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Introduction

auMachine

Learning
Ces transparents sont basés en grande partie sur le g
texte de Chloé-Agathe Azencott “Introduction au ]
Machine Learning”, Dunod, 2019

ISBN 978-210-080153-4

L'auteure a mis le texte (sans les exercices) a disposition ici :
http://cazencott.info/dotclear/public/lectures/
IntroML_Azencott.pdf

Avertissement : Bien que ces transparents partagent la notation
mathématique, la structure de I'exposition (en partie), et certains
exemples avec le livre, ils ne constituent qu'un complément et non
un remplacement ou une source unique pour la couverture des
matiéres du cours. A ce titre, ces transparents ne se substituent pas
au texte.
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Motivation
Comment étudier des données non étiquetées ?

Si la réduction de dimension nous permet de visualiser les données
(en 2D, 3D), les méthodes de partitionnement de données
(= clustering) nous permettent d'aller beaucoup plus loin :

Le clustering permet de séparer les données en sous-groupes
homogeénes, appelés clusters, qui partagent des caractéristiques
communes.
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Contenu

« Expliquer l'intérét d'un algorithme de clustering
. Evaluer le résultat d’un algorithme de clustering
« Décrire les implémentations de

« clustering hiérarchique
« clustering par la méthode des k moyennes
« clustering par densité.
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Partitionnement (Clustering)

Définition : on appelle partitionnement ou clustering un probleme
d'apprentissage non supervisé pouvant étre formalisé comme la
recherche d'une partition UkK:1 @) des n observations {x"};_1 .
Cette partition doit étre pertinente au vu d'un ou plusieurs critéres a
préciser.

e~ )O
Observations ,| Algorithme Q

de ML
~
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gL, z%,...,8" X {# ’e n}—Uck

FIGURE 1.3 - Partitionnement des données, ou clustering.

Azencott
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Pourquoi partitionner ses données
Analyse exploratoire sur des données non étiquetées par
identification :
« de groupes d'utilisateurs qui ont des comportements similaires
(segmentation de marché)
« de communautés sur un réseau social

« de motifs récurrents dans des transactions financiéres

de pixels appartenant a un méme objet dans une image
(segmentation d'image)
« de patients dont la maladie s'explique par un méme profil
génétique
Visualisation :
e représenter un seul exemple représentatif par cluster
Etiquetage rapide lorsque difficile ou coliteux :

e transfert des propriétés (e.g. étiquette) que I'ont sait vraies de I'un

des éléments de ce cluster a toutes les observations du méme cluster
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Exemple : clustering de textes

Probléme : assigner un sujet a 600 articles de journal (sport,
culture, politique, santé, etc.)

Lecture humaine serait fastidieuse et sujette a des erreurs
d'inattention.

Solution (moins coliteuse et potentiellement plus efficace) :

1. utiliser un algorithme de clustering pour regrouper
automatiquement les documents par sujet (sans que celui-ci
soit connu pour autant) sur la base, par exemple, de mots
fréquents qu'ils ont en commun

2. recourir a un intervenant humain pour assigner un sujet a
chaque cluster en lisant uniquement un ou deux des documents
qu'il contient
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Notation
Jeu de données non étiqueté

9= {22, 1)
de n points d'un espace 2" partitionné en K clusters
61,6, ...,6k.

Distance sur 4 : d

Indice du cluster auquel x a été assigné : k(X)
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Centroide et médoide

Définition 12.1 (Centroide et médoide) on appelle centroide du

cluster & le point défini par

Zx

X€€

Le médoide est le point du cluster le plus proche du centroide (il
peut ne pas étre unique, auquel cas il sera choisi arbitrairement).

Il sert de représentant du cluster :

Mg = argmin d(X, fiz)
K€%
Note :

« le centroide est le
barycentre d'un
cluster

Michael Liebling
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Homogénéité

Définition 12.2 (Homogénéité) On appelle homogénéité du
cluster G (tightness), la moyenne des distances des observations de
ce cluster a son centroide :

1
Tk =755 d(X, fix)
|%k|);%k

avec jiy le centroide de 6. Note : Plus T est petit plus on dit que
le cluster est homogene.

