
EE-311—Apprentissage et intelligence artificielle

3. Optimisation convexe, regression
multi-variables, regression logit

Michael Liebling

https://moodle.epfl.ch/course/view.php?id=16090

7 mars 2024 (compilé le 6 mars 2025)

https://moodle.epfl.ch/course/view.php?id=16090

Ouvrage de référence et source

Ces transparents sont basés en grande partie sur le
texte de Chloé-Agathe Azencott “Introduction au
Machine Learning”, Dunod, 2019
ISBN 978-210-080153-4

L’auteure a mis le texte (sans les exercices) à disposition ici :
http://cazencott.info/dotclear/public/lectures/

IntroML_Azencott.pdf

Avertissement : Bien que ces transparents partagent la notation
mathématique, la structure de l’exposition (en partie), et certains
exemples avec le livre, ils ne constituent qu’un complément et non
un remplacement ou une source unique pour la couverture des
matières du cours. À ce titre, ces transparents ne se substituent pas
au texte.

Michael Liebling EE-311—Apprentissage machine / 3. Opt. convexe, regressions (multi-var., logit) 1 / 54

http://cazencott.info/dotclear/public/lectures/IntroML_Azencott.pdf
http://cazencott.info/dotclear/public/lectures/IntroML_Azencott.pdf

Contenu

• Optimisation Convexe
• Descente de gradient (ne requiert pas de dérivées secondes)
• Méthode de Newton (requiert des dérivées secondes)
• Méthode du gradient conjugué
• Méthode du gradient stochastique
• Descente de coordonnées

• Régression linéaire multi-variable

• Régression logit

• Régression polynomiale

Michael Liebling EE-311—Apprentissage machine / 3. Opt. convexe, regressions (multi-var., logit) 2 / 54

Optimisation : introduction

Les problèmes d’apprentissage peuvent souvent s’exprimer sous
forme d’une fonction coût à minimiser.

Le but de l’optimisation est de minimiser cette fonction coût f (x⃗).

Lorsque la fonction coût est minimale (pour un argument x⃗∗), ses
dérivées partielles sont nulles :

∂f

∂xi
(x⃗∗) = 0, i = 1, . . . , n

Les fonctions à minimiser sont rarement linéaires, mais on favorisera
des fonctions et des formulations de problèmes convexes, afin
d’assurer qu’il y ait une solution unique (et des algorithmes
numériques qui convergent pour la trouver)
Michael Liebling EE-311—Apprentissage machine / 3. Opt. convexe, regressions (multi-var., logit) 3 / 54

Convexité

Définition A.1 (Ensemble convexe) On dit d’un ensemble
ÿ ¦ R

n qu’il est convexe si est seulement si quels que soient
u⃗, v⃗ ∈ ÿ et t ∈ [0, 1],

tu⃗ + (1− t)v⃗ ∈ ÿ

ô le segment [u⃗, v⃗] est entièrement contenu dans ÿ.

F����� A.1 – Les trois ensembles deR2 présentés sur la rangée du haut sont convexes. Les trois ensembles
sur la rangée du bas ne sont pas convexes, et un exemple de segment reliant deux points de l’ensemble
mais n’étant pas entièrement inclus dans cet ensemble est présenté pour chacun d’entre eux. A

ze
n
co

tt

Michael Liebling EE-311—Apprentissage machine / 3. Opt. convexe, regressions (multi-var., logit) 4 / 54

Fonction convexe

Définition A.2 (Fonction convexe) Soit ā ¦ R
n. Une fonction

f : ā → R est dite convexe lorsque

• le domaine de définition ā de f est un ensemble convexe ;

• quels que soient u⃗, v⃗ ∈ ā et t ∈ [0, 1],

f (tu⃗ + (1− t)v⃗) f tf (u⃗) + (1− t)f (v⃗),

c’est-à-dire que, sur [u⃗, v⃗], f se situe au-dessous du segment
[(u⃗, f (u⃗)), (v⃗ , f (v⃗))].

Si l’inégalité est stricte pour tout u⃗ ̸= v⃗ ∈ ā et t ∈]0, 1[, on parle
alors de fonction strictement convexe. Une fonction strictement
convexe a une courbure supérieure à celle d’une fonction affine.

Dans le cas où il existe k > 0 tel que f − k
2
∥u⃗∥22 est strictement

convexe, f est dite fortement convexe.
Michael Liebling EE-311—Apprentissage machine / 3. Opt. convexe, regressions (multi-var., logit) 5 / 54

Illustration : définition d’une fonctions convexe

u1

u2

f

u⃗

v⃗
tu⃗ + (1−

t)v⃗

f (u⃗)

tf (u⃗) + (1− t)f (v⃗)

f (v⃗)

f (tu⃗ + (1−
t)v⃗)

Michael Liebling EE-311—Apprentissage machine / 3. Opt. convexe, regressions (multi-var., logit) 6 / 54

Fonction convexe : puissances paires

f : R → R

u 7→ u2a, a ∈ N

-4 -2 0 2 4

u

0

5

10

15

20

f(
u

)

u
2 a

, a=1

Michael Liebling EE-311—Apprentissage machine / 3. Opt. convexe, regressions (multi-var., logit) 7 / 54

