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Ouvrage de référence et source

Ces transparents sont basés en grande partie sur le
texte de Chloé-Agathe Azencott “Introduction au
Machine Learning”, Dunod, 2019
ISBN 978-210-080153-4

L’auteure a mis le texte (sans les exercices) à disposition ici :
http://cazencott.info/dotclear/public/lectures/

IntroML_Azencott.pdf

Avertissement : Bien que ces transparents partagent la notation
mathématique, la structure de l’exposition (en partie), et certains
exemples avec le livre, ils ne constituent qu’un complément et non
un remplacement ou une source unique pour la couverture des
matières du cours. À ce titre, ces transparents ne se substituent pas
au texte.
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▶ a. méthodes de filtrage
▶ Intermède : erreur de généralisation
• découpage des jeux de données

(entrâınement, validation, test)
• validation croisée

▶ b. méthodes de conteneur :
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• 2. extraction de variables (PCA)
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Rappel : organisation des données d’un problème
d’apprentissage (matrice de données X )

F����� 2.1 – Les données d’un problème d’apprentissage supervisé sont organisées en une matrice de de-
sign et un vecteur d’étiquettes. Les observations sont représentées par leurs variables explicatives.
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But de la réduction de dimension

Le but de la réduction de dimension est de transformer une
représentation X ∈ R

n×p des données en une représentation
X ∗ ∈ R

n×m où mj p.

n : nombre d’observations
p : nombre de dimensions pour chaque observation (nombre de
features)
m : nombre de dimensions dans la représentation réduite
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Réduction de dimension
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dimensions des observations
(nombre de variables)

Représentation complète :
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Motivations pour réduire les données

Les raisons de la démarche de réduction sont multiples :

• visualiser les données (plus aisé de représenter des données dans
le plan que dans un espace p-dimensionel)

• réduire les coûts algorithmiques (moins de variables donc moins
de mémoire)

• améliorer la qualité des modèles
• moins de variables, moins de risque de sur-apprendre
• exclure les variables qui ne sont pas pertinentes au problème et
pourraient induire l’apprentissage en erreur

• éviter le phénomène du “fléau de la dimension” (curse of
dimensionality) : les intuitions développées en faible dimension

ne s’appliquent pas nécessairement en haute dimension
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Fléau de la dimension (curse of dimensionality)

Plus les exemples comportent un grand nombre de features (= plus
la dimension du vecteur qui les charactérise est grande), plus le
nombre d’exemples nécessaires pour couvrir l’espace des exemples
possibles devient grand : la relation est exponentielle !

https ://www.kdnuggets.com/2017/04/must-know-curse-dimensionality.html
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Curse of dimensionality

Le nombre de régions définies par une grille régulière grandit
exponentiellement avec la dimension

Figure 1.21 Illustration of the
curse of dimensionality, showing
how the number of regions of a
regular grid grows exponentially
with the dimensionality D of the
space. For clarity, only a subset of
the cubical regions are shown for
D = 3.
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Curse of dimensionality : le voisinage se raréfie

En haute dimension, les exemples d’apprentissage ont tendance à

tous être éloignés les uns des autres.

Illustration :
• Hypersphère de rayon R ∈ R

∗
+ centrée sur une observation x⃗ en

dimension p, dénotée ÿ(x⃗ ,R) (voisinage avec distance f R) :

Volume de ÿ(x⃗) =
2RpÃp/2

pΓ(p/2)

(Rappel : la fonction Gamma de Leonhard Euler Γ(n) = (n− 1)! quand n

est un entier positif)

• Hypercube de côté 2R , circonscrit à la sphère,
dénoté ÿ(x⃗ ,R) (solide qui comprend les exemples
possibles avec chaque coordonnée dans [−R ,R])

Volume de ÿ(x⃗ ,R) = 2pRp
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Fléau de la dimension (curse of dimensionality), suite

