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Ouvrage de référence et source

Ces transparents sont basés en grande partie sur le
texte de Chloé-Agathe Azencott “Introduction au
Machine Learning”, Dunod, 2019
ISBN 978-210-080153-4

L’auteure a mis le texte (sans les exercices) à disposition ici :
http://cazencott.info/dotclear/public/lectures/

IntroML_Azencott.pdf

Avertissement : Bien que ces transparents partagent la notation
mathématique, la structure de l’exposition (en partie), et certains
exemples avec le livre, ils ne constituent qu’un complément et non
un remplacement ou une source unique pour la couverture des
matières du cours. À ce titre, ces transparents ne se substituent pas
au texte.
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Contenu

• Préliminaires : historique, séparabilité linéaire, hyperplans,
marges

• Machines à vecteurs de support à marge rigide

• Machines à vecteurs de support à marge souple

• Cas non linéaire : SVM à noyau

Support vector machines (SVM) = Machines à vecteurs de support

Michael Liebling EE-311—Apprentissage machine / 4. Machines à vecteurs de support 2 / 53

Motivation : trouver un hyperplan qui sépare 2 classes
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H1 : ne sépare pas les deux classes
H2 : séparation mais faible marge
H3 : séparation avec marge maximale ← obtenu via algorithme SVM
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wikipedia.org/wiki/Support-vector_machine


Séparation en dimensions > 2 (⇒ hyperplan)
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Historique des machines à vecteurs de support

Les machines à vecteurs de support (aussi appelées machines à
vecteurs supports), ou SVM de l’anglais support vector machines se
basent sur un algorithme linéaire proposé par Vladimir Vapnik et
Aleksandr Lerner en 1963 (Vapnik et Lerner, 1963)
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Étendues efficacement à l’apprentissage de modèles non linéaires
grâce à l’astuce du noyau par Vladimir Vapnik, Bernhard Boser,
Isabelle Guyon et Corinna Cortes (Boser et al., 1992 ; Cortes et
Vapnik, 1995)
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Définition 10.1 (Séparabilité linéaire)

Définition 10.1 (Séparabilité linéaire) Soit Ā =
{

x⃗ i , y i
}

i=1,...,n
un

jeu de données de n observations. Nous supposons que x⃗ i ∈ R
p et

y i ∈ {−1, 1}. On dit que Ā est linéairement séparable s’il existe au
moins un hyperplan dans Rp tel que tous les points positifs
(étiquetés +1) soient d’un côté de cet hyperplan et tous les points
négatifs (étiquetés −1) de l’autre.
Linéairement séparable Pas séparable (linéairement)

http://sebastianraschka.com/Articles/2014_naive_bayes_1.html
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Illustration du problème de classification

Étant donné un jeu d’entrâınement linéairement séparable :

• Il peut exister une infinité d’hyperplans séparateurs qui ne font
aucune erreur de classification

• Ces hyperplans sont des modèles équivalents du point de vue
de la minimisation du risque empirique

F����� 10.1 – Une infinité d’hyperplans (en deux dimensions, des droites) séparent les points négatifs (x)
des points positifs (+). A
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Marge d’un hyperplan séparateur (données lin. séparable)

Définition 10.2 (Marge) La marge µ d’un hyperplan séparateur
est la distance de cet hyperplan à l’observation du jeu
d’entrâınement la plus proche.
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Nous cherchons donc l’hyperplan qui maximise la marge.
Note : Il y a au moins une observation négative et une observation
positive à une distance µ de l’hyperplan séparateur (si par exemple
toutes les observations négatives étaient à une distance supérieure à µ de
l’hyperplan séparateur, on pourrait rapprocher cet hyperplan des
observations négatives et augmenter la marge).
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Vecteurs de support

Définition 10.3 (Vecteurs de support) On appelle vecteurs de
support les observations du jeu d’entrâınement situés à une distance
µ de l’hyperplan séparateur. Elles jsoutiennentk les hyperplans H+

et H−.

Note : Toutes les observations positives sont situées à l’extérieur de
H+, tandis que toutes les observations négatives sont situées à
l’extérieur de H−.

Origine du nom SVM :

• Support Vector Machine (SVM, machine à vecteurs de support)

• séparatrice à vaste marge
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Zone d’indécision

Définition 10.4 (Zone d’indécision) On appelle zone d’indécision
la zone située entre H− et H+. Cette zone ne contient aucune
observation.

