

Étant donné un ensemble d’apprentissage à la position d’un noeud :

(xn, yn)n=1,...,N :

1. Si un critère d’arrêt est vérifié, par exemple N ≤ Nmin, alors le
nœud sera une feuille, avec, comme valeur à prédire pour cette
feuille :

• pour la régression ŷ =
1

N

∑

n

yn (= la moyenne),

• pour la classification ŷ = argmax
c

∑

n

δ(c , yn)

︸ ︷︷ ︸

nb d’exemples de classe c

(= la classe majoritaire).
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Si le noeud n’est pas une feuille

2. Dans le cas où le nœud n’est pas une feuille, on doit sélectionner :

• une variables séparatrice xj ,

• soit
• une valeur pour s (si variable continue) ou
• ÿ (si variable discrète).

Ce choix est fait pour optimiser un critère qui estime la facilité à
faire la prédiction dans les arbres fils.
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Régression : critère pour déterminer la qualité du choix de la
variable séparatrice et du seuil

Pour la régression, un critère naturel pour déterminer la qualité d’un
seuil s, est la variance empirique conditionnelle.

Pour rappel, les régions RL et RR sont définies par le seuil s :

RL = {x ∈ Ą, xj < s}, RR = {x ∈ Ą, xj ≥ s}.

Si ŷL et ŷR sont les deux prédictions qui seraient faites dans les
arbres fils si ces derniers étaient des feuilles, le critère est défini
comme : ∑

n: xn∈RL

(yn − ŷL)
2 +

∑

n: xn∈RR

(yn − ŷR)
2 .
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(Mauvais) critère pour le cas de la classification

Pour la classification, chercher à simplement réduire l’erreur
empirique est une mauvaise stratégie.

Considérons un problème à quatre classes, avec 100 exemples de
chaque classe, et deux splits possibles :

ĀL ĀR Erreur

Split #1
[

6 : : :

100 99 1 0

] [
: : : 6

0 1 99 100

]

50%

Split #2
[

6 : : :

100 50 50 0

] [
: : : 6

0 50 50 100

]

50%

Le split #1 est meilleur, puisqu’il suffira de résoudre des problèmes
à deux classes dans les nœuds suivants.

Pourtant les deux splits ont le même taux d’erreur dans les feuilles
qu’ils créent.

⇒ on aimerait un critère qui tient compte des distributions créées !
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Critère pour le cas de la classification

On préfère donc utiliser un critère d’impureté qui estime de manière
plus pertinente la qualité d’un split.

Les deux grandeurs classiques sont

1. l’entropie de Shanon et

2. l’impureté de Gini.

Les deux sont définies pour une distribution et somment une
fonction concave des probabilités. Elles ne dépendent donc
évidemment pas de l’ordre, et sont d’autant plus petites que les
probabilités sont concentrées sur quelques classes.
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Entropie de Shannon

Étant donnée une distribution de probabilités p1, . . . , pC , l’entropie
de Shannon est égale à :

H(p) = −
C
∑

c=1

pc log pc

avec la convention que 0 log 0 = 0.

Les cas extêmes :

Si la distribution est déterministe, donc si tous les pc sont nuls sauf
une égal à 1, H(p) = 0.

Si la distribution est uniforme, pc = 1/C , alors H(p) = logC .
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Impureté de Gini

Étant donnée une distribution de probabilités p1, . . . , pC , l’impureté
de Gini est égale à :

Gini(p) =
C
∑

k=1

pk(1− pk)

Les cas extêmes :

Si la distribution est déterministe, donc si tous les pc sont nuls sauf
une égal à 1, Gini(p) = 0.