Rapport du volume de l’hypercube à celui de l’hypersphère :

ratiop=∞ = lim
p→∞

Vol(ÿ(x⃗ ,R))

Vol(ÿ(x⃗ ,R))
= 0

p = 1 ratiop=1 = 1

p = 2 ratiop=2 =
Ã

4
≈ 0.79

p = 3 ratiop=3 =
Ã

6
≈ 0.52

p =∞ ratiop=∞ → 0
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Lorsque la dimension est grande, le voisinage d’un exemple couvre
donc un volume qui s’amenuise en comparaison à celui de l’espace
des examples possibles avec coordonnées d’amplitude comparable !
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Fléau de la dimension : implications

Implications d’une dimensionalité élevée :

• Le voisinage d’un point (hypersphère) représente une
proportion de l’espace de plus en plus petite par rapport au
cube (lorsque la dimension augmente)

• Les données sont de plus en plus isolées en dimension élevées

• il faut de plus en plus de données d’entrâınement
(rule of thumb, “à la louche,” à appliquer avec précaution et
sans garantie. . . : 5 fois le nombre de dimensions, i.e. n ≈ 5p)
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Réduction de la dimensionalité : approches possibles

Deux possibilités s’offrent à nous pour réduire la dimension de nos
données :

1. sélection de variables, qui consiste à éliminer un nombre
p −m de variables de nos données.
Approches possibles :

• les méthodes de filtrage
• les méthodes de conteneur
• les méthodes embarquées (pas couvertes dans le cours
d’aujourd’hui)

2. extraction de variables, qui consiste à créer m nouvelles
variables à partir des p variables dont nous disposons
initialement.
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Méthodes de sélection de variables : filtrage

Nous considérons des méthodes supervisées et supposons disposer
d’un jeu de données étiqueté Ā =

{(

x⃗ i , y i
)}

i=1,...,n
où x⃗ i ∈ R

p.

Sélection de variable par filtrage consiste à appliquer un critère
de sélection indépendamment à chacune des p variables

Idée quantifier la pertinence de la p-ème variable du jeu de donnée
par rapport à y sur la base de

• la corrélation avec l’étiquette

• un test statistique dans le cas d’un problème de classification

• l’information mutuelle

Si la pertinence est basse on se débarrasse de la variable.

Michael Liebling EE-311—Apprentissage machine / 5. Réduction de dimension 13 / 76



Méthode de sélection de variable par filtrage : corrélation

Pour chaque variable xj , on calcule la corrélation (de Pearson) entre
la j ème variable et l’étiquette y

Rj =

n
∑

i=1

(

y i −
1

n

n
∑
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)(
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n

n
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n
∑
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1

n

n
∑

ℓ=1

x ℓj
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Notes :
• prend des valeurs entre −1 (forte anti-correlation) à 1 (forte
corrélation)

• Si |Rj | est proche de zéro (pas de corrélation entre la j ème
variable xj et l’étiquette y) on se débarrasse de cette variable.

• elle se calcule comme la corrélation entre une étiquette prédite
et une étiquette réelle (voir page suivante)

• aussi appelé Pearson correlation coefficient
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Exemple coefficient de correlation (Pearson)
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On mesure la table suivante X et étiquettes y⃗ pour quatre fruits :

x i1 =
hauteur
largeur

x i2 = masse y i = poire ?

i = 1 1.4 210 1
i = 2 0.9 180 −1
i = 3 1.6 190 1
i = 4 1.1 220 −1

On calcule R1 = 0.928 et R2 = 0 qui semble indiquer que la variable
x1 est corrélée à l’étiquette y alors que la variable x2 ne l’est pas.
Michael Liebling EE-311—Apprentissage machine / 5. Réduction de dimension 15 / 76



À propos : définissons le Coefficient de détermination

Définition 3.16 (Coefficient de détermination) Étant données n
étiquettes réelles y 1, y 2, . . . , yn et n prédictions
f (x⃗1) , f (x⃗2) , . . . , f (x⃗n), on appelle erreur carrée relative, ou RSE
de l’anglais relative squared error la valeur