F����� 10.2 – Lamarge � d’un hyperplan séparateur (ici en trait plein) est sa distance à l’observation la plus
proche. Quand cette marge est maximale, au moins une observation négative et une observation positive
sont à une distance � de l’hyperplan séparateur. Les hyperplans (ici en pointillés) parallèles à l’hyperplan
séparateur et passant par ces observations définissent la zone d’indécision. Les observations situées sur ces
hyperplans (cerclées) sont les vecteurs de support.
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Formulation de la SVM à marge rigide

L’équation de l’hyperplan séparateur H que nous cherchons est de la
forme

ïw⃗ , x⃗ð+ b = 0,

où ï , ð représente le produit scalaire sur Rp

L’hyperplan H+ est parallèle à H et de la forme :

ïw⃗ , x⃗ð = constante

Nous pouvons fixer cette constante à 1 (sans perte de généralité, il
suffirait d’ajuster w⃗ et b proportionnellement pour d’autres choix)
et on a :

H+ :ïw⃗ , x⃗ð+ b = 1

H− :ïw⃗ , x⃗ð+ b = −1

Marge :µ =
1

∥w⃗∥2
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Dérivation : observations positives

x2

w⃗

w⃗
x⃗

−w⃗

∥w⃗
∥2

d

d
− µ

µ

H
+ H

x1

ï
−w⃗

∥w⃗
∥2
, x⃗ð

Pour les observations positives

〈

x⃗ ,
−w⃗

∥w⃗∥2

〉

f d − µ · (−∥w⃗∥2)

ïx⃗ , w⃗ð g −d∥w⃗∥2 + µ∥w⃗∥2

ïx⃗ , w⃗ð+ d∥w⃗∥2
︸ ︷︷ ︸

b

g µ∥w⃗∥2
︸ ︷︷ ︸

1

ïx⃗ , w⃗ð+ b g 1

d =
b

∥w⃗∥2
µ =

1

∥w⃗∥2
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Dérivation : observations négatives

x2

w⃗

w⃗

x⃗

−w⃗

∥w⃗
∥2

d

µ

d
+ µ

H
−

H

x1

ï
−w⃗

∥w⃗
∥2
, x⃗ð

Pour les observations négatives :

〈

x⃗ ,
−w⃗

∥w⃗∥2

〉

g d + µ · (−∥w⃗∥2)

ïx⃗ , w⃗ð f −d∥w⃗∥2 − µ∥w⃗∥2

ïx⃗ , w⃗ð+ d∥w⃗∥2
︸ ︷︷ ︸

b

f − µ∥w⃗∥2
︸ ︷︷ ︸

1

ïx⃗ , w⃗ð+ b f −1

d =
b

∥w⃗∥2
µ =

1

∥w⃗∥2
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Dérivation des équations et grandeurs (résumé)

Pour les points négatifs :

〈

x⃗ ,
−w⃗

∥w⃗∥2

〉

g d+µ ·(−∥w⃗∥2)

ïx⃗ , w⃗ð f −d∥w⃗∥2 − µ∥w⃗∥2

ïx⃗ , w⃗ð+ d∥w⃗∥2
︸ ︷︷ ︸

b

f − µ∥w⃗∥2
︸ ︷︷ ︸

1

ïx⃗ , w⃗ð+ b f −1

Pour les points positifs

〈

x⃗ ,
−w⃗

∥w⃗∥2

〉

f d−µ ·(−∥w⃗∥2)

ïx⃗ , w⃗ð g −d∥w⃗∥2 + µ∥w⃗∥2

ïx⃗ , w⃗ð+ d∥w⃗∥2
︸ ︷︷ ︸

b

g µ∥w⃗∥2
︸ ︷︷ ︸

1

ïx⃗ , w⃗ð+ b g 1

d =
b

∥w⃗∥2
µ =

1

∥w⃗∥2
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Explication des grandeurs (p = 2)

x2

w⃗

w⃗
x⃗

−w⃗

∥w⃗
∥2

d = b/∥
w⃗∥2d −

µ

µ

µ = +
1

∥w⃗
∥2

d +
µ

H
+

H
−

H

ïw⃗
, x⃗ð

+
b
=
1

ïw⃗
, x⃗ð

=
0

ïw⃗
, x⃗ð

+
b
=
0

ïw⃗
, x⃗ð

+
b
=
−
1

ïw⃗
, x⃗ð

+ b g
1

ïw⃗ ,
x⃗ð+

b f
−1

x1

ï
−w⃗

∥w⃗
∥2
, x⃗ð
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Interprétation

Les observations positives vérifient :

ïw⃗ , x⃗ð+ b g 1

Les observations négatives vérifient :

ïw⃗ , x⃗ð+ b f −1

Pour le jeu d’entrâınement, on a alors :

(
ïw⃗ , x⃗ ið+ b

)
y i g 1

On a égalité pour les vecteurs de support.
Preuve : on doit considérer les deux cas possibles
si y i = 1 on a ïw⃗ , x⃗ ið+ b g 1 et
si y i = −1 on a ïw⃗ , x⃗ ið+ b f −1, vérifiant la relation dans les deux
cas.
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Formulation primale de la SVM à marge rigide

Nous cherchons à maximiser 1
∥w⃗∥2

sous les n contraintes
(
ïw⃗ , x⃗ ið+ b

)
y i g 1. Soit :

Définition 10.5 (Formulation primale de la SVM à marge
rigide)
On appelle SVM à marge rigide le problème d’optimisation suivant :

argmin
w⃗∈Rp ,b∈R

1

2
∥w⃗∥22 t.q.