Fonction convexe : puissances hors intervalle]0, 1[

f : R∗
+ → R

u 7→ ua, a /∈]0, 1[

Remarque : convexe si a /∈]0, 1[ô convexe si a ∈]−∞, 0] ∪ [1,∞[
Michael Liebling EE-311—Apprentissage machine / 3. Opt. convexe, regressions (multi-var., logit) 8 / 54

Fonction convexe : exponentielle

f : R → R

u 7→ eau, a ∈ R

-4 -2 0 2 4

u

0

50

100

150

200

250

300

f(
u
)

e
au

, a=1.4

Michael Liebling EE-311—Apprentissage machine / 3. Opt. convexe, regressions (multi-var., logit) 9 / 54

Fonction convexe : logarithme

f : R∗
+ → R

u 7→ − log(au), a ∈ R
+

0 1 2 3 4

u

-3

-2

-1

0

1

2

3

4

f(
u
)

-log(au), a=2.2

Michael Liebling EE-311—Apprentissage machine / 3. Opt. convexe, regressions (multi-var., logit) 10 / 54

Fonction convexe : fonction linéaire affine

f : R → R

u 7→ au + b, a ∈ R, b ∈ R

b

2b

a

b

a
1

−
b

a u

f (u) = au + b

Michael Liebling EE-311—Apprentissage machine / 3. Opt. convexe, regressions (multi-var., logit) 11 / 54

Fonction convexe : fonction linéaire affine (n > 1)

f : Rn → R

u⃗ 7→ a⃗¦u⃗ + b, a⃗ ∈ R
n, b ∈ R

u1

u2a⃗

2bb
b

∥a⃗∥

b
∥a⃗∥

a1u1
+ a2u2

= −b

a1u1
+ a2u2

= 0

a1u1
+ a2u2

= b

f (u⃗) = a1u1 + a2u2 + b

u⃗

Michael Liebling EE-311—Apprentissage machine / 3. Opt. convexe, regressions (multi-var., logit) 12 / 54

Fonction convexe : forme quadratique

f : Rn → R

u⃗ 7→
1

2
u⃗¦Qu⃗ + a⃗¦u⃗ + b, a⃗ ∈ R

n, b ∈ R,Q ° 0

Convexe si Q est semi-
définie positive
Par exemple :

Q =

(

1 −1
1 1

)

Rappel : une matrice Q de dimension n × n à valeurs réelles est
semi-définie positive si u⃗¦Qu⃗ g 0 ∀u⃗ ∈ R

n \ {⃗0}.
Michael Liebling EE-311—Apprentissage machine / 3. Opt. convexe, regressions (multi-var., logit) 13 / 54

Fonction convexe : normes

f : Rn → R+

u⃗ 7→ ∥u⃗∥p =

(

n
∑

i=1

|ui |
p

)1/p

p g 1

Michael Liebling EE-311—Apprentissage machine / 3. Opt. convexe, regressions (multi-var., logit) 14 / 54

Optimisation convexe

Optimisation convexe Étant donnés ā ¦ R
n (avec n un entier

positif) et une fonction f : ā → R convexe, on appelle problème

d’optimisation convexe le problème suivant :

min
u⃗∈ā

f (u⃗)

f : fonction objective/fonction critère

Point minimum de f sur ā : un point u⃗∗ ∈ ā vérifiant :

f (u⃗∗) f f (u⃗) ∀u⃗ ∈ ā

Minimum de f sur ā : la valeur f (u⃗∗).

Michael Liebling EE-311—Apprentissage machine / 3. Opt. convexe, regressions (multi-var., logit) 15 / 54

Une fonction convexe est au dessus de sa tangente

Théorème 1.2 Soit ā ¦ R
n et

une fonction f : ā → R de classe
ÿ

1. f est convexe si et seulement
si :

1. ā est convexe

2. quels que soient u⃗, v⃗ ∈ ā,
F����� A.2 – La fonction convexe f est située au-dessus de sa tangente en u. A

ze
n
co

tt

f (v⃗) g f (u⃗) + (∇f (u⃗))¦ (v⃗ − u⃗) (1)

Rappel de notation (vecteur gradient) :

∇ =







∂
∂u1
...
∂

∂un






=⇒ ∇f (u⃗) =







∂f (u⃗)
∂u1
...

∂f (u⃗)
∂un







Michael Liebling EE-311—Apprentissage machine / 3. Opt. convexe, regressions (multi-var., logit) 16 / 54

Minimum d’une fonction convexe et différentiable

Théorème 1.3 Soit ā ¦ R
n et une fonction f : ā → R convexe,

de classe ÿ
1. Les propositions suivantes sont équivalentes :

1. u⃗∗ est un point de minimum de f sur ā

2. ∇f (u⃗∗) = 0⃗n×1.

Michael Liebling EE-311—Apprentissage machine / 3. Opt. convexe, regressions (multi-var., logit) 17 / 54

Algorithme du gradient

Soient ā ¦ R
n et f : ā → R une fonction de classe ÿ

1. Étant
donnés un pas ³ > 0 et une tolérance ϵ > 0 on appelle algorithme

du gradient l’algorithme suivant :

• Choisir u⃗ aléatoirement dans ā
• Tant que ∥∇f (u⃗)∥22 > ϵ, actualiser u⃗ :

u⃗ ← u⃗ − ³∇f (u⃗).
u⃗ est alors approximation du point de minimum global de f sur ā.