L'homogénéité globale d'un clustering de D se calcule comme la
moyenne des homogénéités des clusters :

1 K
T==-N"7
K; g
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Exemples : homogénéité

La notion d'homogénéité traduit le fait que des observations proches
appartiennent au méme cluster.

petit T

grand T
homogénéité importante

peu homogene
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FIGURE 12.1 - Les deux clusters représentés sur le panneau de gauche sont homogenes, resserrés sur eux-

mémes : ils sont composés de points proches les uns des autres. A I'inverse, les deux clusters représentés
mkapasmegu de droite sont moins thOgéEE&}ll—Apprentissage machine / 6. Clustering



Séparabilité
Définition 12.3 (Séparabilité) On appelle séparabilité des clusters
€, et 6, la distance entre leurs centroides :

Ske = d(ﬁk, ﬁz)-

La séparabilité globale d'un clustering de & se calcule comme la
moyenne des séparabilités des clusters deux a deux :

2 K K
5= KK 1) 2 2 S
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Exemples : séparabilité
La séparabilité quantifie a quel point les clusters sont distants les
uns des autres.

High Separability S Low Separability S
grande séparabilité faible séparabilité

$ *
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FIGURE 12.2 - Les trois clusters représentés sur le panneau de gauche sont bien séparés, contrairement &
ceux représentés sur le panneau de droite qui sont proches les uns des autres.

Michael Liebling

Azencott
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Indice de Davies-Bouldin
Un bon clustering présente

« des criteres de séparabilité élevés (S grand)
bonne homogénéité (T petit)

Y'a-t-il moyen de combiner les deux notions ?
Définition 12.4 (Indice de Davies-Bouldin) On appelle indice de
Davies-Bouldin du cluster € la valeur

T+ T,
0 <Dy=max—— <
—~ t#k Sk _ .
le pire cluster (proche de @ et peu il y a un cluster voisin
homogene) est néanmoins trés loin et trés proche et trés peu
trés homogene homogene

L'indice de Davies-Bouldin global d'un clustering de & se calcule
comme la moyenne des indices de Davies-Bouldin des clusters :

< ZDk< e

clustering idéal pire clusterlng
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Coefficient de silhouette

Définition 12.5 (Coefficient de silhouette) On appelle
coefficient de silhouette de |'observation X € & la valeur

(%) — (%
) b —a(D)

max(a(%), b(x))
ol a(X) est la distance moyenne de x a tous les autres éléments du

cluster auquel il appartient et b(x) est la plus petite valeur que
pourrait prendre a(x) si X appartenait a un autre cluster :

_ 1 o
a(x) = W Z d(U,X)

JE(gk(;),lj;é)?
1
b(x) = min — d(u, x).
(9= e, g 2 446
Le coefficient de silhouette global du clustering est son coefficient
de silhouette moyen : 1
s=— s (x') .
LS s (7)

i=1
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Coefficients de silhouette (suite)

Le coefficient de silhouette de x est d'autant plus proche de 1 que
son assignation au cluster s est satisfaisante.

Si le coefficient est proche de -1, I'assignation au cluster est erronée.
Si le coefficient est 0, I'assignation a I'un ou I'autre cluster est

indifférente, il n'y aurait pas de changement significatif si x était
assigné a un autre cluster.
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Stabilité des clusters
Clustering stable : le partitionnement ne change pas si

« on supprime quelques éléments
« on perturbe quelques éléments

« on initialise I'algorithme de partitionnement de maniere
différente

Ce critere peut étre utilisé pour choisir les hyperparamétres de
I'algorithme : si on obtient des clusters tres différents pour
différentes initialisations de I'algorithme de partitionnement, cela
peut indiquer que les hyperparameétres sont mal choisis.
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Connaissances expert

Si on dispose d'un jeu de données partiellement étiqueté par des
classes auquel on applique une algorithme de clustering : les indices
des clusters ne correspondent pas forcément a ceux des classes
(premiere classe, seconde classe, etc.) = une évaluation de la
qualité de clustering ne devra donc pas pénaliser |'assignation a une
partition d'indice différent que celui de la classe; seul les
groupements sont a prendre en compte.
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Connaissances expert

Définition 12.6 (Indice de Rand) On appelle indice de Rand la
proportion de paires d'observations qui sont soit :

« de la méme classe et dans le méme cluster

. de classe différente et dans deux clusters différents :