(
ïw⃗ , x⃗ ið+ b

)
y i g 1, i = 1, . . . , n.

Supposons w⃗ ∗, b∗ solutions du problème ci-dessus ; la fonction de
décision est alors donnée par

f (x⃗) = ïw⃗ ∗, x⃗ð+ b∗.

Note : problème d’optimisation convexe sous n contraintes (une par
point du jeu d’entrâınement)
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Formulation duale (de la SVM à marge rigide)

Théorème 10.1 (Formulation duale de la SVM à marge
rigide) Le problème défini dans le slide précédent est équivalent à :

max
³⃗∈Rn

n∑

i=1

³i −
1

2

n∑

i=1

n∑

ℓ=1

³i³ℓy
iy ℓïx⃗ i , x⃗ ℓð

t.q.
n∑

i=1

³iy
i = 0 et ³i g 0, i = 1, . . . , n.

Si ³⃗∗ (=multiplicateurs de Lagrange) est solution du problème dual :

w⃗ ∗ =
n∑

i=1

³∗
i y

i x⃗ i

b∗ = 1− min
i : y i=+1

ïw⃗ ∗, x⃗ ið (le plus proche de l’hyperplan H),

et la fonction de décision est alors donnée par

f (x⃗) =
n∑

i=1

³∗
i y

iïx⃗ i , x⃗ð+ b∗.
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Complexité algorithmique

Complexité et dimensions

• La formulation primale de la SVM est un problème
d’optimisation en p + 1 dimensions

• La formulation duale est un problème d’optimisation en n

dimensions.

Implications pratiques :

• peu de données et beaucoup de variables ⇒ on préférera la
formulation duale

• beaucoup de données peu de variables ⇒ on préférera résoudre
le problème primal.

Michael Liebling EE-311—Apprentissage machine / 4. Machines à vecteurs de support 19 / 53



Interprétation géométrique des ³∗
i (marge rigide)

Pour caractériser la relation entre ³⃗∗ et (w⃗ ∗, b∗), écrivons :

ϕ(w⃗) =
1

2
∥w⃗∥22

gi(w⃗ , b) = y i
(
ïw⃗ , x⃗ ið+ b

)
− 1

⇒
argmin
w⃗∈Rp ,b∈R

ϕ(w⃗)

t.q. gi(w⃗ , b) g 0
←primal

Si w⃗ ∗, b solution du problème primal et ³∗
i solution du problème

dual, on a une “condition d’écart complémentaire” qui dit que :

³∗
i gi(w⃗

∗, b∗) = 0 pour tout 1 f i f n.

Deux cas sont possibles pour chacune des observations i :

1. ³∗
i = 0 : le minimiseur de ϕ vérifie la contrainte et

gi(w⃗
∗, b∗) > 0, i.e. x⃗ i est à l’extérieur des hyperplans H+ ou

H− ;
2. ³∗

i > 0 : contrainte vérifiée en bordure de zone de faisabilité,
i.e. quand gi(w⃗

∗, b∗) = 0 et x⃗ i est un vecteur de support.

Ainsi : les vecteurs de support sont les observations x⃗ i du jeu de

données correspondant aux multiplicateurs de Lagrange ³∗
i non nuls.
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Le cas linéairement non séparable : SVM à marge souple

En pratique, les données ne sont généralement pas linéairement
séparables !

F����� 10.3 – Aucun classifieur linéaire ne peut séparer parfaitement ces données. Les observations mar-
quées d’un carré sont des erreurs de classification. L’observation marquée d’un triangle est correctement
classifiée mais est située à l’intérieur de la zone d’indécision. Si elle était à sa frontière, autrement dit, si
elle était vecteur de support, la marge serait beaucoup plus étroite.
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Formulation de la SVM à marge souple

But : trouver un compromis entre les erreurs de classification (sur le
jeu d’entrâınement) et la taille de la marge.
Idée : Minimiser l’inverse du carré de la marge ∥w⃗∥22 (comme cas
rigide) et en plus un terme d’erreur pour pénaliser les instances où la
classification de points du jeu d’entrâınement sont erronées :

