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Introduction

auMachine

Learning
Ces transparents sont basés en grande partie sur le i
texte de Chloé-Agathe Azencott “Introduction au
Machine Learning”, Dunod, 2019

ISBN 978-210-080153-4

L'auteure a mis le texte (sans les exercices) a disposition ici :
http://cazencott.info/dotclear/public/lectures/
IntroML_Azencott.pdf

Avertissement : Bien que ces transparents partagent la notation
mathématique, la structure de I'exposition (en partie), et certains
exemples avec le livre, ils ne constituent qu'un complément et non
un remplacement ou une source unique pour la couverture des
matiéres du cours. A ce titre, ces transparents ne se substituent pas
au texte.
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Rappel : organisation des données d’un probleme
d’apprentissage (matrice de données X)

attributs

prédicteurs

variables cxplicatives P features

obscrvations
examples &
échantillons

ol T
T eR

| matrice de design

1]

matrice de données |

FIGURE 2.1 - Les données d’un probléme d’apprentissage supervisé sont organisées en une matrice de de-
sign et un vecteur d’étiquettes. Les observations sont représentées par leurs variables explicatives.
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But de la réduction de dimension

Le but de la réduction de dimension est de transformer une
représentation X € R"*P des données en une représentation
X* € R™™ ol m< p.

n : nombre d'observations
p : nombre de dimensions pour chaque observation (nombre de

features)
m : nombre de dimensions dans la représentation réduite
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Réduction de dimension

Représentation compléte : . . .
dimensions des observations

oot ox (nombre de variables)
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Motivations pour réduire les données

Les raisons de la démarche de réduction sont multiples :

. visualiser les données (plus aisé de représenter des données dans
le plan que dans un espace p-dimensionel)

- réduire les colits algorithmiques (moins de variables donc moins
de mémoire)
« améliorer la qualité des modeles
« moins de variables, moins de risque de sur-apprendre
« exclure les variables qui ne sont pas pertinentes au probléme et
pourraient induire |'apprentissage en erreur
« éviter le phénomene du “fléau de la dimension” (curse of
dimensionality) : les intuitions développées en faible dimension
ne s’appliquent pas nécessairement en haute dimension
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Fléau de la dimension (curse of dimensionality)
Plus les exemples comportent un grand nombre de features (= plus

la dimension du vecteur qui les charactérise est grande), plus le

nombre d'exemples nécessaires pour couvrir |'espace des exemples
possibles devient grand : la relation est exponentielle!

a) 1D - 4 regions

b} 2D - 16 regions
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https ://www.kdnuggets.com /2017 /04 /must-know-curse-dimensionality.html|
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Curse of dimensionality

Le nombre de régions définies par une grille réguliere grandit
exponentiellement avec la dimension

Figure 1.21 lllustration  of the
curse of dimensionality, showing
how the number of regions of a A
regular grid grows exponentially e
with the dimensionality D of the 2
space. For clarity, only a subset of % i 2
the cubical regions are shown for . I/I

_ T

Bishop, Fig. 1-21
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Curse of dimensionality : le voisinage se raréfie

En haute dimension, les exemples d’apprentissage ont tendance a
tous étre éloignés les uns des autres.

lllustration :

e Hypersphere de rayon R € IR* centrée sur une observation x en
dimension p, dénotée §(X, R) (voisinage avec distance < R) :

2

Volume de §(x) = M

Pl (p/2)

(Rappel : la fonction Gamma de Leonhard Euler I'(n) = (n—1)! quand n

est un entier positif)

e Hypercube de c6té 2R, circonscrit a la sphere,

dénoté € (x, R) (solide qui comprend les exemples
possibles avec chaque coordonnée dans [—R. R])

Volume de €(X,R) = 2°RP  2n
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Fléau de la dimension (curse of dimensionality), suite
Rapport du volume de |'hypercube a celui de I'hypersphere :
Vol(S8'(x, R))

0,0 = lim ———— 2 =
ratio,— an;o Vol(%(? R)) °

_ - _ N
p=1 ratio,—; = 1 N / ________ \
p=2 ratio,—» = i 0.79 - & R %
p=3  ratiop_3 = % ~ 0.52 ~— ﬁ