RSE =

∑n

i=1

(

f
(

x⃗ i
)

− y i
)2

∑n

i=1

(

y i − 1
n

∑n

ℓ=1 y
ℓ
)2

Coefficient de déterminationR2 = 1− RSE est le carré du coefficient
de corrélation entre y⃗ et f (x⃗1) , f (x⃗2) , . . . , f (x⃗n) :

R =
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ℓ
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n
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R indique à quel point les valeurs prédites sont corrélées aux valeurs
réelles (attention, également élevé si elles sont anti-corrélées)
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Méthode de sélection de variable par filtrage : Information
mutuelle

L’information mutuelle entre deux variables aléatoires Xj et Y
mesure leur dépendance au sens probabiliste ; elle est nulle si et
seulement si les variables sont indépendantes, et crôıt avec leur
degré de dépendance. Elle est définie, dans le cas discret, par

I (Xj ,Y ) =
∑

xi ,y

P (Xj = xj ,Y = y) log
P (Xj = xj ,Y = y)

P (Xj = xj )P(Y = y)

et dans le cas continu par

I (Xj ,Y ) =

∫

xj

∫

y

p(xj , y) log
p(xj , y)

p(xj)p(y)
dxjdy
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Limitation des méthodes de filtrage

Les méthodes de filtrage souffrent de traiter les variables
individuellement : elles ne peuvent pas prendre en compte leurs
effets combinés.
Exemple illustrant ce problème : Expliquer la sortie d’une porte
logique “ou exclusif” (XOR) par rapport aux entrées :

XOR Table de vérité
Input Input Output
x1 x2 y

0 0 0
0 1 1
1 0 1
1 1 0

Prise individuellement, x1 (resp. x2) est décorrélée de y = x1XORx2,
alors qu’ensemble, ces deux variables expliqueraient parfaitement
l’étiquette y .
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Estimation empirique de l’erreur de généralisation
(Préambule aux autres méthodes de sélection de variables)

L’erreur empirique mesurée sur les observations qui ont permis de
construire le modèle est un mauvais estimateur de l’erreur du

modèle sur l’ensemble des données possibles (appelée erreur de

généralisation) : si le modèle sur-apprend, cette erreur empirique
peut être proche de zéro voire nulle, tandis que l’erreur de
généralisation peut être arbitrairement grande.

Pour évaluer la qualité d’un modèle appris, on sépare communément
les données en trois jeux de données (pourcentages indicatifs, règle
générale) :

1. jeu d’entrâınement (60-70% des données)

2. jeu de validation (15-20% des données), e.g. si plusieurs
modèles sont considérés ou si le modèle à entrâıner a des
meta-paramètres

3. jeu de test (15-20% des données)
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Jeu d’entrâınement, Jeu de test

Pour évaluer un modèle, il est indispensable d’utiliser des données

étiquetées qui n’ont pas servi à le construire.

Définition 3.1 (Jeu d’entrâınement, Jeu de test) Étant donné
un jeu de données Ā =

{(

x⃗ i , y i
)}

i=1,...,n
partitionné en deux jeux

Ātr et Āte, on appelle jeu d’entrâınement (training set en anglais)
l’ensemble Ātr utilisé pour entrâıner un modèle prédictif, et jeu de
test (test set en anglais) l’ensemble Āte utilisé pour son évaluation.
La perte calculée sur ce jeu de test est un estimateur de
l’erreur de généralisation.

Attention : manquer à séparer les jeux d’entrâınement et de test
(e.g. en présentant comme la performance d’un modèle son erreur
sur le jeu d’entrâınement) est probablement le pêché capital du
machine learning !
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Jeu de validation

Considérons la situation où nous devons choisir entre K modèles :
nous pouvons entrâıner chacun des modèles sur le jeu de données
d’entrâınement, obtenant ainsi K fonctions de décision f1, f2, . . . , fK .