Si la distribution est uniforme, alors Gini(p) = 1− 1/C .
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Illustration des critères sur différentes distributions

1 2 3 4 5 6 7 8
0.00
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0.75

1.00

Error H Gini
0.00 0.00 0.00

1 2 3 4 5 6 7 8
0.00
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Note : les valeurs des deux critères ne dépendent pas de l’ordre des classes !
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Caractérisation de la qualité d’un split sur la base de
l’impureté

Pour caractériser la qualité d’un split :
1. Choisir une mesure d’impureté
2. Déterminer les 2 distributions empiriques engendrées par ce split
3. Calculer la moyenne pondérée des impuretés de ces 2
distributions :

|{n : xn ∈ RL}| Imp(pL) + |{n : xn ∈ RR}| Imp(pR)

où Imp est H ou Gini et pL, pR sont les distributions empiriques :

pL,c =
|{n : xn ∈ RL, yn = c}|

|{n : xn ∈ RL}|
pR,c =

|{n : xn ∈ RR, yn = c}|

|{n : xn ∈ RR}|

Interprétation : on reconnâıt le calcul d’une moyenne de l’impureté
à chacune des deux feuilles produites (basée sur des distributions
empiriques), avec comme pondération le nombre d’éléments assignés
à la feuille correspondante.
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Algorithme CART : choix des variables séparatrices et des
seuils ou ensembles

L’algorithme CART teste exhaustivement toutes les valeurs possibles
j = 1, . . . ,D pour la variable séparatrice et,

• pour les variables continues, étant donné un tri σ croissant

x
σ(1)
j < x

σ(2)
j < · · · < x

σ(N)
j ,

il considère tous les N − 1 seuils s possibles :

s ∈

{

x
σ(1)
j + x

σ(2)
j

2
, . . . ,

x
σ(N−1)
j + x

σ(N)
j

2

}

.

• pour les variables discrètes il considère tous les
partitionnements possibles pour ÿ.

⇒ la meilleure variable séparatrice et seuil ou ensemble
correspondant sont choisis selon le critère du slide précédent.
François Fleuret & Michael Liebling EE-311—Apprentissage machine / 7. Arbres de décision, méthodes ensemblistes 26 / 67



Critère d’arrêt ou d’élagage de l’arbre

L’algorithme CART peut également limiter la complexité des arbres
en optimisant une fonction de coût globale de la forme

Cλ(Ā) =

|Ā|
∑

u=1

Nu Imp(pu) + λ|Ā|

pour la classification, où |Ā| est le nombre de feuilles de l’arbre, et
pour toute feuille u, Nu le nombre d’exemples d’apprentissage qui y
arrivent et pu la distribution empirique de leurs classes.

Une mesure similaire pour la régression repose sur l’erreur
quadratique en prédiction.
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Exemple d’apprentissage CART

Nous pouvons illustrer l’apprentissage d’un arbre sur un exemple à
deux classes (points verts ou magenta), dimension D = 2 et
N = 1, 000 exemples.

François Fleuret & Michael Liebling EE-311—Apprentissage machine / 7. Arbres de décision, méthodes ensemblistes 28 / 67



Profondeur : 0 (1 feuille ; couleur du fond = prédiction)
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Profondeur : 1 (1 nouveau split, 2 feuilles au total)
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Profondeur : 2 (1 nouveau split, 3 feuilles au total)
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Profondeur : 3 (1 nouveau split, 4 feuilles au total)
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Profondeur : 4 (1 nouveau split, 5 feuilles au total)
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Profondeur : 5 (1 nouveau split, 6 feuilles au total)
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Profondeur : 6 (2 nouveaux splits, 8 feuilles au total)
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Profondeur : 7 (3 nouveaux splits, 11 feuilles au total)
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Profondeur : 8 (4 nouveaux splits, 15 feuilles au total)
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Profondeur : 9 (3 nouveaux splits, 18 feuilles au total)
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Profondeur : 10 (1 nouveau split, 19 feuilles au total)
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Exemple de code d’arbre de décision dans scikit-learn
(import des librairies nécessaires)

import math

import numpy as np

from sklearn import tree, ensemble

import matplotlib.pyplot as plt
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Exemple de code d’arbre de décision dans scikit-learn
(construction du jeu d’entrâınement et visualisation)

x_train = np.random.uniform(-math.pi, math.pi, (50, 1))

y_train = np.sin(x_train)

fig = plt.figure()

ax = fig.add_subplot(1, 1, 1)

ax.set_ylim(-1.5, 1.5)

ax.scatter(x_train, y_train, color = 'blue', label = 'Train')
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Données d’entrâınement

