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Ouvrage de référence et source

Ces transparents sont basés en grande partie sur le
texte de Chloé-Agathe Azencott “Introduction au
Machine Learning”, Dunod, 2019
ISBN 978-210-080153-4

L’auteure a mis le texte (sans les exercices) à disposition ici :
http://cazencott.info/dotclear/public/lectures/

IntroML_Azencott.pdf

Avertissement : Bien que ces transparents partagent la notation
mathématique, la structure de l’exposition (en partie), et certains
exemples avec le livre, ils ne constituent qu’un complément et non
un remplacement ou une source unique pour la couverture des
matières du cours. À ce titre, ces transparents ne se substituent pas
au texte.
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Motivation

Comment étudier des données non étiquetées ?

Si la réduction de dimension nous permet de visualiser les données
(en 2D, 3D), les méthodes de partitionnement de données
(= clustering) nous permettent d’aller beaucoup plus loin :

Le clustering permet de séparer les données en sous-groupes
homogènes, appelés clusters, qui partagent des caractéristiques
communes.
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Contenu

• Expliquer l’intérêt d’un algorithme de clustering

• Évaluer le résultat d’un algorithme de clustering

• Décrire les implémentations de
• clustering hiérarchique
• clustering par la méthode des k moyennes
• clustering par densité.
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Partitionnement (Clustering)

Définition : on appelle partitionnement ou clustering un problème
d’apprentissage non supervisé pouvant être formalisé comme la
recherche d’une partition

⋃K

k=1 Ck des n observations {x⃗ i}i=1,...,n.
Cette partition doit être pertinente au vu d’un ou plusieurs critères à
préciser.
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Pourquoi partitionner ses données

Analyse exploratoire sur des données non étiquetées par
identification :

• de groupes d’utilisateurs qui ont des comportements similaires
(segmentation de marché)

• de communautés sur un réseau social

• de motifs récurrents dans des transactions financières

• de pixels appartenant à un même objet dans une image
(segmentation d’image)

• de patients dont la maladie s’explique par un même profil
génétique

Visualisation :
• représenter un seul exemple représentatif par cluster
Étiquetage rapide lorsque difficile ou coûteux :
• transfert des propriétés (e.g. étiquette) que l’ont sait vraies de l’un
des éléments de ce cluster à toutes les observations du même cluster
Michael Liebling EE-311—Apprentissage machine / 6. Clustering 5 / 73



Exemple : clustering de textes

Problème : assigner un sujet a 600 articles de journal (sport,
culture, politique, santé, etc.)

Lecture humaine serait fastidieuse et sujette à des erreurs
d’inattention.

Solution (moins coûteuse et potentiellement plus efficace) :

1. utiliser un algorithme de clustering pour regrouper
automatiquement les documents par sujet (sans que celui-ci
soit connu pour autant) sur la base, par exemple, de mots
fréquents qu’ils ont en commun

2. recourir à un intervenant humain pour assigner un sujet à
chaque cluster en lisant uniquement un ou deux des documents
qu’il contient
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Notation

Jeu de données non étiqueté

D =
{
x⃗1, x⃗2, . . . , x⃗n

}

de n points d’un espace X partitionné en K clusters

C1,C2, . . . ,CK .

Distance sur X : d

Indice du cluster auquel x⃗ a été assigné : k(x⃗)
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Centröıde et médöıde

Définition 12.1 (Centröıde et médöıde) on appelle centröıde du
cluster C le point défini par

µ⃗C =
1

|C|

∑

x⃗∈C

x⃗ .

Le médöıde est le point du cluster le plus proche du centröıde (il
peut ne pas être unique, auquel cas il sera choisi arbitrairement).
Il sert de représentant du cluster :

m⃗C = argmin
x⃗∈C

d(x⃗ , µ⃗C)

Note :

• le centröıde est le
barycentre d’un
cluster
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Homogénéité

Définition 12.2 (Homogénéité) On appelle homogénéité du
cluster Ck (tightness), la moyenne des distances des observations de
ce cluster à son centröıde :

Tk =
1

|Ck |

∑

x⃗∈Ck

d(x⃗ , µ⃗k)

avec µ⃗k le centröıde de Ck . Note : Plus Tk est petit plus on dit que
le cluster est homogène.