Comment choisir le meilleur modèle ? Si on calcule l’erreur de
chacun de ces modèles sur le jeu de test pour choisir le meilleur, on
ne pourra plus utiliser le jeu de test pour évaluer l’erreur de
généralisation du modèle choisi.

Plutôt, on définit un jeu de validation Āval, sur lequel on peut
choisir le modèle qui a la plus petite erreur :

f̂ = argmin
k=1,...,K

1

|Āval|

∑

x⃗ ,y∈Āval

L (y , fk(x⃗))

Importance de distinguer la sélection d’un modèle de son évaluation :
les faire sur les mêmes données peut nous conduire à sous-estimer
l’erreur de généralisation et au sur-apprentissage du modèle choisi.
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Solutions de découpage des jeux de données

Entrâınement d’un seul modèle sans paramètre

1. jeu d’entrâınement Ātr sur lequel on entrâıne l’algorithme
d’apprentissage

2. jeu de test Ātesur lequel on évalue l’erreur de généralisation du
modèle

Entrâınement d’un modèle avec paramètres ou lorsque le
modèle doit être choisi parmi plusieurs

1. jeu d’entrâınement Ātr sur lequel on entrâıne K algorithmes
d’apprentissage

2. jeu de validation Āval sur lequel on évalue les K modèles pour
sélectionner le modèle définitif

3. jeu de test Āte sur lequel on évalue l’erreur de généralisation du
modèle choisi.
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Éviter les risque d’un découpage arbitraire : Validation
croisée

Définition 3.2 (Validation croisée) Étant donné un jeu Ā de n

observations, et un nombre K , on appelle validation croisée la
procédure qui consiste à
1. partitionner Ā en K parties de tailles sensiblement similaires,

Ā1,Ā2, ...,ĀK

2. pour chaque valeur de k = 1, ...,K ,
• entrâıner un modèle sur

⋃

ℓ ̸=k Āℓ

• évaluer ce modèle sur Āk .

Chaque partition de Ā en deux ensembles Āk et
⋃

ℓ ̸=k Āℓ est
appelée un fold de la validation croisée.

F����� 3.1 – Une validation croisée en 5 folds : Chaque observation appartient à un des 5 jeux de validation
(en blanc) et aux 4 autres jeux d’entraînement (en noir).
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Évaluation de la performance avec validation croisée (suite)

Méthode 1 : comme chaque obervation étiquetée du jeu Ā

n’appartient qu’à un unique jeu de test (et à (K − 1) jeux
d’entrâınement) on peut noter l’erreur de prédiction obtenue pour
cette observation (c.-à-d., lorsque l’observation à joué le rôle
d’observation de test) et répéter l’opération pour toutes les autres
observation avant d’en faire la moyenne.

Méthode 2 : évaluer la qualité de chacun de K prédicteurs sur leur
jeu de test respectif Dk et soit :

• moyenner les performances.

• calculer leur écart type (qui donne une meilleure indication de
la variabilité de la qualité des prédictions en fonction du choix
des données d’entrâınement)
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Évaluation de la performance, validation croisée (suite et fin)

Notes :

• la validation croisée ne permet pas d’améliorer la performance,
seulement d’obtenir une meilleure estimation de la performance

• le découpage systématique permet de limiter les effets du choix
arbitraire d’un découpage unique
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Sélection de variables : méthodes de conteneur

Les méthodes de conteneur, ou wrapper methods en anglais,
consistent à essayer de déterminer le meilleur sous-ensemble de
variables pour un algorithme d’apprentissage donné.

On parle alors souvent non pas de sélection de variables mais de
sélection de sous-ensemble, ou subset selection.