- ,,_1225 = k()3 (v =)

i=1 {=i+1

+0 (k(X) # k(x)) (v #¥)
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Connaissances expert : ontologies, cohérence d’un clustering
par analyse d’enrichissement

ontologie : une classification d'objets en catégories décrites par un
vocabulaire commun et organisées de maniére hiérarchique (par
exemple, des genes en bioinformatique)
Analyse d’enrichissement : évaluer la cohérence d'un clustering
en vérifiant si, a I'intérieur d'un cluster, le nombre d'objets d'une
catégorie de I'ontologie s'écarte de ce a quoi on pourrait s'attendre
si leur distribution était aléatoire (distribution hypergéométrique).
Pour un cluster &y, une catégorie € et un seuil t € N on calcule :
t—1 (1Z]\ (n—I%|
P[|% NG| > 1] :1—2(5)(%35)
s=0 |G|

vee (07
(\%’k\)
parmi n, s d’entre eux appartiennent a &

la probabilité que, lorsqu’on tire || éléments
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Algorithmes de clustering
e Les algorithmes de clustering cherchent a optimiser les critéres
d'homogénéité et de séparabilité.

e Pas d'approche exacte, seulement des manieres approchées.

e Trois principales familles d'algorithmes de clustering :

« clustering hiérarchique,
« clustering par centroides,

« clustering par densité.
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Clustering hiérarchique

Le clustering hiérarchique forme des clusters séparés par récurrence :
il s'agit de partitionner les données pour toutes les échelles possibles
de taille de partition, dans une hiérarchie a plusieurs niveaux.

Dendrogramme Le résultat d'un clustering hiérarchique peut se
visualiser sous la forme d'un dendrogramme. Il s'agit d’un arbre dont
les n feuilles correspondent chacune a une observation. Chaque
noeud de I'arbre correspond a un cluster :

la racine est un cluster contenant toutes les observations

« chaque feuille est un cluster contenant une observation

« les clusters ayant le méme parent sont agglomérés en un seul
cluster au niveau au-dessus

« un cluster est subdivisé en ses enfants au niveau au dessus
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Exemple de dendrogramme
1000

800

600

400

200

0

FIGURE 12.3 - Un exemple de dendrogramme. En coupant au niveau de la ligne en pointillés, on obtient 3
clusters. Chaque feuille de 1'arbre (sur |'axe des abscisses) correspond 4 une observation.

Azencott
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Types de méthodes de construction des clustering
hiérarchique
Un clustering hiérarchique peut se construire par :

« clustering agglomératif (bottom-up clustering), commence par
les feuilles avec chaque observation qui forme un cluster de
taille 1. A chaque itération, on trouve et agglomere les deux
clusters les plus proches jusqu'a ne plus avoir qu'un unique
cluster contenant les n observations.

« clustering divisif, ou top-down clustering : initialise en
considérant un seul cluster contenant toutes les observations. A
chaque itération, on sépare un cluster en deux, jusqu'a ce que
chaque cluster ne contienne plus qu'une seule observation.

Focus sur clustering agglomératif.

Question clé : comment trouver déterminer les deux clusters les
plus proches a agglomérer ?

Réponse : définir une distance entre clusters, i.e. une fonction de

lien (linkage). Se base sur une distance d sur Z.
Michael Liebling EE-311—Apprentissage machine / 6. Clustering 23 /73



Fonctions de lien qui visent a garantir la séparabilité des
clusters

Définition 12.7 (Lien simple) On appelle lien simple ou single
linkage, la distance entre deux clusters définie par :

ds; CG,6,) = min d(u,v

S|mp|e( k> f) (0.7)E6ex %, ( ’ )

= minimiser le lien simple revient a examiner la distance la plus
proche entre éléments de toutes les paires de clusters et a
agglomérer les deux clusters pour laquelle cette distance est la plus
petite (minimisation d'une distance min)

Définition 12.8 (Lien complet) On appelle lien complet ou
complete linkage, la distance entre deux clusters définie par :

d, Gk, 6) = max d(d,v

complet( ks Z) (0.7)C6, x %, ( ) )
= minimiser le lien complet agglomere les deux clusters qui ont

tous leurs éléments proches (minimisation d'une distance max)
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Fonctions de lien qui visent a garantir la séparabilité des
clusters (suite)

Définition 12.9 (Lien moyen) On appelle lien moyen ou average
linkage ou Unweighted paired group method with arithmetic mean
(UPGMA ), la distance entre deux clusters définie par :

dmoyen ((gka %/) Z Z d
|(5k| !%!
UEG, VEG,
= minimiser le lien moyen revient a agglomérer les deux clusters
dont les éléments sont les plus proches en moyenne
Définition 12.10 (Lien centroidal) On appelle lien centroidal ou
centroid linkage, la distance entre deux clusters définie par :

dcentroid (%k-/ %E) ‘%&k’ Z Z :ukv /W)