3 2 1 0 1 2 3
1.5

1.0

0.5

0.0

0.5

1.0

1.5
Train
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Exemple de code d’arbre de décision dans scikit-learn
(entrâınement et test)

dtr = tree.DecisionTreeRegressor()

model = dtr.fit(x_train, y_train)

x_test = np.linspace(-math.pi, math.pi, 1000).reshape(-1, 1)

y_test = model.predict(x_test)

fig = plt.figure()

ax = fig.add_subplot(1, 1, 1)

ax.set_ylim(-1.5, 1.5)

ax.scatter(x_train, y_train, color = 'blue', label = 'Train')

ax.plot(x_test, y_test, color = 'red', label = 'Test')
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Données d’entrâınement et prédictions sur jeu de test

3 2 1 0 1 2 3
1.5

1.0

0.5

0.0

0.5

1.0

1.5
Test
Train
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Arbres, régression et sur-apprentissage

La flexibilité des arbres de décision souffre du fait qu’ils ne
régularisent pas “naturellement”.

Si les labels sont par exemple bruités, la fonction obtenue peut-être
particulièrement dégradée.
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Exemple d’apprentissage CART sur données bruitées

Nous pouvons reprendre notre exemple en ajoutant un “flip noise”
dans les labels.
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Régularisation en fixant nombre minimum d’exemples par
feuille

Le nombre minimum d’exemples nécessaires pour créer une feuille
peut être augmenté pour que l’apprentissage soit plus stable en cas
de bruit dans les données

sklearn.tree.DecisionTreeRegressor(min_samples_leaf = min_samples_leaf)
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Apprentissage avec régularisation, bruit aléatoire sur 10%
des données
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Apprentissage avec régularisation, bruit aléatoire sur 10%
des données
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Apprentissage avec régularisation, bruit aléatoire sur 10%
des données
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Apprentissage avec régularisation, bruit aléatoire sur 10%
des données
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Méthodes ensemblistes
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Méthodes ensemblistes

Problème : Comment gérer le sur-apprentissage de manière
générale ?
Idée : faire des ensembles de prédicteurs (pour les arbres, ce seront
des forêts)

Méthodes ensemblistes combinent de nombreux apprenants faibles
dans le but d’obtenir une performance largement supérieure aux
performances individuelles de ces apprenants faibles, car leurs
erreurs se compensent les unes les autres.

On sépare 2 grandes catégories :

méthodes parallèles (bagging) : apprenants sont entrâınés
indépendemment

méthodes séquentielles (boosting) : apprenants sont entrâınés
itérativement
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Méthodes ensemblistes : idées de base

Une manière plus efficace de réduire le sur-apprentissage consiste à
construire plusieurs arbres, ou autres classificateurs, de manière à ce
qu’ils se trompent différemment, et à combiner leurs prédictions.

On considère le vote majoritaire pour la classification, et la moyenne
pour la régression.

On peut également estimer un indice de confiance, par exemple la
proportion d’arbres faisant la même prédiction pour la classification,
et la variance empirique des prédictions pour la régression.
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Forêts obtenues par bagging

La méthode la plus classique, dite de bagging, entrâıne plusieurs
arbres séparément, c’est à dire sans tenir compte de leur
comportement joint. Ces arbres forment alors une forêt.

Il est crucial de rajouter une composante aléatoire dans le processus
d’apprentissage de manière à produire des arbres différents qui se
trompent différemment.

Nous regardons 2 manières d’incorporer l’aspect aléatoire :

forêt par bootstrapping : on génére plusieurs ensembles
d’apprentissage par ré-échantillonage du jeu de données initial,
sur lesquel on entrâıne des arbres
forêt aléatoire : on construit plusieurs arbres, à partir du même
jeu de données, mais en injectant du hasard dans la
construction de chaque arbre
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Construction d’une forêt par bootstrapping (1/2)

La première technique proposée historiquement repose sur du
“bootstrapping”.