C ×

n∑

i=1

L
(
f (x⃗ i), y i

)

où C ∈ R
+ est un hyperparamètre de la SVM et L la fonction de

coût :

argmin
w⃗∈Rp ,b∈R

1

2
∥w⃗∥22 + C

n∑

i=1

L
(
ïw⃗ , x⃗ ið+ b, y i

)

C permet d’ajuster l’importance relative de marge et des erreurs du
modèle sur le jeu d’entrâınement
⇒ confère de la souplesse à la marge.
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SVM à marge souple

Définition 10.6 (SVM à marge souple) On appelle SVM à
marge souple la solution du problème d’optimisation suivant :

argmin
w⃗∈Rp ,b∈R

1

2
∥w⃗∥22 + C

n∑

i=1

[
1− y i f

(
x⃗ i
)]

+
.

Caractéristiques :

Autant que possible, on veut que toute observation x⃗ d’étiquette y

soit située à l’extérieur de la zone d’indécision, i.e.

y i f
(
x⃗ i
)
g 1

ce qui amène au choix de l’erreur hinge (voir rappel dans les slides
suivants) comme fonction de coût.
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(Rappel) Erreur hinge pour la classification binaire

Définition 2.12 On appelle fonction d’erreur hinge, ou hinge loss,
la fonction

Lhinge : {−1, 1} × R→ R

y , f (x⃗) 7→

{

0 si yf (x⃗) g 1

1− yf (x⃗) sinon

Notations équivalentes :

Lhinge (y , f (x⃗)) = max (0, 1− yf (x⃗)) = [1− yf (x⃗)]+

Remarques
- pour une classification parfaite (quand ą = {−1, 1}) on a
yf (x⃗) = 1
- Fonction coût est d’autant plus grande que yf (x⃗) s’éloigne de 1 à
gauche
- On considère qu’il n’y a pas d’erreur si yf (x⃗) > 1
- hinge = charnière ; aspect de coude
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Rappel : fonctions de perte pour la classification binaire

F����� 2.4 – Fonctions de perte pour la classification binaire.
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Formulation primale de la SVM à marge souple

Définition 10.7 (Formulation primale de la SVM à marge
souple) En introduisant une variable d’ajustement (ou variable
d’écart—slack variable) Ài =

[
1− y i f

(
x⃗ i
)]

+
pour chaque

observation du jeu d’entrâınement, le problème d’optimisation
précédent est équivalent à

argmin
w⃗∈Rp ,b∈R

1

2
∥w⃗∥22 + C

n∑

i=1

Ài

t.q.

y i
(
ïw⃗ , x⃗ ið+ b

)
g 1− Ài , i = 1, . . . , n

Ài g 0, i = 1, . . . , n

Note : problème d’optimisation convexe sous 2n contraintes (toutes
affines)
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Formulation duale de la SVM à marge souple

Théorème 10.2 (Formulation duale de la SVM à marge
souple) La formulation primale du problème de SVM à marge
souple est équivalent au problème

max
³⃗∈Rn

n∑

i=1

³i −
1

2

n∑

i=1

n∑

ℓ=1

³i³ℓy
iy ℓïx⃗ i , x⃗ ℓð

t.q.
n∑

i=1

³iy
i = 0 et 0 f ³i f C

︸︷︷︸

NEW!

, i = 1, . . . , n.
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Interprétation géométrique des ³∗
i (marge souple)

Caractérisation de la relation entre ³⃗∗ et (w⃗ ∗, b∗).
Trois cas possibles pour chaque observation i :

1. ³∗
i = 0 : le minimiseur de 1

2
∥w⃗∥22 vérifie la contrainte et

y i
(
ïw⃗ , x⃗ ið+ b

)
> 1, i.e. x⃗ i est à l’extérieur de la zone

d’indécision ;

2. 0 < ³∗
i < C : x⃗ i est un vecteur de support situé sur la bordure

de la zone d’indécision

3. ³∗
i = C : on a

[
1− y i

(
ïw⃗ , x⃗ ið+ b

)]

+
> 0 et x⃗ i est du

mauvais côté de la frontière d’indécision.
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Relation entre ³⃗∗ et (w⃗ ∗, b∗)

Si ³⃗∗ est solution du problème dual, on a :

w⃗ ∗ =
n∑

i=1

³∗
i y

i x⃗ i

La fonction de décision est alors donnée par

f (x⃗) =
n∑

i=1

³∗
i y

iïx⃗ i , x⃗ð+ b∗.