L’homogénéité globale d’un clustering de D se calcule comme la
moyenne des homogénéités des clusters :

T =
1

K

K∑

k=1

Tk
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Exemples : homogénéité

La notion d’homogénéité traduit le fait que des observations proches
appartiennent au même cluster.

petit T
homogénéité importante

grand T

peu homogène
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Séparabilité

Définition 12.3 (Séparabilité) On appelle séparabilité des clusters
Ck et Cℓ la distance entre leurs centröıdes :

Skℓ = d(µ⃗k , µ⃗ℓ).

La séparabilité globale d’un clustering de D se calcule comme la
moyenne des séparabilités des clusters deux à deux :

S =
2

K (K − 1)

K∑

k=1

K∑

ℓ=k+1

Skℓ
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Exemples : séparabilité

La séparabilité quantifie à quel point les clusters sont distants les
uns des autres.

High Separability S

grande séparabilité
Low Separability S

faible séparabilité
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Indice de Davies-Bouldin
Un bon clustering présente

• des critères de séparabilité élevés (S grand)
• bonne homogénéité (T petit)

Y’a-t-il moyen de combiner les deux notions ?
Définition 12.4 (Indice de Davies-Bouldin) On appelle indice de
Davies-Bouldin du cluster Ck la valeur

0
︸︷︷︸

le pire cluster (proche de Ck et peu

homogène) est néanmoins très loin et

très homogène

f Dk = max
ℓ̸=k

Tk + Tℓ

Skℓ

< ∞
︸︷︷︸

il y a un cluster voisin

très proche et très peu

homogène

L’indice de Davies-Bouldin global d’un clustering de D se calcule
comme la moyenne des indices de Davies-Bouldin des clusters :

0
︸︷︷︸

clustering idéal

f D =
1

K

K∑

k=1

Dk < ∞
︸︷︷︸

pire clustering
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Coefficient de silhouette

Définition 12.5 (Coefficient de silhouette) On appelle
coefficient de silhouette de l’observation x⃗ ∈ D la valeur

s(x⃗) =
b(x⃗)− a(x⃗)

max(a(x⃗), b(x⃗))

où a(x⃗) est la distance moyenne de x⃗ à tous les autres éléments du
cluster auquel il appartient et b(x⃗) est la plus petite valeur que
pourrait prendre a(x⃗) si x⃗ appartenait à un autre cluster :

a(x⃗) =
1

|Ck(x⃗)| − 1

∑

u⃗∈Ck (⃗x),u⃗ ̸=x⃗

d(u⃗, x⃗)

b(x⃗) = min
ℓ̸=k(x⃗)

1

|Cℓ|

∑

u⃗∈Cℓ

d(u⃗, x⃗).

Le coefficient de silhouette global du clustering est son coefficient
de silhouette moyen :

s =
1

n

n∑

i=1

s
(
x⃗ i
)
.
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Coefficients de silhouette (suite)

Le coefficient de silhouette de x⃗ est d’autant plus proche de 1 que
son assignation au cluster Ck(x⃗) est satisfaisante.

Si le coefficient est proche de -1, l’assignation au cluster est erronée.

