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Ouvrage de référence et source

Introduction

au Machine

Learning
Ces transparents sont basés en grande partie sur le S
texte de Chloé-Agathe Azencott “Introduction au % 5
Machine Learning”, Dunod, 2019

ISBN 978-210-080153-4

L'auteure a mis le texte (sans les exercices) a disposition ici :
http://cazencott.info/dotclear/public/lectures/
IntroML_Azencott.pdf

Avertissement : Bien que ces transparents partagent la notation
mathématique, la structure de I'exposition (en partie), et certains
exemples avec le livre, ils ne constituent qu'un complément et non
un remplacement ou une source unique pour la couverture des
matiéres du cours. A ce titre, ces transparents ne se substituent pas
au texte.
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Contenu

« Préliminaires : historique, séparabilité linéaire, hyperplans,
marges

« Machines a vecteurs de support a marge rigide

« Machines a vecteurs de support a marge souple

« Cas non linéaire : SVM a noyau

Support vector machines (SVM) = Machines a vecteurs de support
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Motivation : trouver un hyperplan qui sépare 2 classes
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H; : ne sépare pas les deux classes
H, : séparation mais faible marge
Hs : séparation avec marge maximale <— obtenu via algorithme SVM
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wikipedia.org/wiki/Support-vector_machine

Séparation en dimensions > 2 (= hyperplan)
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Historique des machines a vecteurs de support

Les machines a vecteurs de support (aussi appelées machines a
vecteurs supports), ou SVM de I'anglais support vector machines se
basent sur un algorithme linéaire proposé par Vladimir Vapnik et
Aleksandr Lerner en 1963 (Vapnik et Lerner, 1963)

Lerner, wikipedia

'
efficacement a I'apprentissage de modeles non linéaires
grace a |'astuce du noyau par Vladimir Vapnik, Bernhard Boser,
Isabelle Guyon et Corinna Cortes (Boser et al., 1992 ; Cortes et
Vapnik, 1995)

Boser, UC Berkele
uyon,homepage
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Définition 10.1 (Séparabilité linéaire)

Définition 10.1 (Séparabilité linéaire) Soit & = {x",y'}, |~ un
jeu de données de n observations. Nous supposons que X' € RP et
y" € {—1,1}. On dit que 9 est linéairement séparable s'il existe au
moins un hyperplan dans R” tel que tous les points positifs
(étiquetés +1) soient d'un c6té de cet hyperplan et tous les points
négatifs (étiquetés —1) de I'autre.

Linéairement séparable Pas séparable (linéairement)
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lllustration du probleme de classification
Etant donné un jeu d’entrainement linéairement séparable :
« |l peut exister une infinité d'hyperplans séparateurs qui ne font
aucune erreur de classification

« Ces hyperplans sont des modeles équivalents du point de vue
de la minimisation du risque empirique

FIGURE 10.1 - Une infinité d’hyperplans (en deux dimensions, des droites) séparent les points négatifs (x)
des points positifs (+).

Azencott
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Marge d’un hyperplan séparateur (données lin. séparable)

Définition 10.2 (Marge) La marge ~ d'un hyperplan séparateur
est la distance de cet hyperplan a I'observation du jeu
d’entrainement la plus proche.

Azencott

Nous cherchons donc I’hyperplan qui maximise la marge.
Note : Il y a au moins une observation négative et une observation
positive a une distance 7 de I'hyperplan séparateur (si par exemple
toutes les observations négatives étaient a une distance supérieure a v de
I'hyperplan séparateur, on pourrait rapprocher cet hyperplan des
observations négatives et augmenter la marge).
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Vecteurs de support

Définition 10.3 (Vecteurs de support) On appelle vecteurs de
support les observations du jeu d’entrainement situés a une distance

~ de I'hyperplan séparateur. Elles <soutiennent> les hyperplans H,
et H_.

Note : Toutes les observations positives sont situées a |'extérieur de
H., tandis que toutes les observations négatives sont situées a
I'extérieur de H_.

Origine du nom SVM :

« Support Vector Machine (SVM, machine a vecteurs de support)
. séparatrice a vaste marge
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Zone d’indécision
Définition 10.4 (Zone d’indécision) On appelle zone d'indécision

la zone située entre H_ et H,. Cette zone ne contient aucune
observation.