Pour trouver b∗, on trouve une observation x⃗ i sur la frontière (i.e.
pour laquelle on a 0 < ³∗

i < C ) et on résout

y i
(
ïw⃗ ∗, x⃗ ið+ b∗

)
= 1

en utilisant le fait que (y i)−1 = y i (comme y = ±1) :

b∗ = y i − ïw⃗ ∗, x⃗ ið
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SVM pour classification multi-classe ?

Il est possible d’utiliser les SVMs pour construire un classificateur
multi-classe, grâce à une approche une-contre-toutes ou
une-contre-une.
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Rappel : Classification multi-classe : comment s’y prendre ?

banana

cherry

banana

banana

ba
na

na

ap
p
le

orange

w
at

er
m
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o
n

ap
pl

e

a
p
p
le

ap
pl

e

ora
ng

e

ora
ng

e

ora
ng

e

w
at

er
m

el
on

w
at

er
m

el
on

w
at

er
m

el
on

ch
er

ry

ch
er

ry

cherry Apple,

Banana,

Cherry,

Orange, or

Watermelon?

f(x)
→

Training data

Trained Classifier
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Rappel : Classification multi-classe avec classifieurs binaires

On peut utiliser tout algorithme de classification binaire pour
résoudre un problème de classification à C classes.
Deux possibilités :
Définition 2.4 : Approche une-contre-toutes (one-versus-all)
1. Entrâıner C classifieurs binaires “classe c : oui/non ?” sur
l’ensemble des données d’entrâınement (les exemples de la classe c

sont positifs, tous les autres exemples sont négatifs)
2. Classifieur multi-classe obtenu via :

f (x⃗) = arg max
c=1,...,C

gc(x⃗)

Définition 2.5 : Approche une-contre-une (one-versus-one)
1. Entrâıner C (C − 1) classifieurs binaires “classe c : oui/non ?” sur
exemples étiquetés des classes c (exemples +) et k (exemples -)
2. Classifieur multi-classe obtenu via :

f (x⃗) = arg max
c=1,...,C

(
∑

k ̸=c

gck(x⃗)

)
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Rappel : Approche une-contre-toutes : on entrâıne C

classifieurs binaires (exemple : C = 5 classifieurs)

banana

cherry
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ry

cherry

not-w

not-c

not-o

no
t-
a

not-w

no
t-
b

not-w

no
t-
b

no
t-
w

no
t-
a not-a

no
t-
a
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b

no
t-

c

no
t-
o

n
o
t-

o

n
o
t-

c

no
t-
b

no
t-
c

no
t-
o

Watermelon

or 

Not-watermelon?

Banana

or 

Not-banana?

Cherry

or 

Not-cherry?

Orange

or

Not-orange

Apple 

or

Not-apple
ga(x)

→

go(x)
→

gc(x)
→

gb(x)
→

gw(x)
→
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Rappel : Classifieur multi-classe construit à partir de
classifieurs binaires (entrâınés avec une approche
une-contre-toutes)

Watermelon

or 

Not-watermelon?

gw(x)
→

?
?
?
?

Apple 

or

Not-apple
ga(x)

→

Orange

or

Not-orange
go(x)

→

Cherry

or 

Not-cherry?

gc(x)
→

Banana

or 

Not-banana?
gb(x)

→

arg max
c=1,...,C

gc(x⃗) → f (x⃗)

a
p
p
le
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Rappel : Approche une-contre-une : on entrâıne C (C − 1)
classifieurs binaires sur des paires de classes (exemple :
C (C − 1) = 5× 4 = 20 classifieurs)
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→

Banana

or 

not banana?

(banana/cherry)
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→
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not banana?

(banana/orange)
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Watermelon
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→
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not cherry?
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→
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→
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→
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Rappel : Classifieur multi-classe construit à partir de
classifieurs binaires (entrâınés avec une approche
une-contre-une)

????

Banana

or 

not banana ?

(banana/watermelon)

Banana

or 

not banana?

(banana/cherry)

Banana

or 

not banana?

(banana/orange)

Banana

or 

not banana?

(banana/apple)

Watermelon

or 

not-watermelon?

(watermelon/cherry)

gwc(x)
→

Watermelon

or 

not watermelon?

(watermelon/orange)

gwo(x)
→

Watermelon

or 

not watermelon?

(watermelon/apple)

gwa(x)
→

Cherry

or 

not cherry?

(cherry/orange)

gco(x)
→

Cherry

or 

not cherry?

(cherry/apple)

gca(x)
→

Orange

or

not orange?

(orange/apple)

gwb(x)
→

Cherry

or 

not cherry?

(banana/cherry)

gcb(x)
→

Orange

or 

not orange?

(banana/orange)

Apple

or 

not apple?

(banana/apple)

gab(x)
→

cherry

or 

not-cherry?