Si le coefficient est 0, l’assignation à l’un ou l’autre cluster est
indifférente, il n’y aurait pas de changement significatif si x⃗ était
assigné à un autre cluster.
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Stabilité des clusters

Clustering stable : le partitionnement ne change pas si

• on supprime quelques éléments

• on perturbe quelques éléments

• on initialise l’algorithme de partitionnement de manière
différente

Ce critère peut être utilisé pour choisir les hyperparamètres de
l’algorithme : si on obtient des clusters très différents pour
différentes initialisations de l’algorithme de partitionnement, cela
peut indiquer que les hyperparamètres sont mal choisis.
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Connaissances expert

Si on dispose d’un jeu de données partiellement étiqueté par des
classes auquel on applique une algorithme de clustering : les indices
des clusters ne correspondent pas forcément à ceux des classes
(première classe, seconde classe, etc.) ⇒ une évaluation de la
qualité de clustering ne devra donc pas pénaliser l’assignation à une
partition d’indice différent que celui de la classe ; seul les
groupements sont à prendre en compte.
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Connaissances expert

Définition 12.6 (Indice de Rand) On appelle indice de Rand la
proportion de paires d’observations qui sont soit :

• de la même classe et dans le même cluster

• de classe différente et dans deux clusters différents :

RI =
2

n(n − 1)

n∑

i=1

n∑

ℓ=i+1

¶
(
k
(
x⃗ i
)
= k

(
x⃗ ℓ
))

¶
(
y i = y ℓ

)

+ ¶
(
k
(
x⃗ i
)
̸= k

(
x⃗ ℓ
))

¶
(
y i ̸= y ℓ

)
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Connaissances expert : ontologies, cohérence d’un clustering
par analyse d’enrichissement

ontologie : une classification d’objets en catégories décrites par un
vocabulaire commun et organisées de manière hiérarchique (par
exemple, des gènes en bioinformatique)
Analyse d’enrichissement : évaluer la cohérence d’un clustering
en vérifiant si, à l’intérieur d’un cluster, le nombre d’objets d’une
catégorie de l’ontologie s’écarte de ce à quoi on pourrait s’attendre
si leur distribution était aléatoire (distribution hypergéométrique).
Pour un cluster Ck , une catégorie G et un seuil t ∈ N on calcule :

P [|G ∩Ck | g t] = 1−
t−1∑

s=0

(
|G|
s

)(
n−|G|
|Ck |−s

)

(
n

|Ck |

)

avec
(|G|

s )(
n−|G|
|Ck |−s)

( n

|Ck |
)

la probabilité que, lorsqu’on tire |Ck | éléments

parmi n, s d’entre eux appartiennent à G
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Algorithmes de clustering

• Les algorithmes de clustering cherchent à optimiser les critères
d’homogénéité et de séparabilité.

• Pas d’approche exacte, seulement des manières approchées.

• Trois principales familles d’algorithmes de clustering :

• clustering hiérarchique,

• clustering par centröıdes,

• clustering par densité.
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Clustering hiérarchique

Le clustering hiérarchique forme des clusters séparés par récurrence :
il s’agit de partitionner les données pour toutes les échelles possibles
de taille de partition, dans une hiérarchie à plusieurs niveaux.

Dendrogramme Le résultat d’un clustering hiérarchique peut se
visualiser sous la forme d’un dendrogramme. Il s’agit d’un arbre dont
les n feuilles correspondent chacune à une observation. Chaque
nœud de l’arbre correspond à un cluster :

• la racine est un cluster contenant toutes les observations

• chaque feuille est un cluster contenant une observation

• les clusters ayant le même parent sont agglomérés en un seul
cluster au niveau au-dessus

• un cluster est subdivisé en ses enfants au niveau au dessus
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Exemple de dendrogramme
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Types de méthodes de construction des clustering
hiérarchique

Un clustering hiérarchique peut se construire par :

• clustering agglomératif (bottom-up clustering), commence par
les feuilles avec chaque observation qui forme un cluster de
taille 1. À chaque itération, on trouve et agglomère les deux
clusters les plus proches jusqu’à ne plus avoir qu’un unique
cluster contenant les n observations.

• clustering divisif, ou top-down clustering : initialise en
considérant un seul cluster contenant toutes les observations. À
chaque itération, on sépare un cluster en deux, jusqu’à ce que
chaque cluster ne contienne plus qu’une seule observation.