<

p =00 ratiop—oc — 0

Lorsque la dimension est grande, le voisinage d'un exemple couvre
donc un volume qui s’amenuise en comparaison a celui de I'espace
des examples possibles avec coordonnées d'amplitude comparable !
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Fléau de la dimension : implications
Implications d’une dimensionalité élevée :

« Le voisinage d'un point (hypersphere) représente une
proportion de I'espace de plus en plus petite par rapport au
cube (lorsque la dimension augmente)

« Les données sont de plus en plus isolées en dimension élevées

« il faut de plus en plus de données d’entrainement
(rule of thumb, “a la louche,” a appliquer avec précaution et
sans garantie. .. : 5 fois le nombre de dimensions, i.e. n ~ 5p)
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Réduction de la dimensionalité : approches possibles

Deux possibilités s'offrent a nous pour réduire la dimension de nos
données :

1. sélection de variables, qui consiste a éliminer un nombre
p — m de variables de nos données.
Approches possibles :
« les méthodes de filtrage
« les méthodes de conteneur
« les méthodes embarquées (pas couvertes dans le cours
d’aujourd’hui)
2. extraction de variables, qui consiste a créer m nouvelles
variables a partir des p variables dont nous disposons
initialement.
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Méthodes de sélection de variables : filtrage
Nous considérons des méthodes supervisées et supposons disposer

d'un jeu de données étiqueté 2 = { (X', y') }izl,..‘,n ol X' € RP,

Sélection de variable par filtrage consiste a appliquer un critere
de sélection indépendamment a chacune des p variables

Idée quantifier la pertinence de la p-eme variable du jeu de donnée
par rapport a y sur la base de

« la corrélation avec |'étiquette
« un test statistique dans le cas d'un probleme de classification

« l'information mutuelle

Si la pertinence est basse on se débarrasse de la variable.
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Méthode de sélection de variable par filtrage : corrélation
Pour chaque variable x;, on calcule la corrélation (de Pearson) entre
la jéme variable et |'étiquette y

i i1 i AN 1 ixe

i=1 g nz:1y Lo =1 '

J
n 2 n

2
Z . 12” Z . 12”
y’_n41yé Xj,_ne1xjg

i=1 i=1

Notes :
. prend des valeurs entre —1 (forte anti-correlation) a 1 (forte

corrélation)
« Si |R;| est proche de zéro (pas de corrélation entre la jéeme
variable x; et I'étiquette y) on se débarrasse de cette variable.
. elle se calcule comme la corrélation entre une étiquette prédite
et une étiquette réelle (voir page suivante)

« aussi appelé Pearson correlation coefficient
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Exemple coefficient de correlation (Pearson)

On mesure la table

suivante X et étiquettes y pour quatre fruits :

x| = el | x; = masse |y’ = poire?
=1 1.4 210 1
=2 0.9 180 -1
=3 1.6 190 1
=4 1.1 220 -1

On calcule R; = 0.928 et R, = 0 qui semble indiquer que la variable

x; est corrélée a I'étiquette y alors que la variable x, ne I'est pas.
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A propos : définissons le Coefficient de détermination

Définition 3.16 (Coefficient de détermination) Etant données n
étiquettes réelles y', y?, ..., y" et n prédictions
f(xX),f(x?),...,f(xX"), on appelle erreur carrée relative, ou RSE
de I'anglais relative squared error la valeur

S (F(F) =y’
Sy =23y

Coefficient de déterminationR? = 1 — RSE est le carré du coefficient
de corrélation entre y et f (x*),f (X?),...,f (X"):

Zn(i 1251y>(f() ZEI())
Jz,l ) (FR) - LY, £ ()

R indique a quel point les valeurs prédites sont corrélées aux valeurs
réelles (attention, également élevé si elles sont anti-corrélées)

RSE =
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Méthode de sélection de variable par filtrage : Information
mutuelle

L'information mutuelle entre deux variables aléatoires X; et Y
mesure leur dépendance au sens probabiliste ; elle est nulle si et
seulement si les variables sont indépendantes, et croit avec leur
degré de dépendance. Elle est définie, dans le cas discret, par

[(X,Y) =) P(X;=x,Y =y)log Plié&;;j)()j]%’z/y_jl)