FIGURE 10.2 - La marge -y d’un hyperplan séparateur (ici en trait plein) est sa distance a I’observation la plus
proche. Quand cette marge est maximale, au moins une observation négative et une observation positive
sont a une distance y de I'hyperplan séparateur. Les hyperplans (ici en pointillés) paralléles & I'hyperplan
séparateur et passant par ces observations définissent la zone d’indécision. Les observations situées sur ces
hyperplans (cerclées) sont les vecteurs de support.
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Formulation de la SVM a marge rigide

L'équation de I'hyperplan séparateur H que nous cherchons est de la

forme
(w,x)+b=0,

ou (,) représente le produit scalaire sur R”

L’hyperplan H. est parallele a H et de la forme :
(w, xX) = constante
Nous pouvons fixer cette constante a 1 (sans perte de généralité, il

suffirait d'ajuster w et b proportionnellement pour d'autres choix)
etona:

H+ <V|7,)?>+b: ].
H_:{(w,x)+b=—-1

Marge v =
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Dérivation : observations positives
Pour les observations positives
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Dérivation : observations négatives

Pour les observations négatives :
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Dérivation des équations et grandeurs (résumé)

Pour les points négatifs : Pour les points positifs
—w —w
Rgr) 2 et [Clak) (R ) <doy (k)
< HWH2> W]
(X, w) < =d||w2 —~[wll (X, w) = =d||w|2 + 7| wll
(x,w) +d|[wllz < —~[|wl| (X, w) + d||wl> > ~[|w|]
- T -
(X,w) +b < —1 (X,w)+b>1
b 1
d=— = =
W] w2
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Explication des grandeurs (p = 2)

N X
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Interprétation
Les observations positives vérifient :

(W, xX) +b>1
Les observations négatives Vvérifient :
(w,X) +b< —1
Pour le jeu d’entrainement, on a alors :
(W, x)+b)y >1

On a égalité pour les vecteurs de support.
Preuve : on doit considérer les deux cas possibles
siy'=1ona (w,x")+b>1et

o

siy/=—1ona (w,x')+ b < —1, vérifiant la relation dans les deux
cas.
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Formulation primale de la SVM a marge rigide
Nous cherchons a maximiser m sous les n contraintes
((w,x"y 4+ b) y' > 1. Soit :

Définition 10.5 (Formulation primale de la SVM a marge
rigide)
On appelle SVM a marge rigide le probleme d'optimisation suivant :

1 . )
argmin — Hm7||§ t.qg. (<|7v./>?’> + b) y'>1i=1...,n.
WERP,bER 2

Supposons w*, b* solutions du probléme ci-dessus; la fonction de
décision est alors donnée par

F(X) = (W*,%) + b".

Note : probleme d'optimisation convexe sous n contraintes (une par
point du jeu d’entrainement)
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Formulation duale (de la SVM a marge rigide)

Théoreme 10.1 (Formulation duale de la SVM a marge
rigide) Le probleme défini dans le slide précédent est équivalent a :

gwe%z:a,—fzzgagyy X X

i=1 (=1
t.q.Za;y":Oet a; >0,i=1,...,n
i=1
Si a* (=multiplicateurs de Lagrange) est solution du probléme dual :

b* =1~ min (w*,x") (le plus proche de I'hyperplan H),
iny'=+1

et la fonction de décision est alors donnée par

Za (X1, %) + b
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Complexité algorithmique
Complexité et dimensions

« La formulation primale de la SVM est un probleme
d’'optimisation en p + 1 dimensions

« La formulation duale est un probléme d’'optimisation en n
dimensions.

Implications pratiques :
« peu de données et beaucoup de variables = on préférera la

formulation duale

« beaucoup de données peu de variables = on préférera résoudre
le probleme primal.
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Interprétation géométrique des o (marge rigide)
Pour caractériser la relation entre a* et (w*, b*), écrivons :

1, S
w) = =||lw argmin ¢(w)
¢( ) 2H ||2 ‘ = weRP,beR %primal

Si w*, b solution du probleme primal et o solution du probleme
dual, on a une “condition d'écart complémentaire” qui dit que :

afg(w*, b*) =0 pourtoutl </ <n.
Deux cas sont possibles pour chacune des observations i :

1. o =0 : le minimiseur de ¢ vérifie la contrainte et
gi(w*,b*) >0, i.e. X' est a I'extérieur des hyperplans H, ou
H_;

2. o > 0 : contrainte Vvérifiée en bordure de zone de faisabilité,
i.e. quand g;(w*, b*) = 0 et X' est un vecteur de support.