Focus sur clustering agglomératif.
Question clé : comment trouver déterminer les deux clusters les
plus proches à agglomérer ?
Réponse : définir une distance entre clusters, i.e. une fonction de
lien (linkage). Se base sur une distance d sur X.
Michael Liebling EE-311—Apprentissage machine / 6. Clustering 23 / 73



Fonctions de lien qui visent à garantir la séparabilité des
clusters

Définition 12.7 (Lien simple) On appelle lien simple ou single
linkage, la distance entre deux clusters définie par :

dsimple (Ck ,Cℓ) = min
(u⃗,v⃗)∈Ck×Cℓ

d (u⃗, v⃗)

⇒ minimiser le lien simple revient à examiner la distance la plus
proche entre éléments de toutes les paires de clusters et à
agglomérer les deux clusters pour laquelle cette distance est la plus
petite (minimisation d’une distance min)

Définition 12.8 (Lien complet) On appelle lien complet ou
complete linkage, la distance entre deux clusters définie par :

dcomplet (Ck ,Cℓ) = max
(u⃗,v⃗)∈Ck×Cℓ

d (u⃗, v⃗)

⇒ minimiser le lien complet agglomère les deux clusters qui ont
tous leurs éléments proches (minimisation d’une distance max)
Michael Liebling EE-311—Apprentissage machine / 6. Clustering 24 / 73

Fonctions de lien qui visent à garantir la séparabilité des
clusters (suite)

Définition 12.9 (Lien moyen) On appelle lien moyen ou average
linkage ou Unweighted paired group method with arithmetic mean
(UPGMA), la distance entre deux clusters définie par :

dmoyen (Ck ,Cℓ) =
1

|Ck |

1

|Cℓ|

∑

u⃗∈Ck

∑

v⃗∈Cℓ

d (u⃗, v⃗)

⇒ minimiser le lien moyen revient à agglomérer les deux clusters
dont les éléments sont les plus proches en moyenne
Définition 12.10 (Lien centröıdal) On appelle lien centröıdal ou
centroid linkage, la distance entre deux clusters définie par :

dcentroid (Ck ,Cℓ) = d




1

|Ck |

∑

u⃗∈Ck

u⃗,
1

|Cℓ|

∑

v⃗∈Cℓ

v⃗



 = d (µ⃗k , µ⃗ℓ)

⇒ minimiser le lien centröıdal agglomère les deux clusters qui ont
leur deux éléments centröıdes le plus proches
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Agglomération de cluster visant une bonne homogénéité

Favoriser l’homogénéité : on cherchera à identifier les deux
clusters dont l’agglomération fournit le cluster qui minimise

Tk =
1

|Ck |

∑

x⃗∈Ck

d(x⃗ , µ⃗k)

En particulier, dans le cas de la distance euclidienne, on a

Tk =
1

|Ck |

∑

x⃗∈Ck

∥x⃗ − µ⃗k∥2 → Attention : distance (et pas ∥ · ∥22 )
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Agglomération de cluster visant une bonne homogénéité
(suite) : clustering de Ward

Définition 12.11 (Inertie) On appelle variance intra-cluster ou
inertie du cluster C la valeur

Varin(C) =
1

|C|

∑

x⃗∈C

∥x⃗ − µ⃗∥22

L’inertie globale d’un clustering de D est alors donnée par la somme
des inerties des clusters :

V =
K∑

k=1

1

|C|

∑

x⃗∈Ck

∥x⃗ − µ⃗k∥
2
2

⇒ agglomérer les deux classes de sorte à minimiser la variance
intra-cluster.
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Choix du nombre de clusters et complexité algorithmique

Clustering hiérarchique ne requiert pas de définir un nombre de
classes par avance : toutes les possibilités peuvent être explorée
(mais la décision est tout de même requise à un moment).