Xiry

et dans le cas continu par

_ o X o P(Xja)/) x
(X, Y) = /Xj/ym J.y)og 2 S0y
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Limitation des méthodes de filtrage
Les méthodes de filtrage souffrent de traiter les variables
individuellement : elles ne peuvent pas prendre en compte leurs

effets combinés.
Exemple illustrant ce probleme : Expliquer la sortie d'une porte
logique “ou exclusif” (XOR) par rapport aux entrées :

XOR Table de vérité

Input Input Output Af
X1 X2 y
0 0 0 ~7
0 1 1
1 0 1
1 1 0

Prise individuellement, x; (resp. x») est décorrélée de y = x; XORXx,,
alors qu'ensemble, ces deux variables expliqueraient parfaitement
I'étiquette y.
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Estimation empirique de I'erreur de généralisation
(Préambule aux autres méthodes de sélection de variables)

L’erreur empirique mesurée sur les observations qui ont permis de
construire le modele est un mauvais estimateur de /'erreur du
modele sur 'ensemble des données possibles (appelée erreur de
généralisation) : si le modele sur-apprend, cette erreur empirique
peut étre proche de zéro voire nulle, tandis que I'erreur de
généralisation peut étre arbitrairement grande.

Pour évaluer la qualité d'un modéle appris, on sépare communément
les données en trois jeux de données (pourcentages indicatifs, regle
générale) :

1. jeu d'entrainement (60-70% des données)

2. jeu de validation (15-20% des données), e.g. si plusieurs
modeles sont considérés ou si le modeéle a entrainer a des
meta-parametres

3. jeu de test (15-20% des données)
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Jeu d’entrainement, Jeu de test

Pour évaluer un modéele, il est indispensable d’utiliser des données
étiquetées qui n'ont pas servi a le construire.

Définition 3.1 (Jeu d’entrainement, Jeu de test) Etant donné
un jeu de données @ = { (X", y') } _ partitionné en deux jeux
Dy et Die, on appelle jeu d'entrainement (training set en anglais)
I'ensemble 9, utilisé pour entrainer un modele prédictif, et jeu de
test (test set en anglais) I'ensemble Zi, utilisé pour son évaluation.
La perte calculée sur ce jeu de test est un estimateur de
I'erreur de généralisation.

i=1,..,

Attention : manquer a séparer les jeux d'entrailnement et de test
(e.g. en présentant comme la performance d'un modeéle son erreur
sur le jeu d'entrainement) est probablement le péché capital du
machine learning !
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Jeu de validation

Considérons la situation ol nous devons choisir entre K modéles :
nous pouvons entrainer chacun des modeéles sur le jeu de données
d’entrainement, obtenant ainsi K fonctions de décision f{, f, ..., fk.

Comment choisir le meilleur modele ? Si on calcule I'erreur de
chacun de ces modeéles sur le jeu de test pour choisir le meilleur, on
ne pourra plus utiliser le jeu de test pour évaluer I'erreur de
généralisation du modele choisi.

Plutdt, on définit un jeu de validation 9,,, sur lequel on peut
choisir le modele qui a la plus petite erreur :

o 1
f= a in L(y,f(X
rgmin 5~ > Ly fi(x))

Importance de distinguer la sélection d'un modele de son évaluation :
les faire sur les mémes données peut nous conduire a sous-estimer
I'erreur de general|sat|on et au sur—apprentlssa%e du modele ch0|5|

e
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Solutions de découpage des jeux de données
Entrainement d’un seul modele sans parametre

1. jeu d’entrainement 2, sur lequel on entraine I'algorithme
d'apprentissage

2. jeu de test Desur lequel on évalue I'erreur de généralisation du
modele

Entrainement d’'un modeéle avec parameétres ou lorsque le
modele doit étre choisi parmi plusieurs

. jeu d’'entrainement 9, sur lequel on entraine K algorithmes
d’apprentissage

. jeu de validation 9, sur lequel on évalue les K modeles pour
sélectionner le modele définitif

. jeu de test Dy, sur lequel on évalue I'erreur de généralisation du

modele choisi.
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Eviter les risque d’un découpage arbitraire : Validation
croisée
Définition 3.2 (Validation croisée) Etant donné un jeu & de n
observations, et un nombre K, on appelle validation croisée la
procédure qui consiste a
1. partitionner & en K parties de tailles sensiblement similaires,
91, @2, ceey 9;{
2. pour chaque valeur de k =1,.... K,
« entrainer un modele sur (J, ., 2
o évaluer ce modele sur Jy.
Chaque partition de & en deux ensembles I, et U#k Dy est
appelée un fold de la validation croisée.
0000000000000 00
000  “eececcsece
000000 0000000
XTI T XY TSI Y 1
OO O e