F����� A.3 – Une itération de l’algorithme du gradient déplace u de�µf 0(u). A
ze
n
co

tt

w
i
k
i
p
e
d
i
a
.
o
r
g
G
r
a
d
i
e
n
t
_
d
e
s
c
e
n
t

Le vecteur opposé du gradient,
−∇f (u⃗), indique la direction de des-
cente la plus raide au point u⃗.

Michael Liebling EE-311—Apprentissage machine / 3. Opt. convexe, regressions (multi-var., logit) 18 / 54

wikipedia.org Gradient_descent

Algorithme du gradient : remarques

Notes :
• plus la tolérance ϵ est faible : plus le point de minimum trouvé
sera proche numériquement du point de minimum global

• si le pas ³ est faible : convergence lente

• si le pas ³ est grand : u⃗ peut osciller autour du minimum
global et l’algorithme peut diverger

• on utilise souvent un pas adaptatif : d’abord grand puis qui
diminue

http://www.cs.cornell.edu/courses/cs4780/2017sp/lectures/lecturenote07.html

Michael Liebling EE-311—Apprentissage machine / 3. Opt. convexe, regressions (multi-var., logit) 19 / 54

http://www.cs.cornell.edu/courses/cs4780/2017sp/lectures/lecturenote07.html

Recherche linéaire par rebroussement (BLS : Backtracking
Line Search) : réduction du pas (rebroussement) s’il induit
un coût supérieur à la hauteur de la tangente à un demi-pas

Étant donné un pas initial ³ > 0, un coefficient de réduction
´ ∈]0, 1[et une tolérance ϵ > 0 :

1. Choisir u⃗ aléatoirement dans ā
2. Tant que ∥∇f (u⃗)∥22 > ϵ

• Si f (u⃗ − ³∇f (u⃗)) > f (u⃗)− ³
2∇f (u⃗)

¦∇f (u⃗) réduire le pas
³← ´³ (sinon on garde le même pas)

• Actualiser u⃗ : u⃗ ← u⃗ − ³∇f (u⃗).

u⃗ est alors approximation du point de minimum global de f sur ā.

(�) Quand f(u � µf 0(u)) > f(u) � f 0(u)α
2
f 0(u),

le pas µ est trop élevé et u� µf 0(u) va se retrouver
de l’autre côté du point de minimum. Il faut donc le
réduire.

(�) Quand f(u� µf 0(u)) ÿ f(u)� f 0(u)α
2
f 0(u), le

pas µ est suffisamment petit pour que u � µf 0(u)
soit entre le point de minimum et u.

F����� A.4 – Comparer f(u � µf 0(u)) à f(u) � f 0(u)α
2
f 0(u) permet de déterminer si la valeur de µ est

trop élevée. A
ze
n
co

tt

Michael Liebling EE-311—Apprentissage machine / 3. Opt. convexe, regressions (multi-var., logit) 20 / 54

Le problème de la descente de gradient

Michael Liebling EE-311—Apprentissage machine / 3. Opt. convexe, regressions (multi-var., logit) 21 / 54

Méthode de Newton (1/2)

Développement de Taylor au deuxième ordre de f en u⃗.

g(v⃗) = f (u⃗) +∇f (u⃗)¦(v⃗ − u⃗) +
1

2
(v⃗ − u⃗)¦∇2f (u⃗)(v⃗ − u⃗)

avec ∇2f (u⃗) =
[

∂2

∂ui∂uj
f (u⃗)

]

1fi ,jfn
la matrice hessienne.

On peut minimiser g en annulant son gradient (p.r. à v⃗) :

∇g(v⃗) = ∇f (u⃗) +∇2f (u⃗)(v⃗ − u⃗) = 0

pour trouver que g est minimale au point

v⃗ ∗ = u⃗ −
(
∇2f (u⃗)

)−1
∇f (u⃗)

On proposera donc l’actualisation :

u⃗ ← u⃗ −
(
∇2f (u⃗)

)−1
∇f (u⃗)

Par analogie avec la formule de l’actualisation de la méthode du
gradient (u⃗ ← u⃗ − ³∇f (u⃗)), cela correspond à fixer un jpask :

³ =
(
∇2f (u⃗)

)−1
← mais attention : ³ est ici bien une matrice, pas un scalaire !

Michael Liebling EE-311—Apprentissage machine / 3. Opt. convexe, regressions (multi-var., logit) 22 / 54

Méthode de Newton (2/2)

Soient ā ¦ R
n et f : ā → R une fonction de classe ÿ

2. Étant
donné une tolérance ϵ > 0, on appelle méthode de Newton

l’algorithme suivant :

1. Choisir u⃗ aléatoirement dans ā

2. Tant que ∥∇f (u⃗)∥22 > ϵ

• calculer le jpask ³ =
(
∇2

f (u⃗)
)−1

• Actualiser u⃗ : u⃗ ← u⃗ − ³∇f (u⃗).

u⃗ est alors approximation du point de minimum global de f sur ā.

Notes :
• méthode potentiellement gourmande en raison du calcul de
l’inverse de la hessienne et de son stockage
• la méthode de Newton produit un chemin différent que la
descente de gradient (³ est un matrice)
• si f est quadratique : convergence en 1 pas !