Organisation des clusters en dendrogramme (longueur d’une branche
proportionnelle à la distance)

Complexité algorithmique du clustering hiérarchique est élevée : à
chaque itération pour décider quels clusters regrouper, il faut
calculer les distances deux à deux entre toutes les paires
d’observations du jeu de données, pour une complexité en O(pn2).
Alternative : stocker ces distances en mémoire pour pouvoir les
réutiliser (complexité quadratique en le nombre d’observations).

Le clustering hiérarchique est donc plus adapté aux jeux de données
contenant peu d’échantillons.
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David Hillis’s 2008 plot of the tree of life, based on
completely sequenced genomes

rose : eukaryotes
(animaux, plantes,
fungi)
bleu : bactéries
vert : archaea.

https://upload.wikimedia.org/wikipedia/commons/1/11/Tree_of_life_SVG.svg

Ivica Letunic : Iletunic. Retraced by Mariana Ruiz Villarreal : LadyofHats
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Méthode des k-moyennes

Alternative à l’exploration de toutes les partitions possibles à des
échelles différentes : se fixer un nombre K de clusters

La méthode des k-moyennes (k-means), Hugo Steinhaus (1957),
cherche trouver l’affectation des observations à K clusters qui
minimise la variance intra-cluster globale (favorisation des clusters
homogènes) pour un nombre de clusters K fixé :

argmin
C1,C2,...,CK

K∑

k=1

∑

x⃗∈Ck

∥x⃗ − µ⃗k∥
2
2

Résolution exacte n’est pas possible
⇒ on utilise une heuristique : algorithme de Lloyd.
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Méthode des k-moyennes : Algorithme de Lloyd (Stuart
Lloyd, 1982)

Définition 12.12 (Algorithme de Lloyd) Etant données n
observations dans Rp et un nombre K de clusters, l’algorithme de
Lloyd procède de la manière suivante :
1. choisir K observations µ⃗1,µ⃗2,. . ., µ⃗K parmi les

n observations (centröıdes initiaux)
2. Affecter chaque observations x⃗ i ∈ D au centröıde

dont elle est le plus proche

k
(
x⃗ i
)
= argmin

k=1,...,K

∥
∥x⃗ i − µ⃗k

∥
∥
2

3. Recalculer les centröıdes de chaque cluster :

µ⃗k =
1

|Ck |

∑

x⃗ i∈Ck

x⃗ i

4. Répéter les opérations 2–3 jusqu’à convergence
(lorsque les affectations ne changent plus) W
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Exemple K-means (itération 00)
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Exemple K-means (itération 01)
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Exemple K-means (itération 02)
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Exemple K-means (itération 03)
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Exemple K-means (itération 04)
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Exemple K-means (itération 05)
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Exemple K-means (itération 06)
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Exemple K-means (itération 07)
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Exemple K-means (itération 08)
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Exemple K-means (itération 09)
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Exemple K-means (itération 10)
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Exemple K-means (itération 11)
C
h
ir
e,

w
ik
ip
ed

ia
.o
rg
/
w
ik
i/
K
-m

ea
n
s
cl
u
st
er
in
g

Michael Liebling EE-311—Apprentissage machine / 6. Clustering 43 / 73



Exemple K-means (itération 12)
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Exemple K-means (itération 13)
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Exemple K-means (itération 14)
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Algorithme de Lloyd (discussion)

Convergence vers la solution globale
Algorithme de Lloyd suit une stratégie gloutonne (greedy, il fait,
étape par étape, un choix optimum local) :

• converge en général très rapidement

• peut tomber dans un minimum local

⇒ pertinent de le faire tourner plusieurs fois (avec des initialisations
différentes) et garder la solution qui a la plus faible variance
intra-cluster

Exemple de convergence vers un minimum local

Source : Agor153 https://en.wikipedia.org/wiki/K-means_clustering
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Algorithme de Lloyd (discussion, 2)

Coût de calcul

• calcul de Kn distances en p dimensions : O (npK )