FIGURE 3.1 - Une validation croisée en 5 folds : Chaque observation appartient & un des 5 jeux de validation

(en blanc) et aux 4 autres jeux d’entrainement (en noir).
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Evaluation de la performance avec validation croisée (suite)

Méthode 1 : comme chaque obervation étiquetée du jeu &
n'appartient qu'a un unique jeu de test (et a (K — 1) jeux
d’entrainement) on peut noter |'erreur de prédiction obtenue pour
cette observation (c.-a-d., lorsque I'observation a joué le rdle
d'observation de test) et répéter I'opération pour toutes les autres
observation avant d’en faire la moyenne.

Méthode 2 : évaluer la qualité de chacun de K prédicteurs sur leur
jeu de test respectif D, et soit :

« moyenner les performances.

. calculer leur écart type (qui donne une meilleure indication de
la variabilité de la qualité des prédictions en fonction du choix
des données d'entrainement)
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Evaluation de la performance, validation croisée (suite et fin)

Notes :

« la validation croisée ne permet pas d'améliorer la performance,
seulement d'obtenir une meilleure estimation de la performance

« le découpage systématique permet de limiter les effets du choix
arbitraire d'un découpage unique
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Sélection de variables : méthodes de conteneur

Les méthodes de conteneur, ou wrapper methods en anglais,
consistent a essayer de déterminer le meilleur sous-ensemble de
variables pour un algorithme d’apprentissage donné.

On parle alors souvent non pas de sélection de variables mais de
sélection de sous-ensemble, ou subset selection.

« Méthode naive (exhaustive)
« Trois méthodes de sélection (non-exhaustives) :

« recherche ascendante (forward search)
« recherche descendante (backward search)
« recherche flottante
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Sélection de variables : méthode de conteneur

Etant donné un jeu de données & = {(X,y)} ol X € R™", un
sous-ensemble de variables & C {1,2,..., p} et un algorithme
d'apprentissage, on notera Xz € R"*/¢l |a matrice X restreinte aux
variables apparaissant dans &, et E5 (&) I'estimation de I'erreur de
généralisation de cet algorithme d'apprentissage, entrainé sur

(Xz,).

Estimation de |'erreur de généralisation obtenue sur un jeu de test
ou par validation croisée.

Michael Liebling EE-311—Apprentissage machine / 5. Réduction de dimension 27/ 76



Example : sélection de sous-ensemble (méthode naive)
4 3 3 2 — . P .
51 3 1 1 choix de 2P —1 combinaisons de

X=|3738]|y=]| -1 colonnes a garder (en excluant
2 319 1 () pour former Xy :
1 3 8 2 1

3 3 2 3 2 3 2 3

1 3 1 3 1 1 1 1

7 3 8 3 8 7 8 7

3 1 9 19 3 9 3

3 8 2 8 2 3 2 3
4 3 2 4 2 4 3 3
2 31 2 1 2 3 3
3 3 8 3 D 8 3 3 3
2 19 2 9 2 1 1
1 8 2 1 2 1 8 8
4 3 2 4 3 2
2 1 1 2 1 1
3 7 8 3 7 8
2 3 9 2 3 9
1 3 2 1 3 2
4 3 3 3 3 4 1 3 3 2
2 1 3 1 3 2 2 1 3 1
3 7 3 7 3 3 3 7 3 8
2 3 1 31 2 2 3 19
1 3 8 3 8 1 1 3 8 2

Méthode naive : on entraine des modeles sur chacun des choix

(exhaustif!) et on choisit le sous-ensemble qui produit le meilleure modeéle
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Recherche ascendante

Définition 11.2 (Recherche ascendante) On appelle recherche
ascendante, ou forward search en anglais, la procédure gloutonne de
sélection de variables suivante :

1. Initialiser & = ()
2. Trouver la meilleure variable a ajouter a & :
J¥= argmin Eg (F U{j})
Je{1,....p}\F
3. Si Eg (F U{j}) > Ey (F) : s'arréter
Sinon : & < F U {j} : recommencer 2-3.