On simule un ensemble d’apprentissage différent pour chaque arbre
en re-échantillonant l’ensemble complet uniformément.

Les ensembles ainsi produits ne sont donc évidemment pas
indépendants, et les estimateurs statistiques que l’on utilisera
devront être manipulés avec prudence.

Note :
“Pull oneself up by one’s own
bootstraps”
≈
“se tirer vers le haut par ses
propres moyens”
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Construction d’une forêt par bootstrapping (2/2)
Plus formellement, on avait un ensemble

Ā = {(x1, y 1), . . . , (xN , yN)}

à partir duquel on entrâınait un simple arbre Ā.

Pour entrainer T arbres Āt , t = 1, . . . ,T par bootstrapping :
1. on génère les T × N nombres

ñtn i.i.d. uniformément sur {1, . . . ,N},

avec t = 1, . . . ,T et n = 1, . . . ,N pour obtenir les T jeux

Āt = {(x ñ
t
1 , y ñt1), . . . , (x ñ

t
N , y ñt

N )}, t = 1, . . .T

(Note : chaque jeu est obtenu par tirage de N observations avec
remise)
2. on détermine T arbres Āt , t = 1, . . .T , chacun entrâıné sur son
jeu Āt

Ces T arbres Āt , t = 1, . . .T constituent une forêt par
bootstrapping.
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Prédiction à partir d’une forêt

Et la prédiction de cette forêt sera donc, pour la régression

2(x) =
1

T

T∑

t=1

Āt(x)

et pour la classification on prend la classe dominante :

2(x) = argmax
c

|{t : Āt(x) = c}| .
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Implémentation d’une forêt par bootstrapping avec
scikit-learn

Par défaut, scikit-learn construit 100 arbres dans une forêt.

sklearn.ensemble.RandomForestRegressor(min_samples_leaf = min_samples_leaf)
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Exemple de prédiction par une forêt obtenue via
bootstrapping
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Exemple de prédiction par une forêt obtenue via
bootstrapping
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Exemple de prédiction par une forêt obtenue via
bootstrapping
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Exemple de prédiction par une forêt obtenue via
bootstrapping
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Forêt aléatoire (random forest)

Une alternative au bootstrapping consiste à utiliser pour chaque
arbre toutes les données d’apprentissage, mais à injecter du hasard
dans la construction de l’arbre.

La manière classique consiste à sélectionner aléatoirement un
sous-ensemble de variables à chaque nœud qu’on considère durant la
construction de l’arbre. On parle alors de “forêt aléatoire”.
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Example d’apprentissage avec forêt aléatoire

Ensemble d’apprentissage (bruité : 5% des label sont inversés)
(classe 1 (points noirs) : intérieur du disque,
classe 0 (points blancs) : extérieur du disque)
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Un arbre

min_samples_leaf = 1

Probabilité Prédiction
0 ou 1 : 1 exemple/feuille décision dure : classe 0 ou 1
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Un arbre

min_samples_leaf = 10

Probabilité entre 0 et 1 Prédiction
par pas de 0.1 : 10 exemples/feuille décision dure : classe 0 ou 1
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Une forêt (obtenue par bootstrapping)

min_samples_leaf = 10, bootstrap = True

Probabilité Prédiction
entre 0 et 1 décision dure : classe 0 ou 1
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Une forêt aléatoire (splits décidés sur seul 1 feature tiré au hasard)

min_samples_leaf = 10, bootstrap = False,

max_features = 1

Probabilité Prédiction
entre 0 et 1 décision dure : classe 0 ou 1
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Combinaison séquentielle de prédicteurs (par boosting)

Une manière alternative de combiner plusieurs prédicteurs f1, . . . , fM
consiste à les construire séquentiellement, afin d’obtenir finalement
une combinaison linéaire performante

f =
M∑

m=1

³mfm.