• calcul répété t itérations : O (npKt)

Comme K , t j n l’algorithme est linéaire en le nombre
d’observations n (rappel, coût du clustering hiérarchique O(n2)) :
→ le calcul des distances d’une observation x⃗ i aux n − 1 autres
points est remplacé par un calcul de sa distance à K centröıdes.
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Algorithme de Lloyd (discussion, 3)

Forme des clusters clusters forment des domaines avec chaque
observation attachée au centröıde dont elle est le plus proche :
diagramme de Voronöı, domaine convexe

Sensibilité aux données aberrantes Données aberrantes vont
tirer un cluster à elles : une observation x⃗ i très éloignées des autres
observations formera son propre cluster (reste partitionné en K − 1
clusters) ⇒ peut être utilisé précisément pour la détection
d’observations aberrantes
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Exemple d’application : clustering par couleurs

Combien de couleurs de balles dans cette image RGB ?
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Chaque Pixel dans une image RGB est une observation dans
un espace à 3 dimensions

Dans cette image, il y a n = 90× 120 = 10800 pixels x⃗ i avec
chacun p = 3 valeurs : x⃗ i = (x i1, x

i
2, x

i
3) = (red, green, blue)

But du clustering : assigner chaque pixel x⃗ i à l’un de K cluster
selon ses valeurs RGB (segmentation d’image par clustering des
couleurs).
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Le problème du clustering vu dans l’espace RGB (1/4

Chaque point dans cet espace RGB représente un pixel de l’image.
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Le problème du clustering vu dans l’espace RGB (2/4)

Avec la couleur correspondante pour faciliter la visualisation
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Le problème du clustering vu dans l’espace RGB (3/4)

Après clustering K-means (K = 7), la couleur des pixels . . .
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Le problème du clustering vu dans l’espace RGB (4/4)

. . . est celle du centröıde du cluster.
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Clustering avec K = 7
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K-means color clustering K = 7
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K-means color clustering K = 6
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K-means color clustering K = 20
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Variantes du k-means : k-means++

L’algorithme du k-means est stochastique : on peut obtenir des
résultats différents selon l’initialisation, et certains de ces résultats
peuvent avoir une inertie bien plus grande que la solution optimale.
Pour éviter ce problème, l’algorithme k-means++ commence par
initialiser les centröıdes de manière à les disperser au maximum
parmi les données. Plus précisément, la procédure consiste à

1. Choisir un premier centröıde x⃗1 aléatoirement parmi les
observations D

2. Pour k = 2, . . . ,K : Choisir le k-ème centröıde u⃗k parmi
D \ u⃗k−1, en suivant une loi proportionnelle au carré de la
distance à u⃗k−1, c’est-à-dire que u⃗k aura de fortes chances
d’être éloigné de u⃗k−1

Cette approche ne rend pas le k-means déterministe, mais permet
d’éviter les j pires k solutions.
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Méthode des k-moyennes avec noyau

La méthode des k-moyennes requiert de décrire les données dans un
espace euclidien, et ne peut former que des clusters convexes, ce qui
peut être limitant. Cependant, l’astuce du noyau (cf. section 10.3.3)
s’applique à l’algorithme de Lloyd.
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Rappel : Cas non linéaire : SVM à noyau

Les fonctions linéaires ne sont pas toujours appropriées pour séparer
les données. . .

A
ze
n
co

tt

Idée : définir un espace de redescription dans lequel la fonction de
séparation est linéaire.
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Rappel : Espace de redescription : un exemple

Exemple : la fonction

f : R2 → R

x⃗ 7→ x21 + x22 − R2

n’est pas linéaire en x⃗ = (x1, x2) mais elle est linéaire en (x21 , x
2
2 ).