(watermelon/cherry)

gcw(x)
→

Orange

or 

not orange?

(watermelon/orange)

Apple

or 

not apple?

()watermelon/apple)

gaw(x)
→

Apple

or

not apple?

(orange/apple)

gao(x)
→

Orange

or 

not orange?

(cherry/orange)

Apple

or 

not apple?

(cherry/apple)

gac(x)
→

gbw(x)
→

gbc(x)
→

gbo(x)
→

gba(x)
→

gco(x)
→

gca(x)
→

gcb(x)
→

gcw(x)
→

goa(x)
→

gob(x)
→

gow(x)
→

goc(x)
→

orange

Σ Σ Σ Σ Σ
arg max

Watermelon

or 

not-watermelon?

(watermelon/banana)

f (x⃗) = arg max
c=1,...,C

(
∑

k ̸=c

gck(x⃗)

)
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Rappel : Une-contre-toutes ou Une-contre-une ?

Suivant la taille des données n, le nombre de classes C , le coût pour
entrâıner un classifieur binaire et la puissance de calcul à disposition
(possibilité d’entrâıner plusieurs classifieurs en parallèle), on
préfèrera l’une ou l’autre approche.

Efficacité de l’entrâınement (on suppose que les tailles des
classes d’entrâınement sont égales) :

• entrâıner C modèles sur n observations ou

• entrâıner C (C − 1) modèles sur 2n/C observations ?

Qualité de l’entrâınement :

• entrâıner C modèles sur n observations ou

• entrâıner C (C − 1) modèles sur 2n/C observations ?
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Cas non linéaire : SVM à noyau

Les fonctions linéaires ne sont pas toujours appropriées pour séparer
les données. . .

(�) Un cercle semble bien mieux indiqué qu’une
droite pour séparer ces données.

(�) Après transformation par l’application � :
(x1, x2) 7! (x2

1
, x2

2
), les données sont linéairement

séparables dans l’espace de redescription.

F����� 10.4 –Transformer les données permet de les séparer linéairement dans un espace de redescription. A
ze
n
co

tt

Idée : définir un espace de redescription dans lesquel la fonction de
séparation est linéaire.
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Espace de redescription : un exemple

Exemple : la fonction

f : R2 → R

x⃗ 7→ x21 + x22 − R2

n’est pas linéaire en x⃗ = (x1, x2) mais elle est linéaire en (x21 , x
2
2 ).

On peut donc définir

ϕ : R2 → R
2

(x1, x2) 7→
(
x21 , x

2
2

)

La fonction de décision f est linéaire en ϕ (x⃗) :

f (x⃗) = (ϕ (x⃗))1 + (ϕ (x⃗))2 − R2

et nous pouvons l’apprendre en utilisant une SVM sur les images des

données par l’application ϕ.
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Espace de redescription : cas général

Dans le cas général, les observations sont dans un espace
quelconque Ą :

• Ą = R
p

• Ą = ensemble des châınes de caractères sur un alphabet donné

• Ą = espace de tous les graphes

• Ą = espace de fonctions

Définition 10.8 (Espace de redescription) On appelle espace de
redescription l’espace de Hilbert ℋ dans lequel il est souhaitable de
redécrire les données, au moyen d’une application ϕ : Ą →ℋ, pour
y entrâıner une SVM sur les images des observations du jeu
d’entrâınement.

La redescription des données dans un espace de Hilbert nous permet
d’utiliser un algorithme linéaire, comme la SVM à marge souple,
pour résoudre un problème non linéaire.
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Hilbert Spaces : Inner Product

Hilbert space : “infinite dimensional vector space” with an inner
product and . . . (formal definition next page)
Inner product space ℋ= vector space with inner product

ℋ-inner product : ïu, vð ∈ R or C
(i) Linearity : ïu, ³v + ´wð = ³ïu, vð+ ´ïu,wð ∀³, ´ ∈ C,
∀u, v ,w ∈ ℋ.

(ii) Conjugate Symmetry : ïu, vð∗ = ïv , uð ∀u, v ∈ ℋ.

(iii) Positive definite : ïu, uð > 0 ∀u ̸= 0, u ∈ ℋ.
ïu, uð = 0 ô u = 0.
(Note : conjugate symmetry implies ïu, uð ∈ R)

Induced norm
∥u∥ℋ := ïu, uð1/2

ℋ

Michael Liebling EE-311—Apprentissage machine / 4. Machines à vecteurs de support 41 / 53



Hilbert spaces : completeness or closedness

Completeness or closedness Every Cauchy sequence in ℋ

converges to a vector in ℋ.
Cauchy sequence {xn} : ∀ϵ > 0, there exists N such that
∥xn − xm∥ < ϵ ∀n,m > N . ⇒ as n inreases, the points get closer
and closer and converge to a limit.
Definition : a Hilbert space is an inner product space that is
complete.
Separability : A Hilbert space is separable if and only if it
contains a countable orthonormal basis.
Examples :

space of square-summable sequences x ∈ ℓ2.