Dans le pire des cas (celui ot on devra itérer jusqu'a ce que

F ={1,2,...,p}), cet algorithme requiert de I'ordre de O(p?)
évaluations de I'algorithme d'apprentissage sur un jeu de données,
ce qui peut &tre intensif, mais est bien plus efficace que O(2°)

comme requis par |'approche exhaustive.
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exemple

Recherche ascendante

N =~ Mmm

M M M — 00

3
3 7 3 8
2319
1 3 8 2

4 3 3 2
1

AN — 00 O AN

™M MmN —~ 0

M =~ Mmm

<t AN MmN

AN~ 00 O AN

N~ 00 AN

<+ N A~

™M M M — 00

M — D~ ™ N =~ o™

v oo - [

N~ 00 O AN

™M N M —~

< AN M AN~

AN~ 00 O AN
= Rpm———

M =D~ mom N =~ Mmm

< AN M AN~ AN AN

30 /76
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Initialisation # = ()
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Trouver la meilleure variable a ajouter (4 possibilités = 4
entrainements)

W W =W

0 = W wWww

N © 00— N

N W N
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Sélectioner : ¥ = {2}

W W =W
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Trouver la meilleure variable a ajouter (3 possibilités= 3
entrainements)

W W= W
N © 00— N

=N W N
W W~ w

W W~ W
0 = W W w
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Sélectioner y meilleur qu’avec une colonne de moins ?

(non — STOP; oui— F = {1,2})

=R W N
W W= w
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Si meilleur, trouver la meilleure variable a ajouter (2
possibilités= 2 entrainements)

=N W N
W W= W
N © 00— N

N W N
W W= W
0 = W W w
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Sélectioner y meilleur qu’avec une colonne de moins ?
(non — STOP; oui— F = {1,2,4})

L SRS
W W~ W
N © 00— N
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Si meilleur, ajouter la derniére variable (1 entrainement)

— N W N
W W= W
0 = W W w
N © 00— N

o
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Sélectioner y meilleur qu’avec une colonne de moins ?

(non — STOP; oui— F = {1,2,3,4})

=N W N
W W= W
0 = W wWww
N © 00 = N

o
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Maximum 4434241 ~ O (p?) entrainements effectués

— N W N
W W= W
0 = W W w
N © 00— N

o
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Recherche descendante

Définition 11.3 (Recherche descendante) On appelle recherche
descendante, ou backward search en anglais, la procédure gloutonne
de sélection de variables suivante :

L. Initialiser # = {1,...,p}
2. Trouver la meilleure variable a retirer a & :

J* = argmin Eg (7 \ {j})

jEF
3. Si Eg (F\{J}) > Eo (F) : s'arréter
Sinon : F <« & \ {j} : recommencer 2-3.

Note : L'avantage de I'approche descendante sur |'approche
ascendante est qu’elle fournit nécessairement un sous-ensemble de
variables meilleur que I'intégralité des variables. En effet, ce n'est
pas parce qu'on ne peut pas, a une étape de la méthode ascendante,
trouver de variable a ajouter a & , que la performance de
I'algorithme est meilleure sur (X, ) que sur (X, y).
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exemple

Recherche descendante

N =~ Mmm

M M M — 00

3
3 7 3 8
2319
1 3 8 2

4 3 3 2
1

AN — 00 O AN

™M MmN —~ 0

M =~ Mmm

<t AN MmN

AN~ 00 O AN

N~ 00 AN

<+ N A~

™M M M — 00

M — D~ ™ N =~ o™

v oo - [

N~ 00 O AN

™M N M —~

< AN M AN~

AN~ 00 O AN
= Rpm———

M =D~ mom N =~ Mmm

< AN M AN~ AN AN
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Initialisation & = {1,2,3,4}

=N W N
W W= W

o
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0 = W W w
N © 00— N



Trouver la meilleure variable a enlever (4 possibilités = 4
entrainements)

W W~ W
0 = W W w
N © 00— N

=N W N
00 = W ww
N © 00— N

=N W N
W W= W
N © 00— N

N W N
W W= W
0 = W W w
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Subset meilleur qu'avec une colonne de plus?
(non — STOP; oui— F ={1,3,4})