Ainsi : les vecteurs de support sont les observations X' du jeu de

données correspondant aux multiplicateurs de Lagrange o} non nuls.
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Le cas linéairement non séparable : SVM a marge souple

En pratique, les données ne sont généralement pas linéairement

séparables !

XX

FIGURE 10.3 - Aucun classifieur linéaire ne peut séparer parfaitement ces données. Les observations mar-
quées d'un carré sont des erreurs de classification. Uobservation marquée d’un triangle est correctement
classifiée mais est située a I'intérieur de la zone d’indécision. Si elle était a sa frontiére, autrement dit, si
elle était vecteur de support, la marge serait beaucoup plus étroite.

Azencot
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Formulation de la SVM a marge souple

But : trouver un compromis entre les erreurs de classification (sur le
jeu d’entrainement) et la taille de la marge.

Idée : Minimiser I'inverse du carré de la marge ||w|> (comme cas
rigide) et en plus un terme d'erreur pour pénaliser les instances ou la
classification de points du jeu d’entrainement sont erronées :

C x Z L(f(xY),y")

ou C € R" est un hyperparametre de la SVM et L la fonction de
colit :

argmin = |WH2+CZL X'+ b,y")

WERP,beR 2
C permet d'ajuster I'importance relative de marge et des erreurs du

modele sur le jeu d’entrainement
= confere de la souplesse a la marge.
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SVM a marge souple

Définition 10.6 (SVM a marge souple) On appelle SVM a
marge souple la solution du probléme d’optimisation suivant :

argmin ,||W|\2+cz [1—y'F(x)], .

WERP, beR -1

Caractéristiques :

Autant que possible, on veut que toute observation X d'étiquette y
soit située a |'extérieur de la zone d'indécision, i.e.

y'f ()?’) > 1

ce qui amene au choix de I'erreur hinge (voir rappel dans les slides
suivants) comme fonction de cofit.
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(Rappel) Erreur hinge pour la classification binaire

Définition 2.12 On appelle fonction d’erreur hinge, ou hinge loss,
la fonction

Lhinge . {_1, 1} xR —R :
0 ivf(x)>1 °
y, F(Z) sz
1 —yf(x) sinon
Notations équivalentes : I “lal
Lhinge (v, F(X)) = max (0,1 — yf (X)) = [L — yf(X)].
Remarques

- pour une classification parfaite (quand % = {—1,1}) on a

yi(x) =1

- Fonction cofit est d'autant plus grande que yf(x) s'éloigne de 1 a
gauche

- On considére qu'il n'y a pas d'erreur si yf(x) > 1

- hinge = charniere; aspect de coude
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Rappel : fonctions de perte pour la classification binaire

401y ==== cout 0/1 /
\ —:= colt quadratique /
\.\ perte hinge ;
301 at logisti 3
3. \ e cott logistique

FIGURE 2.4 - Fonctions de perte pour la classification binaire.

Azencott
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Formulation primale de la SVM a marge souple

Définition 10.7 (Formulation primale de la SVM a marge
souple) En introduisant une variable d'ajustement (ou variable
d'écart—slack variable) & = [1 — y'f ()?’)L pour chaque
observation du jeu d'entrainement, le probleme d'optimisation
précédent est équivalent a

argmm = HW||2 + ng,

RPbGR
t.q.
y (W, xy+b)>1-¢&, i=1,....n
&>0, i=1,....n

Note : probleme d'optimisation convexe sous 2n contraintes (toutes
affines)
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Formulation duale de la SVM a marge souple

Théoreme 10.2 (Formulation duale de la SVM a marge
souple) La formulation primale du probleme de SVM a marge
souple est équivalent au probléeme

maxZa,— fZZa apy'y (X7 %5

acRn
i=1 (=1

t.q. Za,y —Oet0<a,§C I=1,.
i=1 NEW'
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Interprétation géométrique des o (marge souple)
Caractérisation de la relation entre a* et (w*, b*).
Trois cas possibles pour chaque observation i :

1. af =0 : le minimiseur de *||WH2 vérifie la contrainte et
y ((W,x") + b) > 1, i.e. X" est a I'extérieur de la zone
d'indécision ;

2. 0 < ai < C: X estun vecteur de support situé sur la bordure
de la zone d'indécision

3.aj=C:ona[l—y ((w,x ﬁ’>—|—b)]+>0et)?"estdu
mauvais coté de la frontiere d'indécision.
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Relation entre a* et (w*, b*)
Si a* est solution du probleme dual, on a :

n
W = Zoé;syi)?i
i=1
La fonction de décision est alors donnée par
n
F(X) =) aiy (&, %) + b".
i=1

Pour trouver b*, on trouve une observation x sur la frontiére (i.e.
pour laquelle on a 0 < af < C) et on résout

y (WX + b%) =1
en utilisant le fait que (y')! =y’ (comme y = +1) :

b* =y — (%, %)
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SVM pour classification multi-classe ?