= minimiser le lien centroidal agglomére les deux clusters qui ont

leur deux éléments centroides le plus proches
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Agglomération de cluster visant une bonne homogénéité

Favoriser I'lhomogénéité : on cherchera a identifier les deux
clusters dont |'agglomération fournit le cluster qui minimise

\<‘gk| Z dx

XEBx

En particulier, dans le cas de la distance euclidienne, on a

Ty = |<g | Z |X — jixl, — Attention : distance (et pas || - |3 )
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Agglomération de cluster visant une bonne homogénéité
(suite) : clustering de Ward

Définition 12.11 (Inertie) On appelle variance intra-cluster ou
inertie du cluster € la valeur

Var,(€¢)

XE€E

L'inertie globale d'un clustering de & est alors donnée par la somme
des inerties des clusters :

V= Z ZHX il

XG%;(

= agglomérer les deux classes de sorte a minimiser la variance
intra-cluster.
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Choix du nombre de clusters et complexité algorithmique

Clustering hiérarchique ne requiert pas de définir un nombre de
classes par avance : toutes les possibilités peuvent étre explorée
(mais la décision est tout de méme requise a un moment).

Organisation des clusters en dendrogramme (longueur d'une branche
proportionnelle a la distance)

Complexité algorithmique du clustering hiérarchique est élevée : a
chaque itération pour décider quels clusters regrouper, il faut
calculer les distances deux a deux entre toutes les paires
d’observations du jeu de données, pour une complexité en O(pn?).
Alternative : stocker ces distances en mémoire pour pouvoir les
réutiliser (complexité quadratique en le nombre d’observations).

Le clustering hiérarchique est donc plus adapté aux jeux de données
contenant peu d'échantillons.
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David Hillis’s 2008 plot of the tree of life, based on
completely sequenced genomes

1

Wil o
S iR,
A /;/2/;%,}% \
R ,%

rose : eukaryotes
(animaux, plantes,

fungi)
Yty bleu : bactéries
— vert : archaea.

https://upload.wikimedia.org/wikipedia/commons/1/11/Tree_of_life_SVG.svg

lvica Letunic : lletunic. Retraced by Mariana Ruiz Villarreal : LadgofHats
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Méthode des k-moyennes

Alternative a I'exploration de toutes les partitions possibles a des
échelles différentes : se fixer un nombre K de clusters

La méthode des k-moyennes (k-means), Hugo Steinhaus (1957),
cherche trouver |'affectation des observations a K clusters qui
minimise la variance intra-cluster globale (favorisation des clusters
homogenes) pour un nombre de clusters K fixé :

K
. — - 112
argmin > 57 |18 — i

%1:%27“-:%/( k=1 >?6‘€k

Résolution exacte n'est pas possible
= on utilise une heuristique : algorithme de Lloyd.

Michael Liebling EE-311—Apprentissage machine / 6. Clustering 30/ 73



Méthode des k-moyennes : Algorithme de Lloyd (Stuart

Lloyd, 1982)

Définition 12.12 (Algorithme de Lloyd) Etant données n
observations dans R” et un nombre K de clusters, I'algorithme de

Lloyd procede de la maniere suivante :
1. choisir K observations fi1,/iy,.. ., fix parmi les

n observations (centroides initiaux)
2. Affecter chaque observations x’ € & au centroide
dont elle est le plus proche

k(¥) = argmin [|x" — fie[|

3. Recalculer les centroides de chaque cluster :

L, = —— X
Hk ] Z

)?iECgk

4. Répéter les opérations 2—3 jusqu'a convergence

(lorsque les affectations ne changent plus)
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Exemple K-means (itération 00)
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Exemple K-means (itération 01)

0.9 v
+
+ ++
+%
0.8 1 +§
+ #_t}.
+ F
e f*"
0.7 1 ot *
+
+
0.6 1 T+
*
+
054 * * 2
: ++ g
++++ a
0.4 + ks é
+
B o
=
i
0.3 ¢ E
S~
20
S
02+ 3
-3
. =
Iteration #1 z
0.1 : : : - - - - 2 : =
0 0.1 0.2 03 04 05 06 0.7 08 0.9 15