• Méthode näıve (exhaustive)

• Trois méthodes de sélection (non-exhaustives) :
• recherche ascendante (forward search)
• recherche descendante (backward search)
• recherche flottante
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Sélection de variables : méthode de conteneur

Étant donné un jeu de données Ā = {(X , y⃗)} où X ∈ R
n×p, un

sous-ensemble de variables 1 ¢ {1, 2, . . . , p} et un algorithme
d’apprentissage, on notera X1 ∈ R

n×|1| la matrice X restreinte aux
variables apparaissant dans 1, et EĀ(1) l’estimation de l’erreur de
généralisation de cet algorithme d’apprentissage, entrâıné sur
(X1, y⃗).

Estimation de l’erreur de généralisation obtenue sur un jeu de test
ou par validation croisée.
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Example : sélection de sous-ensemble (méthode näıve)

X =













4 3 3 2
2 1 3 1
3 7 3 8
2 3 1 9
1 3 8 2













y⃗ =













−1
1
−1
1
1













choix de 2p−1 combinaisons de
colonnes à garder (en excluant
∅) pour former X1 :

Méthode näıve : on entrâıne des modèles sur chacun des choix
(exhaustif !) et on choisit le sous-ensemble qui produit le meilleure modèle
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Recherche ascendante

Définition 11.2 (Recherche ascendante) On appelle recherche
ascendante, ou forward search en anglais, la procédure gloutonne de
sélection de variables suivante :

1. Initialiser 2 = ∅

2. Trouver la meilleure variable à ajouter à 2 :
j∗ = argmin

j∈{1,...,p}\2

EĀ (2 ∪ {j})

3. Si EĀ (2 ∪ {j}) > EĀ (2) : s’arrêter
Sinon : 2 ← 2 ∪ {j} : recommencer 2–3.

Dans le pire des cas (celui où on devra itérer jusqu’à ce que
2 = {1, 2, . . . , p}), cet algorithme requiert de l’ordre de þ(p2)
évaluations de l’algorithme d’apprentissage sur un jeu de données,
ce qui peut être intensif, mais est bien plus efficace que þ(2p)
comme requis par l’approche exhaustive.
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Recherche ascendante : exemple
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Initialisation 2 = ∅
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Trouver la meilleure variable à ajouter (4 possibilités = 4
entrâınements)
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Sélectioner : 2 = {2}
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Trouver la meilleure variable à ajouter (3 possibilités= 3
entrâınements)
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Sélectioner ; meilleur qu’avec une colonne de moins ?

(non → STOP ; oui→ 2 = {1, 2})
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Si meilleur, trouver la meilleure variable à ajouter (2
possibilités= 2 entrâınements)
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Sélectioner ; meilleur qu’avec une colonne de moins ?

(non → STOP ; oui→ 2 = {1, 2, 4})
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Si meilleur, ajouter la dernière variable (1 entrâınement)
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Sélectioner ; meilleur qu’avec une colonne de moins ?

(non → STOP ; oui→ 2 = {1, 2, 3, 4})
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Maximum 4+3+2+1 ∼ þ (p2) entrâınements effectués
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Recherche descendante

Définition 11.3 (Recherche descendante) On appelle recherche
descendante, ou backward search en anglais, la procédure gloutonne
de sélection de variables suivante :

1. Initialiser 2 = {1, . . . , p}
2. Trouver la meilleure variable à retirer à 2 :

j∗ = argmin
j∈2

EĀ (2 \ {j})

3. Si EĀ (2 \ {j}) > EĀ (2) : s’arrêter
Sinon : 2 ← 2 \ {j} : recommencer 2–3.

Note : L’avantage de l’approche descendante sur l’approche
ascendante est qu’elle fournit nécessairement un sous-ensemble de
variables meilleur que l’intégralité des variables. En effet, ce n’est
pas parce qu’on ne peut pas, à une étape de la méthode ascendante,
trouver de variable à ajouter à 2 , que la performance de
l’algorithme est meilleure sur (X2, y⃗) que sur (X , y⃗).
Michael Liebling EE-311—Apprentissage machine / 5. Réduction de dimension 41 / 76