=N W N
00 = W ww
N © 00— N
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Trouver la meilleure variable a enlever (3 possibilités= 3
entrainements)

0 = W wWww
N © 00— N

N W N
00 = W W w

=R W N
N © 00— N

e
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Subset meilleur qu'avec une colonne de plus?
(non — STOP; oui— ¥ = {1,3})

N W N
00 = W W w

e
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Si meilleur, trouver la meilleure variable a enlever (2
possibilités= 2 entrainements)

0 = W wWww

N W N
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Subset meilleur qu'avec une colonne de plus?
(non — STOP; oui— F = {3})

0 = W wWww

Michael Liebling EE-311—Apprentissage machine / 5. Réduction de dimension 49 / 76



Maximum 4434241 ~ O (p?) entrainements effectués

0= W WwWww
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Recherche flottante

Définition 11.4 (Recherche flottante) Etant donné deux
parametres entiers strictement positifs g et r (g > r > 0), on
appelle recherche flottante, ou floating search en anglais, la
procédure gloutonne de sélection de variables suivante :

1. Initialiser # =0

2. Trouver les g meilleures variables a ajouter a F :
ST = argmin Ey (FUS)
SC{L,...p\F |S|=q
3.SIE(FUSY<Eg(F)  F+—FUSH
4. trouver les r meilleures variables a retirer de & :

ST = argmin Eoy (F\S)
Sg{l,p}\‘77\5\:q

5. Si Eg (F\ 8*) > Eg (F) : s'arréter
Sinon # < & \ &*; recommencer 2-5.
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exemple (p=4>g=2>r=1>0)

Recherche flottante

N =~ Mmm

M M M — 00

3
3 7 3 8
2319
1 3 8 2

4 3 3 2
1

™M MmN —~ 0

<t AN MmN

AN~ 00 O AN

N~ 00 AN

<+ N A~

M — D~ ™ N =~ o™

v oo - [

N~ 00 O AN

™M N M —~

< AN M AN~

AN~ 00 O AN
= Rpm———

M =D~ mom N =~ Mmm

< AN M AN~ AN AN
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Initialisation # = ()
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Trouver les g = 2 meilleures variables a ajouter (6 possibilités
= 6 entrainements)

0 = W wWww
N © 00— N
W W= W
N © 00— N

N W N
00 = W W w

=R W N
N © 00— N

=N W N
W W~ w

W W= W
0 = W W w
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Subset choisi meilleur qu'avec q colonne de moins ?
(non — STOP; oui— F = {1,4})

=R W N
N © 00— N
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Trouver la (p = 1) meilleure variable a enlever (2
possibilités= 2 entrainements)

N © 00— N

N W N
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Subset meilleur qu'avec p = 1 colonne(s) de plus?
(non — STOP; oui— F = {4})

N © 00— N
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Si meilleur, trouver les g = 2 meilleures variable a ajouter (3
possibilités= 3 entrainements)

W W~ W
0 = W W w
N © 00— N

=N W N
00 = W ww
N © 00— N

=N W N
W W= W
N © 00— N
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Subset choisi meilleur qu'avec une colonne de plus?
(non — STOP; oui— F ={1,3,4})

=N W N
00 = W ww
N © 00— N
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Si meilleur, trouver la (p = 1) meilleure variable a enlever (3
possibilités= 3 entrainements)

0 = W wWww
N © 00— N

N W N
00 = W W w

=R W N
N © 00— N
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Subset choisi meilleur qu'avec une colonne de plus?
(non — STOP; oui— F = {1,4})

=R W N
N © 00— N
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Si meilleur, ajouter g = 2 variables et tester si meilleur (1
possibilité= 1 entrainements)

— N W N
W W~ W
0 = W W w
N © 00— N
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Maximum 6+42+4+3+3+1 entrainements effectués

N =~ Mmm

M M M — 00

3
3 7 3 8
2319
1 3 8 2

4 3 3 2
1

™M MmN —~ 0

<t AN MmN

AN~ 00 O AN

N~ 00 AN

<+ N A~

N — D~ o

<+ N AN~

N~ 00 O AN

™M N M —~

< AN M AN~

AN~ 00 O AN

M =D~ mom

< AN M AN~

M MmN M — 00

N =~ Mmm

AN AN
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Extraction de variables : analyse en composantes principales

La méthode la plus classique pour réduire la dimension d'un jeu de
données par extraction de variables est I'analyse en composantes
principales, ou ACP. On parle aussi souvent de PCA, de son nom
anglais Principal Component Analysis.