Michael Liebling EE-311—Apprentissage machine / 3. Opt. convexe, regressions (multi-var., logit) 23 / 54

Méthode de Newton par gradient conjugué

But : éviter de devoir calculer l’inverse de la hessienne (e.g. quand
ses dimensions sont grandes) pour le calcul du pas :

³ =
(
∇2f (u⃗)

)−1

utilisé lors de l’actualisation

u⃗ ← u⃗ − ³∇f (u⃗) = u⃗ −

¶⃗
︷ ︸︸ ︷
(
∇2f (u⃗)

)−1
∇f (u⃗)

En définissant une grandeur ¶⃗ = (∇2f (u⃗))
−1
∇f (u⃗), la règle

d’actualisation devient :
u⃗ ← u⃗ − ¶⃗

et on voit aussi que ¶⃗ est solution d’une équation linéaire (de type

Ax⃗ = b⃗) :

∇2f (u⃗)
︸ ︷︷ ︸

A

¶⃗
︸︷︷︸

x⃗

= ∇f (u⃗)
︸ ︷︷ ︸

b⃗

.

Comme A ° 0 (car f convexe) on peut utiliser la méthode du
gradient conjugué pour la résoudre (voir page suivante).
Michael Liebling EE-311—Apprentissage machine / 3. Opt. convexe, regressions (multi-var., logit) 24 / 54

Méthode du gradient conjugué (pour résoudre A¶⃗ = b⃗)

Idée : construire une base de R
n constituée de vecteurs conjugués

par rapport à A, i.e. : {v⃗1, v⃗2, . . . , v⃗n} tels que v⃗¦
i Av⃗j = 0 ∀i ̸= j .

Définition 1.11 (Méthode du gradient conjugué) Étant donnés

A ∈ R
n×n semi définie positive et b⃗ ∈ R

n :
1. Initialisation
• Choisir aléatoirement ¶⃗(0) ∈ R

n.

• Initialiser r⃗0 = v⃗0 = b⃗ − A¶⃗(0)

2. Pour t = 1, . . . , n :
(a) Actualiser ¶⃗(t) :

¶⃗(t) = ¶⃗(t−1) +
r⃗¦t−1r⃗t−1

v⃗¦
t−1Av⃗t−1

v⃗t−1.

(b) Actualiser le résiduel :
r⃗t = b⃗ − A¶⃗(t)

(c) Actualiser v⃗t : v⃗t = r⃗t +
r⃗¦t r⃗t

r⃗¦t−1r⃗t−1

v⃗t−1.

¶⃗(n) est la solution cherchée. (Note : résidus perpendiculaires !)
Michael Liebling EE-311—Apprentissage machine / 3. Opt. convexe, regressions (multi-var., logit) 25 / 54

Gradient conjugué : illustration

Minimisation dans le cas d’une fonction quadratique.

w
i
k
i
p
e
d
i
a
.
o
r
g
/
C
o
n
j
u
g
a
t
e
_
g
r
a
d
i
e
n
t
_
m
e
t
h
o
d

Comparaison de la convergence
de la descente de gradient avec
pas optimaux (vert) et gradient
conjugué (rouge).
Dans le cas où la fonction est
quadratique, le gradient conjugué
converge en n pas, au maximum.

Note : ici, la méthode de Newton convergerait en 1 pas seulement, mais celui-ci
requiert le calcul (coûteux) de l’inverse de la matrice hessienne.
Michael Liebling EE-311—Apprentissage machine / 3. Opt. convexe, regressions (multi-var., logit) 26 / 54

wikipedia.org/Conjugate_gradient_method

Algorithme du gradient stochastique (motivation)

Lorsque n est très grand, même le calcul du gradient peut devenir
très coûteux. Dans le cas où on a une fonction à minimiser qui peut
s’écrire sous la forme :

f (u⃗) =
n∑

i=1

fi(u⃗),

son gradient se décompose alors aussi :

∇f (u⃗) =
n∑

i=1

∇fi(u⃗),

et on peut accélérer les calculs en n’utilisant à chaque itération
qu’une seule des fonctions fi , i.e. on remplace

∑n

i=1∇fi(u⃗) par
∇fk(u⃗).

Michael Liebling EE-311—Apprentissage machine / 3. Opt. convexe, regressions (multi-var., logit) 27 / 54

Algorithme du gradient stochastique

Soient ā ¦ R
n et f : ā → R une fonction de classe ÿ

1

décomposable sous la forme

f (u⃗) =
n∑

i=1

fi(u⃗).

Étant donnés un pas ³ > 0 et une tolérance ϵ > 0 on appelle
algorithme du gradient stochastique l’algorithme suivant :
1. Choisir u⃗ aléatoirement dans ā
2. Tant que ∥∇f (u⃗)∥22 > ϵ :
• choisir k aléatoirement parmi {1, 2, . . . , n}
• actualiser u⃗ : u⃗ ← u⃗ − ³∇fk(u⃗)

u⃗ est alors une approximation du point de minimum global de f sur
ā.

