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Ouvrage de référence et source

Introduction

auMachine

Learning
Ces transparents sont basés en grande partie sur le By
texte de Chloé-Agathe Azencott “Introduction au
Machine Learning”, Dunod, 2019

ISBN 978-210-080153-4

L'auteure a mis le texte (sans les exercices) a disposition ici :
http://cazencott.info/dotclear/public/lectures/
IntroML_Azencott.pdf

Avertissement : Bien que ces transparents partagent la notation
mathématique, la structure de I'exposition (en partie), et certains
exemples avec le livre, ils ne constituent qu'un complément et non
un remplacement ou une source unique pour la couverture des
matiéres du cours. A ce titre, ces transparents ne se substituent pas
au texte.
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Optimisation : introduction

Les problemes d'apprentissage peuvent souvent s'exprimer sous
forme d'une fonction coiit a minimiser.
Le but de I'optimisation est de minimiser cette fonction coit f (X).

Lorsque la fonction coiit est minimale (pour un argument x*), ses
dérivées partielles sont nulles :

o
Ox,-

X)=0, i=1,...,n

Les fonctions a minimiser sont rarement linéaires, mais on favorisera
des fonctions et des formulations de problemes convexes, afin
d'assurer qu'il y ait une solution unique (et des algorithmes
numériques qui convergent pour la trouver)
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Convexité

Définition A.1 (Ensemble convexe) On dit d'un ensemble
& C R" qu'il est convexe si est seulement si quels que soient
gvedsette]|01],

ti+(1—t)ved

< le segment [u/, V] est entierement contenu dans .

FIGURE A.1 - Les trois ensembles de R? présentés sur la rangée du haut sont convexes. Les trois ensembles 5

c ) ) ¥ 5}
sur la rangée du bas ne sont pas convexes, et un exemple de segment reliant deux points de I'ensemble £
mais n’étant pas entiérement inclus dans cet ensemble est présenté pour chacun d’entre eux.

Az
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Fonction convexe

Définition A.2 (Fonction convexe) Soit  C R". Une fonction
f: % — R est dite convexe lorsque

. le domaine de définition % de f est un ensemble convexe;
. quels que soient u, v € % et t € [0, 1],

f(to+ (1 —t)v) < tf(a) + (1 — t)f(v),

c'est-a-dire que, sur [0, V], f se situe au-dessous du segment

[(a, (@), (v, F (V)]

Si I'inégalité est stricte pour tout 7 # v € % et t €]0, 1], on parle
alors de fonction strictement convexe. Une fonction strictement
convexe a une courbure supérieure a celle d'une fonction affine.

Dans le cas ol il existe k > 0 tel que f — %[|7][3 est strictement

convexe, f est dite fortement convexe.
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lllustration : définition d’une fonctions convexe
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Fonction convexe : puissances paires

20

15F

210}

Michael Liebling

f:-R—=R

u—u? aeN
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Fonction convexe : puissances hors intervalle |0, 1]

f:RL =R
u—u?  a¢lo, 1]

o = it et
ae —~
L -
n F //
- g
0 e
. s
a0
[T 1o
]
I\h s ve
IS !
e e
= 4 [ ] [ z 4 5 H ] 3 4 i ]
" .
»
3
i
"
T
t 4 H :

Remarque : convexe si a ¢]0, 1[ < convexe si a €] — oo, 0] U [1, o0
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Fonction convexe : exponentielle

f-R—R
ur— e aelR
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—e® a=14
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Fonction convexe : logarithme

f:R, =R
u+ —log(au), a€RT
4 . . r
3 4

-3 L L L
0 1 2 3 4
u
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Fonction convexe : fonction linéaire affine

f:R—>R
ur—au+b, acRbeR

A f(u)y=au+b
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Fonction convexe : fonction linéaire affine (n > 1)
f:R" =R
i—3a id+b FeR" beR

“f(LT) = a1u1 + agur + b
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Fonction convexe : forme quadratique
f:R" =R

1
7 EJTQJJr 3'G+b, FER".HER Q>0

=" e b with w1 525, b=2

Convexe si @ est semi-
définie positive
Par exemple :

Rappel : une matrice @ de dimension n x n a valeurs réelles est
semi-définie positive si ' Qu > 0 Vi € R\ {0}.
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Fonction convexe : normes

f:R" >R,
n 1/p
g i, = (Slul)  p>1

fial=, P P, g fial=, P P, g
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Optimisation convexe

Optimisation convexe Etant donnés % C R” (avec n un entier
positif) et une fonction f : % — R convexe, on appelle probléme
d’optimisation convexe le probleme suivant :

min (o)

f : fonction objective/fonction critére

Point minimum de f sur % : un point & € % vérifiant :

F(0") < f(d) Yie

Minimum de f sur % : la valeur f(0*).
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Une fonction convexe est au dessus de sa tangente