Michael Lieblin EE-311—Apprentissage machine / 6. Clustering 33/73
g



Exemple K-means (itération 02)

Michael Liebling
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Exemple K-means (itération 03)

Michael Liebling
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Exemple K-means (itération 04)
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Exemple K-means (itération 05)
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Exemple K-means (itération 06)
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Exemple K-means (itération 07)
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Exemple K-means (itération 08)
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Exemple K-means (itération 09)
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Exemple K-means (itération 10)
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Exemple K-means (itération 11)
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Exemple K-means (itération 12)
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Exemple K-means (itération 13)
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0.1

Chire, wikipedia.org/wiki/K-means_clustering

(e N
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Exemple K-means (itération 14)

0.9
0.8
0.7
0.6
0.5
0.4 +

0.3 4

0.2 ¢

Iteration #14
0 01 02 03 04 05 06 07 08 09

0.1

Chire, wikipedia.org/wiki/K-means_clustering

(e N
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Algorithme de Lloyd (discussion)

Convergence vers la solution globale
Algorithme de Lloyd suit une stratégie gloutonne (greedy, il fait,
étape par étape, un choix optimum local) :

« converge en général tres rapidement

« peut tomber dans un minimum local
= pertinent de le faire tourner plusieurs fois (avec des initialisations
différentes) et garder la solution qui a la plus faible variance
intra-cluster

A iy :
Y : : :
i ¥ s g

Exemple de convergence vers un minimum local

; + Ay A ¥ & A
- .. - ALY
‘. 4 * Z - .
a7 4 o e i i 4 #5 1
"l A S B T e

Source : Agorl53 https://en.wikipedia.org/wiki/K-means_clustering
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Algorithme de Lloyd (discussion, 2)
Coit de calcul

. calcul de Kn distances en p dimensions : O (npK)

o calcul répété t itérations : O (npKt)
Comme K, t < n I'algorithme est linéaire en le nombre
d'observations n (rappel, colit du clustering hiérarchique ©(n?)) :
— le calcul des distances d'une observation x" aux n — 1 autres
points est remplacé par un calcul de sa distance a K centroides.
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Algorithme de Lloyd (discussion, 3)

Forme des clusters clusters forment des domaines avec chaque
observation attachée au centroide dont elle est le plus proche :
diagramme de Voronoi, domaine convexe

Sensibilité aux données aberrantes Données aberrantes vont
tirer un cluster 2 elles : une observation X' trés éloignées des autres
observations formera son propre cluster (reste partitionné en K — 1
clusters) = peut &tre utilisé précisément pour la détection
d'observations aberrantes
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Exemple d’application : clustering par couleurs

Combien de couleurs de balles dans cette image RGB 7

Michael Liebling EE-311—Apprentissage machine / 6. Clustering 50/ 73



Chaque Pixel dans une image RGB est une observation dans
un espace a 3 dimensions

Dans cette image, il y a n = 90 x 120 = 10800 pixels X' avec
chacun p = 3 valeurs : X' = (x], x4, x}) = (red, green, blue)

x5 (Blug]

X1 [Green)

#1 (Red)

u @ an 6 ) L

a 2 a0 s i iy

But du clustering : assigner chaque pixel X' 3 I'un de K cluster
selon ses valeurs RGB (segmentation d'image par clustering des

couleurs).
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Le probleme du clustering vu dans I'’espace RGB (1/4

x3 (Blue)

0.0

o 0.
Reg) 0.8

10 00
Chaque point dans cet espace RGB représente un pixel de I'image.
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Le probleme du clustering vu dans I'espace RGB (2/4)

X1 (Blue)

0.0

X 0.
Reg) 0.8

10 00

Avec la couleur correspondante pour faciliter la visualisation
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Le probleme du clustering vu dans I'espace RGB (3/4)

X1 (Blue)

0.0

¥ 0.
Reg) 0.8

10 00

Apres clustering K-means (K = 7), la couleur des pixels . ..
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Le probleme du clustering vu dans I'espace RGB (4/4)

X3 (Blue)

0.0

0.4

E Reg) o 0.8

10 00

... est celle du centroide du cluster.
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Clustering avec K =7
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K-means color clustering K =7

)

Original image (

10800 color triplets

Quantized image (K=7 colors)
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K-means color clustering K =6

Original image (10800 colar triplets) Quantized image (K=6 colors)
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K-means color clustering K = 20