Michael Liebling EE-311—Apprentissage machine / 3. Opt. convexe, regressions (multi-var., logit) 28 / 54

Descente de coordonnées

Soient ā ¦ R
n et f : ā → R une fonction de la forme

f : u⃗ 7→ g(u⃗) +
n∑

i=1

hi(ui).

où g est une fonction convexe de classe ÿ
1 et les n fonctions hi

sont convexes.
Algorithme : descente de coordonnées (coordinate descent)
1. Choisir u⃗ aléatoirement dans ā
2. Tant que ∥∇f (u⃗)∥22 > ϵ, actualiser u⃗ :

• u
(t)
1 point minimal de u 7→ f

(

u, u
(t−1)
2 , . . . , u

(t−1)
n

)

• u
(t)
2 point minimal de u 7→ f

(

u
(t−1)
1 , u, . . . , u

(t−1)
n

)

• · · ·
• u

(t)
n point minimal de u 7→ f

(

u
(t−1)
1 , u

(t−1)
1 , . . . , u

)

u⃗ est alors une approximation du point de minimum global de f sur
ā.

Michael Liebling EE-311—Apprentissage machine / 3. Opt. convexe, regressions (multi-var., logit) 29 / 54

Descente de coordonnées (illustration)

h
t
t
p
s
:
/
/
e
n
.
w
i
k
i
p
e
d
i
a
.
o
r
g
/
w
i
k
i
/
C
o
o
r
d
i
n
a
t
e
_
d
e
s
c
e
n
t

Michael Liebling EE-311—Apprentissage machine / 3. Opt. convexe, regressions (multi-var., logit) 30 / 54

https://en.wikipedia.org/wiki/Coordinate_descent

Régressions paramétriques

Régression paramétrique : la forme analytique de la fonction de
décision est connue.
Exemple : Régression linéaire : simplicité, interprétation facile,
implémentable même avec jeu de données de taille modeste

Apprentissage supervisé d’un modèle paramétrique Dans le
cadre d’un modèle paramétrique on utilise un algorithme
d’apprentissage pour trouver les valeurs optimales des paramètres
d’un modèle dont on a défini la forme analytique en fonction de
descripteurs.
Complexité des modèles paramétriques comparée aux
modèles non paramétriques :
• paramétrique : complexité grandit avec le nombre de paramètres à
apprendre (variables)
• non paramétrique : complexité grandit avec le nombre
d’observations

Michael Liebling EE-311—Apprentissage machine / 3. Opt. convexe, regressions (multi-var., logit) 31 / 54

Exemple : Modèle paramétrique comparé à modèle non
paramétrique

Exemple 1 : apprentissage des coefficients ³, ´, µ dans la fonction
de décision f : x⃗ 7→ ³x1 + ´x22x

2
4 + µex3−x5 est paramétrique. Quel

que soit le nombre d’observations, ce modèle ne change pas !

Exemple 2 : méthode du plus proche voisin (qui associe à x⃗

l’étiquette du point du jeu d’entrâınement dont il est le plus proche
(en distance euclidienne)) apprend un modèle non paramétrique : on
ne sait pas écrire la fonction de décision comme une fonction des
variables prédictives. Plus il y a d’observations, plus le modèle
pourra apprendre une frontière de décision complexe.

Michael Liebling EE-311—Apprentissage machine / 3. Opt. convexe, regressions (multi-var., logit) 32 / 54

Modèle paramétrique et erreurs (utilisation justifiée d’une

fonction de perte quadratique)

On se donne un jeu Ā =
{
x⃗ i , y i

}
de n observations en p

dimensions et leur étiquettes réelles.

On suppose que la fonction de décision f est paramétrée par le
vecteur ⃗́ ∈ R

m.

Hypothèse : erreurs (différence entre étiquettes réelles et les valeurs
correspondantes de f) sont normalement distribuées, centrées en 0 :

y = f (x⃗ |⃗́) + ϵ, ϵ ∼ý(0, Ã2)

Avec ce modèle, les observations x⃗ sont les réalisation de p variables
aléatoires X1,X2, . . . ,Xp à valeurs réelles qui vérifient :

P(Y = y |X = x⃗) ∼ý

(

f
(

x⃗ |⃗́
)

, Ã2
)

avec P(X = x⃗) pour P(X1 = x1,X2 = x2, . . . ,Xp = xp).
Michael Liebling EE-311—Apprentissage machine / 3. Opt. convexe, regressions (multi-var., logit) 33 / 54

Modèle et hypothèse d’erreur : illustration

F����� 5.1 – Pour une observation x∗ donnée (ici en une dimension) , la distribution des valeurs possibles
de l’étiquette y∗ correspondante est une gaussienne centrée en f(x∗).

A
ze
n
co

tt

Michael Liebling EE-311—Apprentissage machine / 3. Opt. convexe, regressions (multi-var., logit) 34 / 54

Estimation par maximum de vraisemblance et méthode des
moindres carrés

Sous l’hypothèse

P(Y = y |X = x⃗) ∼ý

(

f
(

x⃗ |⃗́
)

, Ã2
)

et en supposant que les n observations sont indépendantes et
identiquement distribuées, le log de vraisemblance du paramètre ⃗́

vaut :
logP(Ā|⃗́) = log

n∏

i=1

P(X = x⃗ i |⃗́)

= log
n∏

i=1

P(y i |x⃗ i) + log
n∏

i=1

P(X = x⃗ i)

= − log
1

2Ã2

n∑

i=1

(

y i − f (x⃗ i |⃗́)
)2

+ C

avec C une constante par rapport à ⃗́ (vient du coefficient 1
2Ã2 et

des P(X = x⃗ i)).
Michael Liebling EE-311—Apprentissage machine / 3. Opt. convexe, regressions (multi-var., logit) 35 / 54

Minimisation des moindres carrés

Maximiser la vraisemblance

− log
1

2Ã2

n∑

i=1

(

y i − f (x⃗ i |⃗́)
)2

+ C

revient donc à minimiser

n∑

i=1

(

y i − f (x⃗ i |⃗́)
)2

i.e. minimisation des moindres carrés (Gauss, Legendre)
⇒ Utiliser une fonction de coût quadratique est par conséquent
justifié lorsque l’on sait que les mesures sont sujettes à un bruit
additif ϵ dont les valeurs ont moyenne nulle et sont distribuées selon
une loi normale, ϵ ∼ý(0, Ã2).