Il est possible d’utiliser les SVMs pour construire un classificateur
multi-classe, grace a une approche une-contre-toutes ou
une-contre-une.
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Rappel : Classification multi-classe : comment s’y prendre ?

Training data

# @@

>

N
# o o

b M [
XA

Trained Classifier

9|9 v @

]

Apple,
Banana,

> Cherry, l> W

Orange, or
Watermelon?
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Rappel : Classification multi-classe avec classifieurs binaires

On peut utiliser tout algorithme de classification binaire pour
résoudre un probléme de classification a C classes.
Deux possibilités :
Définition 2.4 : Approche une-contre-toutes (one-versus-all)
1. Entrainer C classifieurs binaires “classe ¢ : oui/non?" sur
I'ensemble des données d'entrainement (les exemples de la classe ¢
sont positifs, tous les autres exemples sont négatifs)
2. Classifieur multi-classe obtenu via :

f(xX) = arg _ maxcgc()?)

Définition 2.5 : Approche une-contre-une (one-versus-one)

1. Entrainer C(C — 1) classifieurs binaires “classe ¢ : oui/non?" sur
exemples étiquetés des classes ¢ (exemples +) et k (exemples -)

2. Classifieur multi-classe obtenu via :

— —
f(X) = arg max gk (X)
c=1,...,C
k#c
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Rappel : Approche une-contre-toutes : on entraine C
classifieurs binaires (exemple : C =5 classifieurs)

=
@.w
P

aaaaa

* o > GolX)

b',' i
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Rappel : Classifieur multi-classe construit a partir de
classifieurs binaires (entrainés avec une approche
une-contre-toutes)

Banana

& > g%
Not-banana?

4
Q
arg max_g.(X) | — f(x) ‘U/

c=1,...,C

V24
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Rappel : Approche une-contre-une : on entraine C (C — 1)
classifieurs binaires sur des paires de classes (exemple :

C(C — 1) =5 x 4 = 20 classifieurs)
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Rappel : Classifieur multi-classe construit a partir de
classifieurs binaires (entrainés avec une approche
une-contre-une)

f(X) =arg_max_ ;gck()?)
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Rappel : Une-contre-toutes ou Une-contre-une?

Suivant la taille des données n, le nombre de classes C, le coiit pour
entrainer un classifieur binaire et la puissance de calcul a disposition
(possibilité d'entrainer plusieurs classifieurs en paralléle), on
préferera I'une ou I'autre approche.

Efficacité de I'entrainement (on suppose que les tailles des
classes d’entrainement sont égales) :

« entrainer C modeéles sur n observations ou

. entrainer C(C — 1) modeles sur 2n/C observations ?
Qualité de I'’entrainement :

« entrainer C modeéles sur n observations ou

. entrainer C(C — 1) modeles sur 2n/C observations ?
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Cas non linéaire : SVM a noyau

Les fonctions linéaires ne sont pas toujours appropriées pour séparer
les données. ..

2
X2 X2

(A) Un cercle semble bien mieux indiqué qu’une (B) Aprés transformation par I'application ¢
droite pour séparer ces données. (21,72) = (3, 23), les données sont linéairement
séparables dans I'espace de redescription.

Azencott

FIGURE 10.4 - Transformer les données permet de les séparer linéairement dans un espace de redescription.

Idée : définir un espace de redescription dans lesquel la fonction de

s . « s .
séparation est linéaire.
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Espace de redescription : un exemple
Exemple : la fonction
f:R* =R
XX+ x5 — R
, s s o . s e 2 2

n'est pas linéaire en X = (x1, x2) mais elle est linéaire en (x7, x3).
On peut donc définir

¢ R?* = R?