On peut donc définir

ϕ : R2 → R
2

(x1, x2) 7→
(
x21 , x

2
2

)

La fonction de décision f est linéaire en ϕ (x⃗) :

f (x⃗) = (ϕ (x⃗))1 + (ϕ (x⃗))2 − R2

et nous pouvons l’apprendre en utilisant une SVM sur les images des
données par l’application ϕ.
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Rappel : Espace de redescription : cas général

Dans le cas général, les observations sont dans un espace
quelconque X :

• X = R
p

• X = ensemble des châınes de caractères sur un alphabet donné

• X = espace de tous les graphes

• X = espace de fonctions

Définition 10.8 (Espace de redescription) On appelle espace de
redescription l’espace de Hilbert ℋ dans lequel il est souhaitable de
redécrire les données, au moyen d’une application ϕ : X →ℋ, pour
y entrâıner une SVM sur les images des observations du jeu
d’entrâınement.

La redescription des données dans un espace de Hilbert nous permet
d’utiliser un algorithme linéaire, comme la SVM à marge souple,
pour résoudre un problème non linéaire.
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Rappel : Définition du noyau

Définition 10.10 (Noyau) Nous appelons noyau toute fonction k

de deux variables s’écrivant sous la forme d’un produit scalaire des
images dans un espace de Hilbert de ses variables. Ainsi, un noyau
est une fonction continue, symétrique, et semi-définie positive :

∀N ∈ N, ∀
(
x⃗1, x⃗2, . . . , x⃗N

)
∈ X

N et (a1, a2, . . . , aN) ∈ R
N ,

N∑

i=1

N∑

ℓ=1

aiaℓk
(
x⃗ i , x⃗ ℓ

)
g 0.

Définition 10.11 (Matrice de Gram) Étant données n
observations

(
x⃗1, x⃗2, . . . , x⃗N

)
∈ X

N et un noyau k sur X, on
appelle matrice de Gram de ces observations la matrice K ∈ R

n×n

telle que
Kiℓ = k

(
x⃗ i , x⃗ ℓ

)

Cette matrice est semi-définie positive.
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Méthode des k-moyennes avec noyau : dérivation

Soit » : X ×X 7→ R un noyau.

Il existe un espace de Hilbert ℋ et une application ϕ : X →ℋ

telle que, pour toute paire x⃗ , x⃗ ′ ∈ X ×X :

»(x⃗ , x⃗ ′) = ïϕ (x⃗) , ϕ (x⃗ ′)ðℋ.

Pour appliquer l’algorithme de Lloyd aux images
{ϕ (x⃗1) , ϕ (x⃗2) , . . . , ϕ (x⃗n)} des éléments de D dans ℋ, nous
aurions besoin de calculer, à chaque itération, la distance de ϕ

(
x⃗ i
)

à chacun des K centröıdes h⃗1, h⃗2, . . ., h⃗K .

La position d’un centröıde h⃗k se calcule(rait) comme la moyenne des
images des observations appartenant à Ck :

h⃗k =
1

|Ck |

∑

x⃗ i∈Ck

ϕ
(
x⃗ i
)
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Méthode des k-moyennes avec noyau : dérivation (suite)

Or la distance de l’image d’une observation x⃗ i à un centröıde peut
se calculer comme :

∥
∥
∥ϕ

(
x⃗
i
)
− h⃗k

∥
∥
∥

2

2
=

∥
∥
∥
∥
∥
∥

ϕ
(
x⃗
i
)
−

1

|Ck |

∑

x⃗ i∈Ck

ϕ
(
x⃗
i
)

∥
∥
∥
∥
∥
∥

2

2

=

〈

ϕ
(
x⃗
i
)
−

1

|Ck |

∑

x⃗ i∈Ck

ϕ
(
x⃗
i
)
, ϕ

(
x⃗
i
)
−

1

|Ck |

∑

x⃗ i∈Ck

ϕ
(
x⃗
i
)

〉

ℋ

= »
(
x⃗
i , x⃗ i

)
−

2

|Ck |

∑

u⃗∈Ck

»
(
u⃗, x⃗ i

)
+

1

|Ck |2

∑

u⃗∈Ck

∑

v⃗∈Ck

» (u⃗, v⃗)