Théoreme 1.2 Soit % C R" et 1) {
une fonction f : % — R de classe ju-rwv—ife LS
@*. f est convexe si et seulement g
si (7] S N——— ,

1. % est convexe /

u v %
2. quels que soient o/, v € %, 3

FIGURE A.2 - La fonction convexe f est située au-dessus de sa tangente en u.

f(v) = £(@) + (Vi(@)" (V- 1) (1)
Rappel de notation (vecteur gradient) :
0 of(a)
Juy ouy
V=1": — Vf(u)= :
) of (i)
Oup Oup
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Minimum d’une fonction convexe et différentiable

Théoréeme 1.3 Soit % C R"” et une fonction f : % — R convexe,
de classe €*. Les propositions suivantes sont équivalentes :

1. " est un point de minimum de f sur %
2. Vf(lj*) - 5n><1-
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Algorithme du gradient

Soient Z C R" et f : % — R une fonction de classe €*. Etant
donnés un pas a > 0 et une tolérance ¢ > 0 on appelle algorithme
du gradient |'algorithme suivant :

« Choisir ¢ aléatoirement dans %
. Tant que ||[Vf(d)]]3 > ¢, actualiser & :

U<+ 0— aVif(d).
i/ est alors approximation du point de minimum global de f sur % .

flu)

flut)

wikipedia.orgGradient_desce:

Le vecteur opposé du gradient,
—Vf(u), indique la direction de des-

FIGURE A.3 - Une itération de l'algorithme du gradient déplace u de (vf'(u)4<N Cente |a plus raide au point J
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wt=u—af'(u)

encott


wikipedia.org Gradient_descent

Algorithme du gradient : remarques
Notes :
« plus la tolérance ¢ est faible : plus le point de minimum trouvé
sera proche numériquement du point de minimum global
. si le pas « est faible : convergence lente
. si le pas « est grand : i peut osciller autour du minimum
global et I'algorithme peut diverger
« on utilise souvent un pas adaptatif : d'abord grand puis qui
diminue

TR TEER] SN FAIme 150 5 el

http://www.cs.cornell.edu/courses/cs4780/2017sp/lectures/lecturenote07.html
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Recherche linéaire par rebroussement (BLS : Backtracking
Line Search) : réduction du pas (rebroussement) s’il induit
un coliit supérieur a la hauteur de la tangente a un demi-pas

Etant donné un pas initial @ > 0, un coefficient de réduction
(3 €]0,1[ et une tolérance ¢ > 0 :

1. Choisir i aléatoirement dans %
2. Tant que ||[VF(d)||3 > €
o Si (0 —aVF(d) > f(d) — $VF(a)" VF(T) réduire le pas
a 4 [a (sinon on garde le méme pas)
o Actualiser o : 0 <+ o — oVf(d).
i est alors approximation du point de minimum global de f sur %.

% "

(&) Quand f(u — af'(w)) > f(u) = f'(u)5 f'(u), (8) Quand f(u — af'(u)) < f(u) = f'(u)5f'(u), le

le pas a est trop élevé et u — a f'(u) va se refrouver pas a est suffisamment petit pour que u — af’(u)
de I'autre cté du point de minimum. Il faut donc le soit entre le point de minimum et u.
réduire.

FIGURE A4 - Comparer f(u — af'(u)) a f(u) — f'(u)§ f'(u) permet de déterminer si la valeur de o est
trop élevée.

Azencott

Michael Liebling EE-311—Apprentissage machine / 3. Opt. convexe, regressions (multi-var., logit) 20 / 54



Le probleme de la descente de gradient

10.6 Conjugate Gradient Methods in Multidimensions 421

(b)

Figure [06.1.  (a) Steepest descent method in a long, narrow “valley”” While more efficient than the
strategy of Figure 10.5.1, steepest descent 1s nonetheless an inefficient strategy, taking many steps to
reach the valley floor. (b) Magnified view of one step: A step sturts off in the local gradient direction,
perpendicular to the contour lines, and traverses a straight line until a local minimum is reached, where
the traverse is parallel to the local contour lines,
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Méthode de Newton (1/2)
Développement de Taylor au deuxiéme ordre de f en o.

g(V) = f(@) + V(@) (V- d) + ;(\7— o) V3 (d)(V — )

avec V3f(u) = [af;uj f(ﬁ)} i la matrice hessienne.
On peut minimiser g en annulant son gradient (p.r. a V) :
Vg(V) = V(i) + V*F(d)(V— &) =0

pour trouver que g est minimale au point

v =i — (V2(d)) T V()
On proposera donc I'actualisation :

7« i — (V2F(@) " VF()
Par analogie avec la formule de I'actualisation de la méthode du
gradient (U < o — oV (1)), cela correspond a fixer un <pas> :

27071 . . - . .
a=(V f(U) <— mais attention : « est ici bien une matrice, pas un scalaire!
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Méthode de Newton (2/2)

Soient Z C R" et f : % — R une fonction de classe €2. Etant
donné une tolérance ¢ > 0, on appelle méthode de Newton
I'algorithme suivant :

1. Choisir  aléatoirement dans %
2. Tant que |Vf(d)]|3 > ¢

. calculer le <pas> o = (V3f(1))

o Actualiser i : 7 <+ o — V()

-1

i est alors approximation du point de minimum global de f sur %.