Recherche descendante : exemple
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Initialisation 2 = {1, 2, 3, 4}
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Trouver la meilleure variable à enlever (4 possibilités = 4
entrâınements)
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Subset meilleur qu’avec une colonne de plus ?
(non → STOP ; oui→ 2 = {1, 3, 4})
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Trouver la meilleure variable à enlever (3 possibilités= 3
entrâınements)

Michael Liebling EE-311—Apprentissage machine / 5. Réduction de dimension 46 / 76



Subset meilleur qu’avec une colonne de plus ?
(non → STOP ; oui→ 2 = {1, 3})
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Si meilleur, trouver la meilleure variable à enlever (2
possibilités= 2 entrâınements)
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Subset meilleur qu’avec une colonne de plus ?
(non → STOP ; oui→ 2 = {3})
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Maximum 4+3+2+1 ∼ þ (p2) entrâınements effectués
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Recherche flottante

Définition 11.4 (Recherche flottante) Étant donné deux
paramètres entiers strictement positifs q et r (q > r > 0), on
appelle recherche flottante, ou floating search en anglais, la
procédure gloutonne de sélection de variables suivante :

1. Initialiser 2 = ∅

2. Trouver les q meilleures variables à ajouter à 2 :
ÿ

∗ = argmin
ÿ¦{1,...,p}\2,|ÿ|=q

EĀ (2 ∪ ÿ)

3. Si EĀ (2 ∪ ÿ
∗) < EĀ (2) : 2 ← 2 ∪ ÿ

∗

4. trouver les r meilleures variables à retirer de 2 :
ÿ

∗ = argmin
ÿ¦{1,...,p}\2,|ÿ|=q

EĀ (2 \ÿ)

5. Si EĀ (2 \ÿ∗) > EĀ (2) : s’arrêter
Sinon 2 ← 2 \ÿ∗ ; recommencer 2–5.
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Recherche flottante : exemple (p = 4 > q = 2 > r = 1 > 0)
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Initialisation 2 = ∅
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Trouver les q = 2 meilleures variables à ajouter (6 possibilités
= 6 entrâınements)
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Subset choisi meilleur qu’avec q colonne de moins ?
(non → STOP ; oui→ 2 = {1, 4})
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Trouver la (p = 1) meilleure variable à enlever (2
possibilités= 2 entrâınements)
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Subset meilleur qu’avec p = 1 colonne(s) de plus ?
(non → STOP ; oui→ 2 = {4})
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Si meilleur, trouver les q = 2 meilleures variable à ajouter (3
possibilités= 3 entrâınements)
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Subset choisi meilleur qu’avec une colonne de plus ?
(non → STOP ; oui→ 2 = {1, 3, 4})
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Si meilleur, trouver la (p = 1) meilleure variable à enlever (3
possibilités= 3 entrâınements)
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Subset choisi meilleur qu’avec une colonne de plus ?
(non → STOP ; oui→ 2 = {1, 4})
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Si meilleur, ajouter q = 2 variables et tester si meilleur (1
possibilité= 1 entrâınements)
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Maximum 6+2+3+3+1 entrâınements effectués
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Extraction de variables : analyse en composantes principales

La méthode la plus classique pour réduire la dimension d’un jeu de
données par extraction de variables est l’analyse en composantes
principales, ou ACP. On parle aussi souvent de PCA, de son nom
anglais Principal Component Analysis.
Idée centrale de la PCA : Représenter les données de sorte à
maximiser leur variance selon les nouvelles dimensions.