On peut ainsi calculer l’affectation des observations à l’étape 2
(Slide 33) :

k
(
x⃗
i
)
= argmin

k=1,...,K

∥
∥
∥ϕ

(
x⃗
i
)
− h⃗k

∥
∥
∥

2

2

sans devoir calculer ϕ et sans avoir à jamais calculer les centröıdes de
manière explicite (l’étape 3 n’est plus nécessaire, on itère sur l’étape 2) :
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Algorithme de Lloyd avec noyau
Etant données n observations dans Rp, un nombre K de clusters, et
un noyau » (x⃗ , x⃗ ′) :
1. choisir K observations µ⃗1,µ⃗2,. . ., µ⃗K parmi les n observations (centröıdes

initiaux) et affecter chaque observation x⃗
i ∈ D au centröıde tranformé

initial h⃗k = ϕ (µ⃗k) pour lequel la transformée ϕ
(
x⃗
i
)
est la plus proche :

k
(
x⃗
i
)
= argmin

k=1,...,K

∥
∥
∥ϕ

(
x⃗
i
)
− h⃗k

∥
∥
∥

2

2

= argmin
k=1,...,K

(
»
(
x⃗
i , x⃗ i

)
− 2»

(
x⃗
i , µ⃗k

)
+ » (µ⃗k , µ⃗k)

)

2. Affecter chaque observations x⃗ i ∈ D au centröıde transformé h⃗k = ϕ (µ⃗k)
pour lequel sa transformation ϕ

(
x⃗
i
)
est le plus proche :

k
(
x⃗
i
)
= argmin

k=1,...,K

∥
∥
∥ϕ

(
x⃗
i
)
− h⃗k

∥
∥
∥

2

2

= argmin
k=1,...,K

(

»
(
x⃗
i , x⃗ i

)
−

2

|Ck |

∑

u⃗∈Ck

»
(
u⃗, x⃗ i

)
+

1

|Ck |2

∑

u⃗∈Ck

∑

v⃗∈Ck

»
(

u⃗, v⃗
))

3. Recalculer les centröıdes de chaque cluster ← les centröıdes en 2 sont
implicites, l’astuce du noyau ne requiert pas leur calcul explicite !

4. Répéter opération 2 jusqu’à convergence (affectations ne changent plus)
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Version à noyau de la méthode des k-moyennes : remarques

• il faut initialiser les clusters (centröıdes aléatoires, calcul explicite
de l’étape 2)

• La version à noyau de la méthode des k-moyennes ne permet
généralement pas de connâıtre les centröıdes des clusters, puisqu’ils
vivent dans l’espace de redescription ℋ qui n’est pas accessible sans
connâıtre ϕ.
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Clustering par densité

A
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Clustering par densité (suite)
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Clustering : conclusions

• clustering = partitionnement de données cherche à identifier
des classes sans utiliser d’étiquettes

• en l’absence d’étiquettes, la qualité d’une partition peut
s’évaluer sur la base de critères de séparabilité et d’homogénéité

• Le clustering hiérarchique partitionne les données de manière
itérative. Son résultat peut être visualisé sur un dendrogramme.

• Le clustering par la méthode des k-moyennes s’effectue grâce à
l’algorithme de Lloyd ou une de ses variantes. Il permet de
trouver efficacement K clusters convexes.

• La version à noyau de la méthode des k-moyennes permet de
l’appliquer pour découvrir des clusters non convexes.

• Le clustering par densité permet d’identifier des régions denses
du jeu de données, c’est-à-dire des observations qui peuvent
former un ensemble non convexe mais qui sont proches les unes
des autres.
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Guide de lecture pour ce cours

Chloé-Agathe Azencott “Introduction au Machine Learning”,
Dunod, 2019, ISBN 978-210-080153-4
Chapitre 12 : Clustering
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