Countable basis : {¶[k − ℓ]}ℓ∈Z, x [k] =
∑

ℓ∈Z

x [k]¶[k − ℓ]

Non-countable basis :
{

e
jÉ
}

É∈R
(counter-example)

x [k] =
1

2Ã

∫ 2Ã

0

X
(

e
jÉ
)

e
jÉk

dÉ
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Separable Hilbert spaces of interest

R
N or CN : N-dimensional Euclidean space

Real or complex-valued vector u = (u1, . . . , uN) =







u1
...
uN







Euclidean inner product :ïu, vð = u∗¦v

=
N
∑

i=1

u∗
i vi

ℓ2 : space of square summable sequences Real or
complex-valued discrete sequences : {x [k]}k∈Z, ℓ2-inner product :

ïx , yð =
∑

k∈Z

x∗[k]y [k]

L2 : space of Lebesgue square-integrable functions
Real or complex-valued functions : f (x), x ∈ R

L2-inner product :
ïf , gð =

∫ ∞

−∞

f ∗(x)g(x) dx
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SVM dans l’espace de redescription

Pour entrâıner une SVM sur les images de nos observations dans
l’espace de redescription ℋ, il nous faut donc résoudre (en utilisant
la formulation duale du problème de SVM à marge souple) le
problème suivant (NEW) :

max
³⃗∈Rn

n
∑

i=1

³i −
1

2

n
∑

i=1

n
∑

ℓ=1

³i³ℓy
iy ℓïϕ

(

x⃗ i
)

, ϕ
(

x⃗ ℓ
)

ðℋ

t.q.
n

∑

i=1

³iy
i = 0 et 0 f ³i f C , i = 1, . . . , n.

La fonction de décision sera ensuite donnée par :

f (x⃗) =
n

∑

i=1

³∗
i y

iïϕ
(

x⃗ i
)

, ϕ (x⃗)ðℋ + b∗.
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SVM à noyau
Comme les images des observations obtenues par la transformation
ϕ apparaissent uniquement dans des produits scalaires sur ℋ, nous
pouvons remplacer ceux-ci avec la fonction suivante appelée noyau :

k : Ą ×Ą → R

x⃗ , x⃗ ′ 7→ ïϕ (x⃗) , ϕ (x⃗ ′)ðℋ
Définition 10.9 (SVM à noyau) On appelle SVM à noyau la
solution du problème d’optimisation suivant :

max
³⃗∈Rn

n
∑

i=1

³i −
1

2

n
∑

i=1

n
∑

ℓ=1

³i³ℓy
iy ℓk

(

x⃗ i , x⃗ ℓ
)

t.q.
n

∑

i=1

³iy
i = 0 et 0 f ³i f C , i = 1, . . . , n.

La fonction de décision sera ensuite donnée par :

f (x⃗) =
n

∑

i=1

³∗
i y

ik
(

x⃗ i , x⃗
)

+ b∗.
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Astuce du noyau English : kernel trick

Que ce soit pour entrâıner la SVM ou pour l’appliquer, nous n’avons
pas besoin de connâıtre ϕ explicitement, mais il nous suffit de
connâıtre le noyau k .

Cela signifie que nous n’avons pas besoin de faire de calcul dans ℋ,
qui est généralement de très grande dimension : c’est ce que l’on
appelle l’astuce du noyau.

L’astuce du noyau s’applique de manière générale à d’autres
algorithmes d’apprentissage linéaires, comme la régression ridge,
l’ACP ou encore la méthode des K-moyennes.
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Illustration : effectuer une SVM dans un espace où c’est
possible (car les données transformées y sont séparables)

Pas de séparabilité en Ą = R
2, mais hyperplan existe si

transformation dans un espace ℋ = R
3

-1 0 1

-1 0 1

-1

0

1

-1
0
1
0
2

4
x1

x2
Ą = R2

ℋ = R3

ϕ (x⃗)

w
i
k
i
/
K
e
r
n
e
l
_
m
e
t
h
o
d

Espace de redescription :

ϕ : Ą = R
2 → ℋ = R

3

(x1, x2) 7→
(

x1, x2, x
2
1 + x22

)

Noyau (produit intérieur dans ℋ sans transformation explicite) :
k : Ą ×Ą → R

x⃗ , x⃗ ′ 7→ ïϕ (x⃗) , ϕ (x⃗ ′)ðℋ = ïx⃗ , x⃗ ′ðĄ + ∥x⃗∥2
Ą
∥x⃗ ′∥2

Ą
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Définition du noyau (english : kernel)