Michael Liebling EE-311—Apprentissage machine / 3. Opt. convexe, regressions (multi-var., logit) 36 / 54

Régression linéaire

Modèles paramétriques modèle paramétrique si le but de
l’algorithme d’apprentissage est de trouver les valeurs optimales des
paramètres d’un modèle dont on a défini la forme analytique.
Fonction de décision

f : x⃗ 7→ ´0 +

p
∑

j=1

´jxj =
(
1 x1 . . . xp

)








´0

´1
...
´p








=
(
1 x⃗

)
⃗́

avec ⃗́ ∈ R
m et m = p + 1. Nombre de variables : p.

Régression linéaire (définition du problème) : c’est le modèle de la
forme f : x⃗ 7→ ´0 +

∑p

j=1 ´jxj dont les coefficients sont obtenus
par :

⃗́∗ = arg min
⃗́∈Rp+1

n∑

i=1

(

y i −

(

´0 +

p
∑

j=1

´jx
i
j

))2

Michael Liebling EE-311—Apprentissage machine / 3. Opt. convexe, regressions (multi-var., logit) 37 / 54

Le problème de régression linéaire a une solution explicite :

Si on ajoute une colonne de 1 à la matrice d’observation :

X =






1 x11 · · · x1p
...

...
1 xn1 · · · xnp






On peut réécrire la somme des résidus quadratiques (Residual Sum of Squares) :

RSS =
n∑

i=1

(

y i −

(

´0 +

p
∑

j=1

´jx
i
j

))2

=
(

y⃗ − X ⃗́
)¦ (

y⃗ − X ⃗́
)

On peut minimiser cette forme quadratique en calculant son
gradient :

∇⃗́RSS = −2X¦
(

y⃗ − X ⃗́
)

(voir dérivation en annexe)

et en posant ∇⃗́RSS = 0⃗m×1 on obtient : X¦X ⃗́∗ = X¦y⃗

Si X est de rang égal à son nombre de colonnes (m), on a :
⃗́∗ =

(
X¦X

)−1
X¦y⃗ ← solution analytique !

Michael Liebling EE-311—Apprentissage machine / 3. Opt. convexe, regressions (multi-var., logit) 38 / 54

Régression logistique

But : dans un problème de classification binaire, étant donné les
variables de x⃗ , trouver la classe correspondante y ∈ {0, 1}.

Exemple : x le nombre d’heures passées à travailler pour un
examen et y si l’examen a été réussi ou non (pass/fail).

Modèle : on impose un modèle probabiliste qui exprime

P (Y = y |X = x⃗) ,

probabilité d’appartenance à la classe y connaissant la variable x⃗ .

Michael Liebling EE-311—Apprentissage machine / 3. Opt. convexe, regressions (multi-var., logit) 39 / 54

Régression logistique, suite

Contrainte pour le modèle :
- la probabilité P (Y = y |X = x⃗) doit être comprise entre 0 et 1
- on veut une fonction de décision f : R → [0, 1]
- la fonction doit faire intervenir une combinaison linéaire des
variables dans x⃗
- une légère perturbation de x⃗ lorsque sa probabilité d’appartenance
à une classe est proche de 0 ou 1 devrait avoir peu d’influence sur
l’estimation de la nouvelle probabilité
- une légère perturbation de x⃗ lorsque sa probabilité d’appartenance
à une classes est incertaine, e.g. 0.5, pourrait affecter l’estimation
plus fortement

Michael Liebling EE-311—Apprentissage machine / 3. Opt. convexe, regressions (multi-var., logit) 40 / 54

Définition des fonctions logit et logistique

Définition 5.3 (Fonction logit)
On appelle fonction logit la fonction :

logit : [0, 1] → R

p 7→ log
p

1− p
(�) Fonction logit. A

ze
n
co

tt

La fonction inverse/réciproque :

Définition 5.4 (Fonction logistique)
On appelle fonction logistique la fonction :

Ã : R → [0, 1]

u 7→
1

1 + e−u
=

eu

1 + eu
(�) Fonction logistique. A

ze
n
co

tt

Michael Liebling EE-311—Apprentissage machine / 3. Opt. convexe, regressions (multi-var., logit) 41 / 54

Fonctions logit et logistique

Idée : plutôt que d’essayer de modéliser directement la probabilité
par une fonction linéaire, on modélise la transformation logit de
P (Y = 1 |x⃗) comme une combinaison linéaire, i.e. une fonction de

(1 x⃗) ⃗́ = ´0 +
∑p

j=1 xj´j , soit :

log
P (Y = 1 |x⃗)

1− P (Y = 1 |x⃗)
= (1 x⃗) ⃗́

De manière équivalente, on peut exprimer la probabilité comme une
fonction logistique dont l’argument est une fonction linéaire :