Notes :

e méthode potentiellement gourmande en raison du calcul de
I'inverse de la hessienne et de son stockage

e la méthode de Newton produit un chemin différent que la
descente de gradient (« est un matrice)

e si f est quadratique : convergence en 1 pas!
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Méthode de Newton par gradient conjugué

But : éviter de devoir calculer I'inverse de la hessienne (e.g. quand
ses dimensions sont grandes) pour le calcul du pas :

a= (V2(d)" )

utilisé lors de |'actualisation P -
70— aVf(d) = id— (V3(d) " V(@)

En définissant une grandeur 6 = (V2£()) " V(i) la regle
d'actualisation devient : L -

U+ uo—9
et on voit aussi que § est solution d'une équation linéaire (de type
AX =b) :

V2f(d) 6 = V().
b

Comme A > 0 (car f convexe) on peut utiliser la méthode du
gradient conjugué pour la résoudre (voir page suivante).
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Méthode du gradient conjugué (pour résoudre AS = 5)

Idée : construire une base de R” constituée de vecteurs conjugués
par rapport a A, i.e. : {Vi,Vh,...,V,} tels que V.' AV, =0 Vi# .
Définition 1.11 (Méthode du gradient conjugué) Etant donnés
A € R™" semi définie positive et beR":
1. Initialisation

e Choisir aléatoirement 50) € R”.

e Initialiser i, = vy = b— AS©
2. Pourt=1,....n

(a) Actualiser 5“) P
PO R N Ui S
‘71:‘[1/4‘7;71 t—1

(b) Actualiser le résiduel : = b— AS®

. = T
(c) Actualiser v; : S refe
Vi = It _,Tin—L
Mi_1re—1
5(" est la solution cherchée. (Note : résidus perpendiculaires !)
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Gradient conjugué : illustration
Minimisation dans le cas d'une fonction quadratique.

Comparaison de la convergence
de la descente de gradient avec
pas optimaux (vert) et gradient
conjugué (rouge).

Dans le cas ou la fonction est
quadratique, le gradient conjugué
converge en n pas, au maximum.

g

Note : ici, la méthode de Newton convergerait en 1 pas seulement, mais celui-ci

requiert le calcul (coliteux) de I'inverse de la matrice hessienne.
Michael Liebling EE-311—Apprentissage machine / 3. Opt. convexe, regressions (multi-var., logit) 26 / 54

wikipedia.org/Conjugate_gradient_method


wikipedia.org/Conjugate_gradient_method

Algorithme du gradient stochastique (motivation)

Lorsque n est tres grand, méme le calcul du gradient peut devenir
trés coliteux. Dans le cas ol on a une fonction a minimiser qui peut
s'écrire sous la forme :

f(a) =) fi(d),
i=1
son gradient se décompose alors aussi :
V(@) =) Vi(a),
i=1

et on peut accélérer les calculs en n'utilisant a chaque itération
qu'une seule des fonctions f;, i.e. on remplace Y7, V(1) par
Vih(d).
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Algorithme du gradient stochastique

Soient % C R" et f : % — R une fonction de classe &*
décomposable sous la forme

@) = > (@)

Etant donnés un pas & > 0 et une tolérance ¢ > 0 on appelle
algorithme du gradient stochastique I'algorithme suivant :
1. Choisir « aléatoirement dans %
2. Tant que |VF(d)||3 > ¢ :

e choisir k aléatoirement parmi {1,2,...,n}

e actualiser i : 0 < U — aVfi(U)
U est alors une approximation du point de minimum global de f sur
U.
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Descente de coordonnées
Soient Z C R" et f : 2 — R une fonction de la forme

fou— g(u +Zh

ou g est une fonction convexe de classe ‘61 et les n fonctions h;
sont convexes.

Algorithme : descente de coordonnées (coordinate descent)
1. Choisir « aléatoirement dans %

2. Tant que | V£ (d)||3 > ¢, actualiser 7 :

° u§ ) point minimal de v — f <u, uét 1)’ o ugt—n)
° uét) point minimal de v +— f (ugtfl)’ u ... ur(7t71))
® - -

o ul? point minimal de v > f (ugf—l)’ uy—l)7 L u)

i est alors une approximation du point de minimum global de f sur
.
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Descente de coordonnées (illustration)

flw.y) =ba? — Gy + 5y
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Régressions paramétriques

Régression paramétrique : la forme analytique de la fonction de
décision est connue.