Définition 10.10 (Noyau) Nous appelons noyau toute fonction k

de deux variables s’écrivant sous la forme d’un produit scalaire des
images dans un espace de Hilbert de ses variables. Ainsi, un noyau
est une fonction continue, symétrique, et semi-définie positive :

∀N ∈ N, ∀
(

x⃗1, x⃗2, . . . , x⃗N
)

∈ Ą
N et (a1, a2, . . . , aN) ∈ R

N ,

N
∑

i=1

N
∑

ℓ=1

aiaℓk
(

x⃗ i , x⃗ ℓ
)

g 0.

Définition 10.11 (Matrice de Gram) Étant données n
observations (x⃗1, x⃗2, . . . , x⃗n) ∈ Ą

n et un noyau k sur Ą, on appelle
matrice de Gram de ces observations la matrice K ∈ R

n×n telle que

Kiℓ = k
(

x⃗ i , x⃗ ℓ
)

Cette matrice est semi-définie positive.
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Théorème de Moore-Aronszajn et interprétation intuitive

Pour toute fonction symétrique semi-définie positive
» : Ą ×Ą 7→ R, il existe un espace de Hilbert 2 et une
application È : Ą → 2 telle que pour tout x⃗ , x⃗ ′ ∈ Ą ×Ą on a

» (x⃗ , x⃗ ′) = ïÈ (x⃗) , È (x⃗ ′)ð2

Intuitivement, un noyau peut être interprété comme un produit
scalaire sur un espace de Hilbert, autrement dit, comme une
fonction qui mesure la similarité entre deux objets de Ą. Ainsi, on
peut définir des noyaux en construisant une similarité entre objets,
puis en vérifiant qu’elle est semi-définie positive.
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Noyaux pour vecteurs réels

Quand Ą = R
p, le théorème de Moore-Aronszajn nous permet de

définir les noyaux suivants.

Définition 10.12 (Noyau quadratique) on appelle noyau

quadratique le noyau défini par

» (x⃗ , x⃗ ′) = (ïx⃗ , x⃗ ′ð+ c)
2
, c ∈ R

+

En comparaison, l’application ϕ correspondant à ce noyau est :

ϕ : x⃗ 7→
(

x21 , . . . , x
2
p ,
√
2x1x2, . . . ,

√
2x1xp, . . . ,

√
2xp−1xp,

. . . ,
√
2cx1, . . . ,

√
2cxp, c

)

Comme ϕ a valeur dans un espace de 2p + p(p−1)
2

+ 1 dimensions,
utiliser » et l’astuce du noyau sera plus efficace que de calculer les
images des observations par ϕ avant de leur appliquer une SVM.
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Autres noyaux réels

Définition 10.13 (Noyau polynomial) On appelle noyau
polynomial de degré d ∈ N le noyau défini par

» (x⃗ , x⃗ ′) = (ïx⃗ , x⃗ ′ð+ c)
d
, c ∈ R

+

Note : ce noyau correspond à un espace de redescription comptant
autant de dimensions qu’il existe de monômes de p variables de
degré inférieur ou égal à d , soit

(

p+d

d

)

.

Définition 10.14 (Noyau radial gaussien) On appelle noyau
radial gaussien, ou noyau RBF (pour Radial Basis Function),de
bande passante Ã > 0 le noyau défini par

» (x⃗ , x⃗ ′) = exp

(

−∥x⃗ − x⃗ ′∥2
2Ã2

)

.

Ce noyau correspond à un espace de redescription de dimension
infinie ( !). En effet, en utilisant le développement en série entière de
la fonction exponentielle on aurait une infinité de termes.
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Résumé

• SVM, classification binaire supervisée, avec fonction de décision
linéaire

• Machines à vecteurs de support à marge rigide : les données
sont séparables

• Machines à vecteurs de support à marge souple : les données
ne sont pas séparables

• Fonctions de décision non-linéaires peuvent être considérées
grâce à un espace de redescription

• SVM à noyau : l’astuce du noyau permet de réduire la
complexité des calculs en ne considérant que les produits
scalaires de variables redescrites (et non les images elles-mêmes,
qui peuvent être de haute dimension)

• Présentation de quelques noyaux fréquemment utilisés

• Noyaux existent aussi pour des espaces non numériques (lettres,
etc.)
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Guide de lecture pour ce cours

Chloé-Agathe Azencott “Introduction au Machine Learning”,
Dunod, 2019, ISBN 978-210-080153-4
Chapitre 10 : Machines à vecteurs de support et méthodes à noyaux
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