P (Y = 1 |x⃗) = Ã
(

(1 x⃗) ⃗́
)

Michael Liebling EE-311—Apprentissage machine / 3. Opt. convexe, regressions (multi-var., logit) 42 / 54

Apples and Oranges : valeurs RGB (classification binaire sur
le canal bleu x2)

Michael Liebling EE-311—Apprentissage machine / 3. Opt. convexe, regressions (multi-var., logit) 43 / 54

On a deux classes, oranges et pommes : ą = {0, 1}
On veut une fonction de décision qui indique la probabilité que
l’objet soit une pomme (Y = 1) étant donné la valeur du canal bleu
x2 dans l’image, et qui prenne la forme :

f (x⃗) = P (Y = 1 |x⃗) = Ã
(

(1 x⃗) ⃗́
)

= Ã (´0 + ´1x2)

On cherche un “bon” ⃗́ :
f (x⃗) =
Ã (−32.426 + 0.464x2),
en particulier,

on utilise la fonction de coût de l’entropie croisée (cross-entropy) :

LH : {0, 1} ×]0, 1[→ R

y , f (x⃗) 7→ −y log f (x⃗)− (1− y) log (1− f (x⃗))
Michael Liebling EE-311—Apprentissage machine / 3. Opt. convexe, regressions (multi-var., logit) 44 / 54

Régression logistique

Définition 5.5 Régression logistique. On appelle régression

logistique le modèle f : x 7→ Ã
(

(1 x⃗) ⃗́
)

dont les coefficients ⃗́

sont obtenus tels qu’ils maximisent la vraissemblance :

arg max
⃗́∈Rp+1

n∑

i=1

y i log Ã
((

1 x⃗ i
)
⃗́
)

+ (1− y i) log
(

1− Ã
((

1 x⃗ i
)
⃗́
))

Note : Maximiser la vraisemblance de ⃗́ sous ce modèle est
équivalent à minimiser le risque empirique défini en utilisant la
fonction de coût logistique (c.-à-d. l’entropie croisée, comme
ą = {0, 1}) :

ℛn(h) =
1

n

n∑

i=1

LH(f (x⃗
i), y i)

=
1

n

n∑

i=1

−y i log f (x⃗ i)− (1− y i) log
(
1− f (x⃗ i)

)

Michael Liebling EE-311—Apprentissage machine / 3. Opt. convexe, regressions (multi-var., logit) 45 / 54

Solution de la régression logistique

La vraisemblance de la régression logistique est une fonction
concave et le gradient en ⃗́ de la vraisemblance pour la régression
logistique vaut :

n∑

i=1

(

y i −
1

1 + e−(1 x⃗ i)⃗́

)

(1 x⃗ i)

• Ce gradient ne peut pas être annulé de manière analytique : pas
de solution explicite pour la régression logistique
• solution obtenue par l’algorithme du gradient (ou une de ses
variantes)
• convergence vers la solution optimale car la vraisemblance est
concave (pas de maximum local)
• De manière équivalente, le coût est convexe et a pour gradient :

−
n∑

i=1

(

y i −
1

1 + e−(1 x⃗ i)⃗́

)

(1 x⃗ i)

Michael Liebling EE-311—Apprentissage machine / 3. Opt. convexe, regressions (multi-var., logit) 46 / 54

Régression Polynomiale

Dans le cas de la régression polynomiale de degré d , on cherche une
fonction de décision de la forme :

f : x⃗ 7→ ´00 +

p
∑

j=1

´1jxj +

p
∑

j=1

´2j(xj)
2 + · · ·+

p
∑

j=1

´dj(xj)
d

Il s’agit en fait d’une régression linéaire sur p × d variables :

x1, x2, . . . , xp,

(x1)
2, (x2)

2, . . . , (xp)
2,

· · ·

(x1)
d , (x2)

d , . . . , (xp)
d ,

Michael Liebling EE-311—Apprentissage machine / 3. Opt. convexe, regressions (multi-var., logit) 47 / 54

Régression polynomiale (suite)
Fixons p = 1, d = 2 :

f : x⃗ 7→ ´00 + ´11x1 + ´21(x1)
2

Fixons ensuite n = 4, on peut alors construire la matrice :

X =







1 x11 (x11)
2

1 x21 (x21)
2

1 x31 (x31)
2

1 x41 (x41)
2







et avec le vecteur d’étiquettes y⃗ et celui de paramètres ⃗́ :

y⃗ =







y 1

y 2

y 3

y 4







⃗́ =





´00

´11

´21





on a alors bien une expression linéaire pour les résidus, identique à
la régression linéaire :

RSS =
(

y⃗ − X ⃗́
)¦ (

y⃗ − X ⃗́
)

Michael Liebling EE-311—Apprentissage machine / 3. Opt. convexe, regressions (multi-var., logit) 48 / 54

Résumé du cours 3
• méthodes d’optimisation : nécessaires à la résolution numérique de
problèmes de minimisation de coût

• convexité : assure convergence vers solution unique

• gradient : suivre la pente la plus forte, avec un pas à déterminer

• rebroussement
• Newton (requiert calcul de la matrice hessienne et de son inverse)
• gradient conjugué (requiert hessienne mais pas son inverse)
• gradient stochastique : fonction coût sous forme de somme,
minimisation partielle

• descente de coordonnées (fixer toutes les variables sauf une)

• Régressions paramétriques

• correspondes à maximisation de la vraissemblance des paramètres du
modèle étant donné des observations

• minimisation des moindes carrés (régression linéaire)
• régression logistique : fonction non-linéaire, modélisation de
probabilités

• régression polynomiale : c’est une régression linéaire !