2 2
(x1, %) — (xl,x2)

La fonction de décision f est linéaire en ¢ (X) :

f(X)=(¢(X), + (¢ (X)), — R?

et nous pouvons |'apprendre en utilisant une SVM sur les images des
données par |'application ¢.
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Espace de redescription : cas général

Dans le cas général, les observations sont dans un espace
quelconque & :

« X' =RP

« & = ensemble des chaines de caractéres sur un alphabet donné
« 4 = espace de tous les graphes

« 4 = espace de fonctions

Définition 10.8 (Espace de redescription) On appelle espace de
redescription |'espace de Hilbert 7 dans lequel il est souhaitable de
redécrire les données, au moyen d'une application ¢ : & — #, pour
y entrainer une SVM sur les images des observations du jeu
d’entrainement.

La redescription des données dans un espace de Hilbert nous permet
d'utiliser un algorithme linéaire, comme la SVM a marge souple,

pour résoudre un probléme non linéaire.
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Hilbert Spaces : Inner Product

Hilbert space : “infinite dimensional vector space” with an inner
product and ... (formal definition next page)
Inner product space 7%= vector space with inner product

7 -inner product : (u,v) € R or C
(i) Linearity : (u,av + fw) = a{u, v) + B{u,w) Va, 5 € C,
VYu,v,w € Z .

(ii) Conjugate Symmetry : (u,v)" = (v, u) Yu,v € Z.

(iii) Positive definite : (u,u) >0Vu #0,u € X .
(u,uy=0< u=0.
(Note : conjugate symmetry implies (u, u) € R)

Induced norm
1/2
lulls = (u, u)}
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Hilbert spaces : completeness or closedness

Completeness or closedness Every Cauchy sequence in %
converges to a vector in #Z .
Cauchy sequence {x,} : Ve > 0, there exists N such that
| Xn — Xm|| < € ¥Yn,m > N. = as n inreases, the points get closer
and closer and converge to a limit.
Definition : a Hilbert space is an inner product space that is
complete.
Separability : A Hilbert space is separable if and only if it
contains a countable orthonormal basis.
Examples :
space of square-summable sequences x € /5.
Countable basis : {6[k — (1} rez, x[K] = > x[k]d[k — (]

tez
Non-countable basis :{c*} . (2c7rounter—example)

x[k] = ;ﬁ/o X (™) el  dw
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Separable Hilbert spaces of interest

RN or C" : N-dimensional Euclidean space 1y
Real or complex-valued vector u = (uy, ..., uy) =

Un
u,v) =u'v

E *

i=1
/5 : space of square summable sequences Real or
complex-valued discrete sequences : {x[k]}xez, (>-inner product :

(x,y) = x“[kly[K]
ke,
L, : space of Lebesgue square-integrable functions
Real or complex-valued functions : f(x),x € R
L>-inner product : oo
(f,g) —/ f*(x)g(x)dx

— 00
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SVM dans I'espace de redescription

Pour entrainer une SVM sur les images de nos observations dans
I'espace de redescription 7, il nous faut donc résoudre (en utilisant
la formulation duale du probleme de SVM a marge souple) le
probleme suivant (NEW) :

(rinE?éZa,—*ZZOéaéyy ( ) ¢(ﬁ£)>?f

i=1 (=1

t.q.Za,y":Oetoga,gC,i:l,...,n

i=1

La fonction de décision sera ensuite donnée par :

— Za;*y'((/) (X),0(X))a + b*.
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SVM a noyau

Comme les images des observations obtenues par la transformation
¢ apparaissent uniquement dans des produits scalaires sur #', nous
pouvons remplacer ceux-ci avec la fonction suivante appelée noyau :

kI xZ =R
X, X = (0(X), ¢ (X))

Définition 10.9 (SVM a noyau) On appelle SVM a noyau la
solution du probleme d’optimisation suivant :

rpe?gg z”: a; — ; z”: z”: aiouy'ytk (>?i, X%)
i=1

i=1 (=1

n
tq. Y oy’ =0et0<o;<Cii=1...n
i=1
La fonction de décision sera ensuite donnée par :

F(X) =) ajy'k (%,%) + b,
i=1
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Astuce du noyau English : kernel trick

Que ce soit pour entrainer la SVM ou pour I'appliquer, nous n'avons
pas besoin de connaitre ¢ explicitement, mais il nous suffit de
connaitre le noyau k.

Cela signifie que nous n'avons pas besoin de faire de calcul dans 7,
qui est généralement de tres grande dimension : c'est ce que |'on
appelle I'astuce du noyau.