Michael Lieblin EE-311—Apprentissage machine / 6. Clustering 59 /73
g



Variantes du k-means : k-means++4

L'algorithme du k-means est stochastique : on peut obtenir des
résultats différents selon I'initialisation, et certains de ces résultats
peuvent avoir une inertie bien plus grande que la solution optimale.
Pour éviter ce probleme, I'algorithme k-means-++ commence par
initialiser les centroides de maniére a les disperser au maximum
parmi les données. Plus précisément, la procédure consiste a

1. Choisir un premier centroide x* aléatoirement parmi les
observations &

2. Pour k =2, ....K : Choisir le k-eme centroide 7* parmi
2 \ 0", en suivant une loi proportionnelle au carré de la
distance a "', c'est-a-dire que ¥ aura de fortes chances

—k—1

d'étre éloigné de u

Cette approche ne rend pas le k-means déterministe, mais permet

d'éviter les < pires > solutions.
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Méthode des k-moyennes avec noyau

La méthode des k-moyennes requiert de décrire les données dans un
espace euclidien, et ne peut former que des clusters convexes, ce qui
peut étre limitant. Cependant, |'astuce du noyau (cf. section 10.3.3)
s'applique a I'algorithme de Lloyd.
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Rappel : Cas non linéaire : SVM a noyau

Les fonctions linéaires ne sont pas toujours appropriées pour séparer

les données. ..

2
X3

(A) Un cercle semble bien mieux indigué qu'une (8) Aprés transformation par l'application ¢

droite pour séparer ces données.

{wy.wa) ++ (27, 23), les données sont linéairement
séparables dans I'espace de redescription.

FIGURE 10.4 - Transformer les données permet de les séparer linéairement dans un espace de redescription.

Idée : définir un espace de redescription dans lequel la fonction de

séparation est linéaire.
Michael Liebling
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Rappel : Espace de redescription : un exemple
Exemple : la fonction
f:R* =R
XX+ x5 — R

n'est pas linéaire en X = (x1, xo) mais elle est linéaire en (x7, x3).
On peut donc définir

¢ R?* = R?

(x1, %) — (xlz,x22)

La fonction de décision f est linéaire en ¢ (X) :

f(X)=(¢(X), + (¢ (X)), — R?

et nous pouvons |'apprendre en utilisant une SVM sur les images des
données par |'application ¢.
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Rappel : Espace de redescription : cas général

Dans le cas général, les observations sont dans un espace
quelconque & :

« X' =RP

« & = ensemble des chaines de caractéres sur un alphabet donné
« 4 = espace de tous les graphes

« 4 = espace de fonctions

Définition 10.8 (Espace de redescription) On appelle espace de
redescription |'espace de Hilbert 7 dans lequel il est souhaitable de
redécrire les données, au moyen d'une application ¢ : & — #, pour
y entrainer une SVM sur les images des observations du jeu
d’entrainement.

La redescription des données dans un espace de Hilbert nous permet
d'utiliser un algorithme linéaire, comme la SVM a marge souple,

pour résoudre un probléme non linéaire.
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Rappel : Définition du noyau

Définition 10.10 (Noyau) Nous appelons noyau toute fonction k
de deux variables s'écrivant sous la forme d'un produit scalaire des
images dans un espace de Hilbert de ses variables. Ainsi, un noyau
est une fonction continue, symétrique, et semi-définie positive :

VN e NV (3,2, ..., x") e TV et (a1, 2,...,an) €RY,

N N
ZZ ajack (¥',x") > 0.

i=1 (=1

Définition 10.11 (Matrice de Gram) Etant données n
observations (x*,x?,...,x") € 2" et un noyau k sur 2, on
appelle matrice de Gram de ces observations la matrice K € R"*”"

telle que
Klf — k (—’I —’E)

Cette matrice est semi-définie positive.
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Méthode des k-moyennes avec noyau : dérivation
Soit k : & x X — R un noyau.

Il existe un espace de Hilbert # et une application ¢ : &' — #
telle que, pour toute paire X, x’ € X' x X :

(X, X) = (6 (X), 0 (X))

Pour appliquer I'algorithme de Lloyd aux images
{o(xY),0(x),...,6(X")} des éléments de & dans %, nous
aurions besoin de calculer, a chaque itération, la distance de ¢ ()?’)

a chacun des K centroides Hl, 52, HK.