F����� 11.3 – La variance des données est maximale selon l’axe indiqué par une flèche.
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Analyse en composantes principales

Formellement, une nouvelle représentation de Ą est définie par une
base orthonormée sur laquelle projeter la matrice de données X .
Définition 11.5 (Analyse en composantes principales) Une
analyse en composantes principales, ou ACP, de la matrice
X ∈ R

n×p est une transformation linéaire orthogonale qui permet
d’exprimer X dans une nouvelle base orthonormée, de sorte que la
plus grande variance de X par projection s’aligne sur le premier axe
de cette nouvelle base, la seconde plus grande variance sur le
deuxième axe, et ainsi de suite.
Les axes de cette nouvelle base sont appelés les composantes
principales, abrégées en PC pour Principal Components.
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Note sur la normalisation

Centrage On dit que X est centrée si chacune de ses colonnes a
pour moyenne 0. Pour la suite, nous supposons que les variables ont
été centrées de sorte à toutes avoir une moyenne de 0 :

x ij ← x ij − x̄j avec x̄j =
1

n

n
∑

ℓ=1

x ℓj .

Standardisation Travailler avec des variables qui prennent des
valeurs dans une gamme comparable (ordre de grandeur similaire)
est souvent désirable pour l’application de l’ACP (mais pas requis,
contrairement au centrage, qui l’est !). On standardise alors les
variables en les centrant et en imposant une variance de 1 pour
éviter que les variables qui prennent de grandes valeurs aient plus
d’importance que celles qui prennent de faibles valeurs :

x ij ←
x ij − x̄j

√

1
n

∑n

ℓ=1

(

x ℓj − x̄j
)2
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Interprétation géométrique de la PCA (centrage)

Si on suppose que l’on a p = 3 dimensions et n = 32 échantillons,
on peut représenter les données dans la matrice de donnée X dans
l’espace R

3 :

Données brutes données et moyenne données centrées
learnche.org/pid/latent-variable-modelling/principal-component-analysis/geometric-explanation-of-pca
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Interprétation géométrique de la PCA (calcul de la première
composante)

La première composante de la PCA (un vecteur) indique une
direction qui satisfait (de manière équivalente) :

• la somme des carrés de la distance des données à la droite
définie par la composante est minimale

• si l’on projette les données sur cette droite, puis qu’on calcule
la variance (1 dimension), celle-ci sera maximale

learnche.org/pid/latent-variable-modelling/principal-component-analysis/geometric-explanation-of-pca
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Interprétation géométrique de la PCA (calcul de la seconde
composante)

La seconde composante de la PCA (un vecteur) satisfait :

1. la direction est perpendiculaire à la première composante et

2. en plus, la direction est telle que les deux conditions sont
satisfaites (de manière équivalente ) :

• la somme des carrés de la distance des données à la droite
définie par la composante est minimale

• si l’on projette les données sur cette seconde droite, puis qu’on
calcule la variance (1 dimension), celle-ci sera maximale

learnche.org/pid/latent-variable-modelling/principal-component-analysis/geometric-explanation-of-pca
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Calcul des composantes principales

Théorème 11.1 Soit X ∈ R
n×p une matrice centrée, avec matrice

de covariance Σ = 1
n
X¦X ∈ R

p×p. Les composantes principales de
X sont les vecteurs propres de Σ, ordonnés par valeur propre
décroissante. ■

Interprétation :
Σ
p×p

= (1/n)X¦

p×n
X
n×p

Les vecteurs propres vi satisfont

Σ
p×p

vi
p×1

= vi
p×1

³i
1×1

Avec D = diag(³1, ³2, . . . , ³p) et ³1 g ³2 g · · · g ³p, on a :

Σ
p×p

V
p×p

= V
p×p

D
p×p

où les colonnes de V sont les vecteurs propres vi , i = 1, . . . , p.

Note : le calcul de X¦X est, en général, à éviter (coûteux). On
utilisera plutôt l’approche par SVD.
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Décomposition en valeurs singulières (singular value
decomposition, SVD)

Théorème 11.2 Soit X ∈ R
n×p une matrice centrée. Les

composantes principales de X sont ses vecteurs singuliers à droite
ordonnés par valeur singulière décroissante. ■

Démonstration Si l’on écrit X sous la forme X = UDV¦ où
U ∈ R

n×n et V ∈ R
p×p sont orthogonales et D ∈ R

n×p est
diagonale, alors

Σ =
1

n
X¦X =

1

n
VD¦U¦UDV¦ = V

D2

n
V¦

et les valeurs singulières de X (les entrées de D) sont les racines
carrées des valeurs propres de Σ après qu’on les multiplie par n,
tandis que les vecteurs singuliers à droite de X (les colonnes de V )
sont les vecteurs propres de Σ.