La stratégie la plus classique est le Boosting, qui est utilisable avec
des prédicteurs qui peuvent être entrâınés avec des exemples
pondérés.
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Algorithme AdaBoost

L’algorithme de Boosting le plus connu est AdaBoost (adaptive
boosting), qui fonctionne de la manière suivante, pour une tâche de
classification, avec les classes et les prédictions dans {−1, 1} :

1. Initialiser les pondérations des exemples de manière uniforme, c’est
à dire, w1

n = 1
N
, n = 1, . . .N.

2. Pour m = 1, . . . ,M
2.1 entrâıner fm avec le jeu de données pondéré par wm

1 , . . . ,wm
N
.

2.2 calculer son erreur (pondérée) e(fm) =
∑

n:fm(xn) ̸=yn
wm
n (comprise entre 0 et 1)

2.3 calculer la pondération qu’aura fm dans la somme (=confiance en la prédiction) :

αm = 1
2
log

1−e(fm)
e(fm)

(comprise entre −∞ et +∞)

2.4 actualiser les poids des exemples pour le prochain classifieur
wm+1
n ∝ wm

n exp (−αmynfm(xn)) (plus de poids sur les exemples où le classifeur
s’est trompé)

3. retourner le prédicteur f =
∑M

m=1 αmfm.
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Un classifieur fort peut être obtenu à partir de classifieurs
faibles (si leur erreur de prédiction combinée est toujours
inférieure 50%)

Un résultat théorique important est que, en notant fw le prédicteur
entrâıné avec les poids w1, . . . ,wn, si

∀w1, . . . ,wn ≥ 0 avec
∑

n

wn = 1,

∃ϵ > 0 t.q. e(fw ) ≤
1

2
− ϵ

alors AdaBoost peut construire un f qui a une erreur
d’apprentissage égale à zéro.
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AdaBoost peut être dérivée à partir d’une Loss exponentielle
(et d’autre algorithmes de boosting pourraient être
construits similairement à partir d’autres Loss)

Avec des classes binaires dans {−1, 1}, et des prédictions dans R, si
on considère l’erreur exponentielle

ℒ(f ) =
N∑

n=1

exp (−ynf (xn))

AdaBoost peut être dérivé comme un algorithme qui ajoute à
chaque itération le prédicteur qui réduit le plus ℒ localement, de
manière similaire à une descente de gradient.

On parle donc de Gradient Boosting qui peut être généralisé à
d’autre fonctions de perte (entropie croisée, erreur quadratique).
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Exemple de gradient boosting dans scikit-learn

Gradient Boosting est disponible dans scikit-learn.

sklearn.ensemble.GradientBoostingClassifier(min_samples_leaf = min_samples_leaf)

François Fleuret & Michael Liebling EE-311—Apprentissage machine / 7. Arbres de décision, méthodes ensemblistes 64 / 67



Boosting de 100 arbres

min_samples_leaf = 10

Probabilité Prédiction
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Arbres de décision et méthodes ensemblistes : conclusions
Arbres de décision :

• formalisme flexible : capable de tenir compte d’une grande variété de type
de variables (catégories, variables continues, discrètes)

• compatible avec structure euclidienne (mais elle n’est pas nécessaire)

• méthodes très utiles en pratique (performantes)

• méthodes d’apprentissage pour construire un arbre : méthode CART
(Classification And Regression Tree)

• arbres construits récursivement : décision de split basée sur un critère

• critères pour régression (variance empirique) ou qualité des distribution
crées dans les feuilles impureté de Gini, entropie de Shannon

• méthode de régularisation (élagage, critères d’arrêt)

Méthodes ensemblistes (ne s’appliquent pas qu’aux arbres) :

• méthodes parallèles (bagging)

• bootstrapping (échantillonage aléatoire des données)
• forêts aléatoires (randomisation dans l’arbre)

• méthodes séquentielles (boosting) : accent sur les exemples mal classifiés
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Guide de lecture pour ce cours

Chloé-Agathe Azencott “Introduction au Machine Learning”,
Dunod, 2019, ISBN 978-210-080153-4
Chapitre 9 : Arbres et forêts
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