Michael Liebling EE-311—Apprentissage machine / 3. Opt. convexe, regressions (multi-var., logit) 49 / 54

Guide de lecture pour ce cours

Chloé-Agathe Azencott “Introduction au Machine Learning”,
Dunod, 2019, ISBN 978-210-080153-4
Appendice A : Notions d’optimisation convexe
Chapitre 5 : Régressions paramétriques

• 5.1 Apprentissage supervisé d’un modèle paramétrique

• 5.2 Régression linéaire

• 5.3 Régression logistique

• 5.4 Régression polynomiale

Michael Liebling EE-311—Apprentissage machine / 3. Opt. convexe, regressions (multi-var., logit) 50 / 54

Dérivation solution des moindres carrés pour problème
régression linéaire donné sous forme matricielle (new)

On veut trouver le vecteur ⃗́ tel qu’il minimise la somme des résidus
quadratiques (residual sum of squares) :

RSS =
n∑

i=1

(

y i −

(

´0 +

p
∑

j=1

´jx
i
j

))2

=
(

y⃗ − X ⃗́
)¦ (

y⃗ − X ⃗́
)

On développe le produit scalaire :

y⃗¦y⃗ − y⃗¦X ⃗́ − ⃗́¦X¦y⃗
︸ ︷︷ ︸

y⃗¦X ⃗́

+⃗́¦X¦X ⃗́ = y⃗¦y⃗
︸︷︷︸
const.

−2y⃗¦X ⃗́ + ⃗́¦X¦X ⃗́

Fixons n = 2 et p = 1 (et m = p + 1 = 2) :

X =

(
1 x11
1 x21

)

n×m=2×2

⃗́ =

(
´0

´1

)

m×1=2×1

y⃗ =

(
y0
y1

)

n×1=2×1

Michael Liebling EE-311—Apprentissage machine / 3. Opt. convexe, regressions (multi-var., logit) 51 / 54

Dérivation des moindres carrés sous forme matricielle 2(new)

L’opérateur gradient est :

∇⃗́ =

(∂
∂´0
∂

∂´1

)

Dévelopons le terme croisé :

y⃗¦X ⃗́ =
(
y 1 y 2

)
(
´0 + x11´1

´0 + x21´1

)

= y 1(´0 + x11´1) + y 2(´0 + x21´1)

et calculons ses dérivées par rapport à ´0 :

∂

∂´0

(y⃗¦X ⃗́) = y 1 + y 2 =
(
1 1

)
(
y 1

y 2

)

=
(
1 1

)
y⃗

ainsi que par rapport à ´1 :

∂

∂´1

(y⃗¦X ⃗́) = y 1x1 + y 2x2 =
(
x11 x21

)
(
y 1

y 2

)

=
(
x11 x21

)
y⃗

d’où on peut identifier l’expression matricielle :

∇⃗́(y⃗
¦X ⃗́) = X¦y⃗

Michael Liebling EE-311—Apprentissage machine / 3. Opt. convexe, regressions (multi-var., logit) 52 / 54

Dérivation des moindres carrés sous forme matricielle 3(new)

Développons ensuite le terme quadratique :

⃗́¦ X¦X
︸ ︷︷ ︸

C

⃗́ =
(
´0 ´1

)
(
c11 c12
c21 c22

)(
´0

´1

)

= c11´
2
0+2c12´0´1+c22´

2
1

(où l’on a utilisé le fait que c12 = c21) et calculons les dérivées par
rapport à ´0 et ´1 :

∂

∂´0

(⃗́¦X¦X ⃗́) = 2c11´0 + 2c12´1 = 2
(
c11 c12

)
⃗́

∂

∂´1

(⃗́¦X¦X ⃗́) = 2c12´0 + 2c22´1+ = 2
(
c12 c22

)
⃗́

on peut à nouveau mettre ces expressions sous forme matricielle :

∇⃗́(⃗́
¦X¦X ⃗́) = 2C ⃗́ = 2(X¦X)⃗́

Michael Liebling EE-311—Apprentissage machine / 3. Opt. convexe, regressions (multi-var., logit) 53 / 54

Dérivation des moindres carrés sous forme matricielle 4
(new)

Finalement, on utilise les deux expressions calculées :

∇⃗́(y⃗
¦X ⃗́) = X¦y⃗

∇⃗́(⃗́
¦X¦X ⃗́) = 2(X¦X)⃗́

pour simplifier l’expression et obtenir, finalement :

∇⃗́RSS = ∇⃗́



y⃗¦y⃗
︸︷︷︸
const.

−2y⃗¦X ⃗́ + ⃗́¦X¦X ⃗́





= −2X¦
(

y⃗ − X ⃗́
)

Pour n et p plus grands, l’expression matricielle reste la même et on
pourrait prendre la même approche que dans notre cas particulier
pour le montrer.
Michael Liebling EE-311—Apprentissage machine / 3. Opt. convexe, regressions (multi-var., logit) 54 / 54