La position d'un centroide hj se calcule(rait) comme la moyenne des
images des observations appartenant a 6 :

—

1 oi
hk:@2¢(x)

YIE%;(
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Méthode des k-moyennes avec noyau : dérivation (suite)

Or la distance de I'image d'une observation X’ & un centroide peut
se calculer comme :

2
L2 q,
lo =) = A, = ||e (= w 3 6(x
X1 €B) 2
“I “I 1 -l

_<¢ W,Z(b )_@Z‘b( )>
X' ECx k )?"Ecgk %
S o 2 ~ ~, S
= X, X ) = = u,v
w ( ) |G| ,Kzg  (a, \%k|2 uez%k VEZ% )

On peut ainsi calculer I'affectation des observations a |'étape 2
(Slide 32) :
. 2
k ()?’) = argmln Hgb ‘

sans devoir calculer ¢ et sans avoir a jamais calculer les centroides de
maniere explicite (I'étape 3 n'est plus nécessaire, on itere sur |'étape 2) :
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Algorithme de Lloyd avec noyau
Etant données n observations dans RP, un nombre K de clusters, et
un noyau k (X, X') :
1. choisir K observations fi1,fi2,. .., fik parmi les n observations (centroides
initiaux) et affecter chaque observation X' € 2 au centroide tranformé
initial hx = ¢ (jix) pour lequel la transformée ¢ (X7) est la plus proche :

k (%)

argmln

= argmin (r (X, %) — 2k (X', fix) + & (fik, fix))
k=1,...,K

nflo ) -,

2. Affecter chaque observations X' € @ au centroide transformé B = o (i)
pour lequel sa transformation ¢ ()?‘) est le plus proche :

k ()?’) = argmln Hgf) — ﬁk"j
o (5 (7.7)— 23w (7)
- 5;%?7',',1(“ #2) = g 2 #09) + g 22 3w (39))

3. Reealenlerles—eentroides-dechagque—cluster < les centroides en 2 sont

implicites, I'astuce du noyau ne requiert pas leur calcul explicite !

4. Répéter opération 2 jusqu'a convergence (affectations ne changent plus)
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Version a noyau de la méthode des k-moyennes : remarques

e il faut initialiser les clusters (centroides aléatoires, calcul explicite
de I'étape 2)

e La version a noyau de la méthode des k-moyennes ne permet
généralement pas de connaitre les centroides des clusters, puisqu'ils
vivent dans I'espace de redescription # qui n'est pas accessible sans
connaitre ¢.
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Clustering par densité

soeedt s

n" %
’ I “y
o 4

Ny - S
. . .
6 gl
. . LR
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(a) 1l nous semble naturel de par-
titionner ces données en 3 cercles
concentriques.

7Y L 1)
+ s
e R
R Y

(B) Partitionnement en 3 clusters
par clustering agglomératif (lien
moyen).

(c) Partitionnement en 3 clusters
par k-moyennes.

FIGURE 12.4 - Motivation du clustering par densité.

Michael Liebling
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Clustering par densité (suite)

L 2%, 7 .

*,
RERERYOR
:

cott

FiGURE 12.5 - I existe un chemin entre volsins proches permettant de passer d'un pelnt dunautre du méme E)
cluster,

A

F & % 3
114
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Azencott

FIGURE 12.6 - Partitionnemant des données da la figure 12.4a par DESCAN,
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Clustering : conclusions

clustering = partitionnement de données cherche a identifier
des classes sans utiliser d'étiquettes

en |'absence d'étiquettes, la qualité d'une partition peut
s'évaluer sur la base de criteres de séparabilité et d’homogénéité

Le clustering hiérarchique partitionne les données de maniére
itérative. Son résultat peut étre visualisé sur un dendrogramme.

Le clustering par la méthode des k-moyennes s'effectue grace a
I'algorithme de Lloyd ou une de ses variantes. Il permet de
trouver efficacement K clusters convexes.

La version a noyau de la méthode des k-moyennes permet de
I'appliquer pour découvrir des clusters non convexes.

Le clustering par densité permet d'identifier des régions denses
du jeu de données, c'est-a-dire des observations qui peuvent
former un ensemble non convexe mais qui sont proches les unes
des autres.
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Guide de lecture pour ce cours

Chloé-Agathe Azencott “Introduction au Machine Learning”,
Dunod, 2019, ISBN 978-210-080153-4
Chapitre 12 : Clustering
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