Idée centrale de la PCA : Représenter les données de sorte a

maximiser leur variance selon les nouvelles dimensions.
X =

X X
one "
%

X

W “5x X

FIGURE 11.3 - La variance des données est maximale selon I'axe indiqué par une fléche.

Azencott
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Analyse en composantes principales

Formellement, une nouvelle représentation de 2 est définie par une
base orthonormée sur laquelle projeter la matrice de données X.
Définition 11.5 (Analyse en composantes principales) Une
analyse en composantes principales, ou ACP, de la matrice

X € R"*P est une transformation linéaire orthogonale qui permet
d’'exprimer X dans une nouvelle base orthonormée, de sorte que la
plus grande variance de X par projection s'aligne sur le premier axe
de cette nouvelle base, la seconde plus grande variance sur le
deuxieme axe, et ainsi de suite.

Les axes de cette nouvelle base sont appelés les composantes
principales, abrégées en PC pour Principal Components.
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Note sur la normalisation

Centrage On dit que X est centrée si chacune de ses colonnes a
pour moyenne 0. Pour la suite, nous supposons que les variables ont
été centrées de sorte a toutes avoir une moyenne de 0 :

n
x + xI — % avec )?-—EE x!
J J J J_n J
=1

Standardisation Travailler avec des variables qui prennent des
valeurs dans une gamme comparable (ordre de grandeur similaire)
est souvent désirable pour I'application de I'ACP (mais pas requis,
contrairement au centrage, qui I'est!). On standardise alors les
variables en les centrant et en imposant une variance de 1 pour
éviter que les variables qui prennent de grandes valeurs aient plus
d'importance que celles qui prennent de faibles valeurs :

i in_X’
N T
\/;Zzzl(
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Interprétation géométrique de la PCA (centrage)

Si on suppose que I'on a p = 3 dimensions et n = 32 échantillons,

on peut représenter les données dans la matrice de donnée X dans

I'espace R3 :
X

Données brutes données et moyenne données centrées

learnche.org/pid/latent-variable-modelling/principal-component-analysis/geometric-explanation-of-pca
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Interprétation géométrique de la PCA (calcul de la premiere
composante)

La premiére composante de la PCA (un vecteur) indique une
direction qui satisfait (de maniere équivalente) :

« la somme des carrés de la distance des données a la droite
définie par la composante est minimale

« si I'on projette les données sur cette droite, puis qu'on calcule
la variance (1 dimension), celle-ci sera maximale

learnche.org/pid/latent-variable-modelling/principal-component-analysis/geometric-explanation-of-pca
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Interprétation géométrique de la PCA (calcul de la seconde
composante)
La seconde composante de la PCA (un vecteur) satisfait :

1. la direction est perpendiculaire a la premiere composante et
2. en plus, la direction est telle que les deux conditions sont
satisfaites (de maniere équivalente ) :
« la somme des carrés de la distance des données a la droite
définie par la composante est minimale
« si I'on projette les données sur cette seconde droite, puis qu'on
calcule la variance (1 dimension), celle-ci sera maximale

learnche.org/pid/latent-variable-modelling/principal-component-analysis/geometric-explanation-of-pca
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Calcul des composantes principales

Théoreme 11.1 Soit X € R"*P une matrice centrée, avec matrice
de covariance > = %XTX € RP*P. Les composantes principales de
X sont les vecteurs propres de Y, ordonnés par valeur propre
décroissante. |
Interprétation :

Y =(1/nmX" X

pXxXp pXnnxp
Les vecteurs propres v; satisfont

> Vi = V; (0'H
PXP px1 px1l 1x1
Avec D = diag(ov, o, ..., ap) et a3 > ap > -+ > ap, 0ona:
> V=V D
pXp pXp  pXp pxp

ou les colonnes de V' sont les vecteurs propres v;, i = 1,...,p.