L'astuce du noyau s'applique de maniere générale a d'autres
algorithmes d’apprentissage linéaires, comme la régression ridge,
I'’ACP ou encore la méthode des K-moyennes.
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lllustration : effectuer une SVM dans un espace ou c’est
possible (car les données transformées y sont séparables)

Pas de séparabilité en & = IR?, mais hyperplan existe si
transformation dans un espace # = RR3

5 X2
A = RE |7

N

o N
wiki/Kernel_method

Espace de redescription :
oL =R & =R
(X17X2) = (X17 X2, Xf +X22)

Noyau (produit intérieur dans # sans transformation explicite) :
k: X xZ —R

X, X' = (%), ¢ (X))o = (X, X) 2 + 7
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Définition du noyau (english : kernel)

Définition 10.10 (Noyau) Nous appelons noyau toute fonction k
de deux variables s'écrivant sous la forme d'un produit scalaire des
images dans un espace de Hilbert de ses variables. Ainsi, un noyau
est une fonction continue, symétrique, et semi-définie positive :

YN e N,V (2, %,....x") € TV et (a1, 2,...,an) € RY,

N N
Z Z a;ark ()?".Xé) > 0.

i=1 (=1

Définition 10.11 (Matrice de Gram) Etant données n

observations (x*, X2, ..., X") € X" et un noyau k sur 2, on appelle
matrice de Gram de ces observatlons la matrice K € R"*" telle que
Klf =k (H, Hé)

Cette matrice est semi-définie positive.
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Théoreme de Moore-Aronszajn et interprétation intuitive

Pour toute fonction symétrique semi-définie positive
kX x X+ R, il existe un espace de Hilbert & et une
application ¢ : & — F telle que pour tout X, x’ € & x 2 on a

K(XX) =@ (%),¢(X)s

Intuitivement, un noyau peut étre interprété comme un produit
scalaire sur un espace de Hilbert, autrement dit, comme une

fonction qui mesure la similarité entre deux objets de 2. Ainsi, on
peut définir des noyaux en construisant une similarité entre objets,
puis en Vvérifiant qu'elle est semi-définie positive.
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Noyaux pour vecteurs réels

Quand 2 = RP, le théoreme de Moore-Aronszajn nous permet de
définir les noyaux suivants.

Définition 10.12 (Noyau quadratique) on appelle noyau
quadratique le noyau défini par

k(X X)) = (X, %)+c), ceR*t
En comparaison, I'application ¢ correspondant a ce noyau est :
QX+ (xl,.. 2 \/2x1%0, . . ,\ﬁxlxp,...,\ﬁxp_lxp,
V2o, V2ex<)

Comme ¢ a valeur dans un espace de 2p + p( Y+ 1 dimensions,
utiliser x et I'astuce du noyau sera plus efﬁcace que de calculer les
images des observations par ¢ avant de leur appliquer une SVM.
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Autres noyaux réels

Définition 10.13 (Noyau polynomial) On appelle noyau
polynomial de degré d € N le noyau défini par

k(%)= ((X,%)+¢c), ceR*

Note : ce noyau correspond a un espace de redescription comptant
autant de dimensions qu'il existe de monémes de p variables de

7 - Yo 7 \ . er
degré inférieur ou égal a d, soit (pd )
Définition 10.14 (Noyau radial gaussien) On appelle noyau
radial gaussien, ou noyau RBF (pour Radial Basis Function),de
bande passante o > 0 le noyau défini par

2
/i()?,)?’):exp( IX X|>

202

Ce noyau correspond a un espace de redescription de dimension
infinie (1). En effet, en utilisant le développement en série entiére de

la fonction exponentielle on aurait une infinité de termes.
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Résumé

« SVM, classification binaire supervisée, avec fonction de décision
linéaire

« Machines a vecteurs de support a marge rigide : les données
sont séparables

« Machines a vecteurs de support a marge souple : les données
ne sont pas séparables

« Fonctions de décision non-linéaires peuvent €tre considérées
grace a un espace de redescription

« SVM a noyau : I'astuce du noyau permet de réduire la
complexité des calculs en ne considérant que les produits
scalaires de variables redescrites (et non les images elles-mémes,
qui peuvent étre de haute dimension)

« Présentation de quelques noyaux fréquemment utilisés

« Noyaux existent aussi pour des espaces non numériques (lettres,
etc.)
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Guide de lecture pour ce cours

Chloé-Agathe Azencott “Introduction au Machine Learning”,
Dunod, 2019, ISBN 978-210-080153-4
Chapitre 10 : Machines a vecteurs de support et méthodes a noyaux
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