Note : les implémentations de la décomposition en valeurs singulières (ou
SVD) sont numériquement plus stables que celles de décomposition
spectrale. On préfèrera donc calculer les composantes principales de X en
calculant la SVD de X plutôt que la décomposition spectrale de X

¦
X .
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Représentation réduite des données (notation alternative à celle livre)

Soit le jeu de données X ∈ R
n×p.

On calcule les composantes principales (CP) soit par :

vecteurs propres de Σ (=colonnes de V = CP) : Σ
p×p

V
p×p

= V
p×p

D
p×p

ou par SVD (CP=colonnes de V ) : X
n×p

= U
n×n

D
n×p

V¦

p×p

Soit 1 f m f p le nombre choisi de composantes principales et la
matrice W ∈ R

p×m est obtenue en prenant les m premières
colonnes de V ∈ R

p×p.
La représentation réduite H̃ ∈ R

n×m des n observations dans le
nouvel espace de dimension m s’obtient en projetant X sur les
colonnes de W , autrement dit en calculant

H̃
n×m

= X
n×p

W
p×m

La matrice H̃ peut être interprétée comme une représentation
latente (ou cachée, “hidden” ⇒notation H̃) des données.
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Choix du nombre de composantes principales

Réduire la dimension des données par une ACP implique de choisir
un nombre de composantes principales à conserver. Pour ce faire, on
utilise la proportion de variance expliquée par ces composantes : la
variance de X s’exprime comme la trace de Σ, qui est elle-même la
somme de ses valeurs propres. Ainsi, si l’on décide de conserver les
m premières composantes principales de X , la proportion de
variance qu’elles expliquent est :

³1 + ³2 + · · ·+ ³m

Tr (Σ)

où ³1 g ³2 g · · · g ³p sont les valeurs propres de Σ par ordre
décroissant.
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Évolution de la proportion de variance expliquée par nombre
de composantes principales

(�) Pourcentage de variance expliqué par chacune des
composantes principales. À partir de 6 composantes
principales, ajouter de nouvelles composantes n’est plus
vraiment informatif.

(�) Pourcentage cumulé de variance expliquée par cha-
cune des composantes principales. Si on se fixe une
proportion de variance expliquée de 95%, on peut se
contenter de 10 composantes principales.

F����� 11.4 – Pour choisir le nombre de composantes principales, on utilise le pourcentage de variance
expliquée.
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Résumé

• Réduire la dimension des données avant d’utiliser un algorithme
d’apprentissage supervisé permet d’améliorer ses besoins en
temps et en espace, mais aussi ses performances.

• On distingue la sélection de variables, qui consiste à éliminer
des variables redondantes ou peu informatives, de l’extraction
de variable, qui consiste à générer une nouvelle représentation
des donnée

• Pour éviter le sur-apprentissage, il est essentiel lors de l’étape
de sélection du modèle de valider les différents modèles testés
sur un jeu de données (jeu de validation) différent de celui
utilisé pour l’entrâınement.

• Pour estimer la performance en généralisation d’un modèle, il
est essentiel de l’évaluer sur des données (jeu de test) qui n’ont
été utilisées ni pour l’entrâınement, ni pour la sélection de ce
modèle.

• De nombreuses méthodes permettent de réduire la dimension
des variables
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Guide de lecture pour ce cours

Chloé-Agathe Azencott “Introduction au Machine Learning”,
Dunod, 2019, ISBN 978-210-080153-4
Chapitre 11 : Réduction de dimension
Chapitre 3 : Sélection de modèle et validation
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