Note : le calcul de X "X est, en général, a éviter (coliteux). On
utilisera plutot I approche par SVD.
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Décomposition en valeurs singuliéres (singular value
decomposition, SVD)

Théoreme 11.2 Soit X € R"*P une matrice centrée. Les
composantes principales de X sont ses vecteurs singuliers a droite
ordonnés par valeur singuliere décroissante. |
Démonstration Si 'on écrit X sous la forme X = UDV'" ol
U e R™" et V € RP*P sont orthogonales et D € R"*P est
diagonale, alors 1 1 D2

Y = ;XTX = VDTUTUDVT V— v’

et les valeurs singulieres de X (les entrées de D) sont les racines
carrées des valeurs propres de X apres qu'on les multiplie par n,
tandis que les vecteurs singuliers a droite de X (les colonnes de V)
sont les vecteurs propres de 2.

Note : les implémentations de la décomposition en valeurs singulieres (ou
SVD) sont numériquement plus stables que celles de décomposition

spectrale. On préférera donc calculer les composantes principales de X en
calculant la SVD de X plutdt que la décomposition spectrale de X ' X.
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Représentation réduite des données (notation atternative a celle livre)

Soit le jeu de données X € R"™*P,
On calcule les composantes principales (CP) soit par :

vecteurs propres de ¥ (=colonnesde V =CP): ¥ V =V D

pXp pXp  pxp pxp

ou par SVD (CP=colonnesde V): X = U D V'

nxp nxXn nxXp pxp

Soit 1 < m < p le nombre choisi de composantes principales et la
matrice W € RP*™ est obtenue en prenant les m premiéres
colonnes de V € RP*P,
La représentation réduite H € R"*™ des n observations dans le
nouvel espace de dimension m s'obtient en projetant X sur les
colonnes de W, autrement dit en calculant

H=X W

nxm nxp pxm
La matrice H peut étre interprétée comme une représentation

latente (ou cachée, “hidden” =-notation H) des données.
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Choix du nombre de composantes principales

Réduire la dimension des données par une ACP implique de choisir
un nombre de composantes principales a conserver. Pour ce faire, on
utilise la proportion de variance expliquée par ces composantes : la
variance de X s'exprime comme la trace de 2, qui est elle-méme la
somme de ses valeurs propres. Ainsi, si I'on décide de conserver les
m premiéres composantes principales de X, la proportion de
variance qu'elles expliquent est :

OélJrOéer"'JrOém
Tr(X)

oll vy > arp > - -+ > v, sont les valeurs propres de > par ordre
décroissant.
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Evolution de la proportion de variance expliquée par nombre

de composantes principales
0.5

047 |

03 |

02/ x

0.1 \

T

s s 20 25 30
Nombre de PC

B e e L DA

0.0+, .
0

(a) Pourcentage de variance expliqué par chacune des
composantes principales. A partir de 6 composantes
principales, ajouter de nouvelles composantes n’est plus
vraiment informatif.

FIGURE 11.4 - Pour choisir le nombre de composantes principales, on utilise le pourcentage de variance

expliquée.

Michael Liebling
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(B) Pourcentage cumulé de variance expliquée par cha-

cune des composantes principales. Si on se fixe une

proportion de variance expliquée de 95%, on peut se

contenter de 10 composantes principales.

Azencott
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Résumé

« Réduire la dimension des données avant d'utiliser un algorithme
d'apprentissage supervisé permet d'améliorer ses besoins en
temps et en espace, mais aussi ses performances.

« On distingue la sélection de variables, qui consiste a éliminer
des variables redondantes ou peu informatives, de |'extraction
de variable, qui consiste a générer une nouvelle représentation
des donnée

« Pour éviter le sur-apprentissage, il est essentiel lors de I'étape
de sélection du modele de valider les différents modeles testés
sur un jeu de données (jeu de validation) différent de celui
utilisé pour |'entrailnement.

« Pour estimer la performance en généralisation d'un modele, il
est essentiel de I'évaluer sur des données (jeu de test) qui n'ont
été utilisées ni pour I'entrainement, ni pour la sélection de ce
modeéle.

« De nombreuses méthodes permettent de réduire la dimension

des variables
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Guide de lecture pour ce cours

Chloé-Agathe Azencott “Introduction au Machine Learning”,
Dunod, 2019, ISBN 978-210-080153-4

Chapitre 11 : Réduction de dimension

Chapitre 3 : Sélection de modele et validation
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