Exemple : Régression linéaire : simplicité, interprétation facile,
implémentable méme avec jeu de données de taille modeste

Apprentissage supervisé d’'un modele paramétrique Dans le
cadre d'un modéle paramétrique on utilise un algorithme
d'apprentissage pour trouver les valeurs optimales des parameétres
d'un modele dont on a défini la forme analytique en fonction de
descripteurs.

Complexité des modeles paramétriques comparée aux
modeles non paramétriques :

e paramétrique : complexité grandit avec le nombre de parametres a
apprendre (variables)

e non paramétrique : complexité grandit avec le nombre
d'observations
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Exemple : Modele paramétrique comparé a modele non
paramétrique

Exemple 1 : apprentissage des coefficients «, 3, dans la fonction
de décision f : X > ax; + Bx3x; + 7€ est paramétrique. Quel
que soit le nombre d'observations, ce modéle ne change pas!

Exemple 2 : méthode du plus proche voisin (qui associe a x
I'étiquette du point du jeu d’entrainement dont il est le plus proche
(en distance euclidienne)) apprend un modéle non paramétrique : on
ne sait pas écrire la fonction de décision comme une fonction des
variables prédictives. Plus il y a d'observations, plus le modele
pourra apprendre une frontiere de décision complexe.
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Modele paramétrique et erreurs (utilisation justifiée d’une
fonction de perte quadratique)

On se donne un jeu 9 = {)?i,yf} de n observations en p
dimensions et leur étiquettes réelles.

On suppose que la fonction de décision f est paramétrée par le
vecteur € R™.

Hypothese : erreurs (différence entre étiquettes réelles et les valeurs
correspondantes de f) sont normalement distribuées, centrées en 0 :

—.

y=f(X|B8)+¢, e~ N(0,0%)

Avec ce modele, les observations X sont les réalisation de p variables
aléatoires Xi, X5, ..., X, a valeurs réelles qui vérifient :

P(Y = y|X = %) ~ N (f ()?|B> ,02>
avec P(X = X) pour P(X; = x1, X5 = x,..., X, = X,).
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Modele et hypothese d’erreur : illustration

fx*)

FIGURE 5.1 - Pour une observation z* donnée (ici en une dimension) , la distribution des valeurs possibles
de I’étiquette y* correspondante est une gaussienne centrée en f(z*).

Azencott
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Estimation par maximum de vraisemblance et méthode des
moindres carrés

Sous I'hypothese
P(Y =y|X =%) ~ N (f ()?|B> 702>

et en supposant que les n observations sont indépendantes et
identiquement distribuées, Ie log de vraisemblance du parametre [

log P(2|5) = IogHIP’ (X = x| 3)
— log HP(y"yz") +log [[P(X =
i=1 i=1
~ log 212 S (v - (1) +

=

avec C une constante par rapport a ﬁ ( vient du coefficient ﬁ et
des P(X = x")).
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Minimisation des moindres carrés
Maximiser la vraisemblance

n

—tog 55 > (v~ F(F1H) + ¢

i=1
revient donc a minimiser
n ) RN
> (v - f(715)
i=1

i.e. minimisation des moindres carrés (Gauss, Legendre)

= Utiliser une fonction de colit quadratique est par conséquent
justifié lorsque I'on sait que les mesures sont sujettes a un bruit
additif € dont les valeurs ont moyenne nulle et sont distribuées selon
une loi normale, ¢ ~ (0, o?).
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Régression linéaire

Modeles paramétriques modele paramétrique si le but de
I'algorithme d'apprentissage est de trouver les valeurs optimales des
paramétres d'un modeéle dont on a défini la forme analytique.
Fonction de décision

Do
)
f:)?r—>50+25jxj:(l X1 ... xp) [)jl :(1 )?)5
j=1 '
Bp

avec 5 € R™ et m= p+ 1. Nombre de variables : p.
Régression linéaire (définition du probleme) : c’est le modele de la
forme f : X'+ [+ >_7_; 3jx; dont les coefficients sont obtenus

par :

n 2

p
B* = arg min Y =B+ Bix
EGRP+121 JZI 17

i=
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Le probleme de régression linéaire a une solution explicite :
Si on ajoute une colonne de 1 a la matrice d'observation :

1 1

1 X X,
X=1": :

n n

1 X Xy

On peut réécrire la somme des résidus quadratiques (Residual Sum of Squares)

2
N

Rss =" (v~ [+ > i = (7-x5) (v-x9)
i=1 Jj=1

On peut minimiser cette forme quadratique en calculant son

gradient : . _
VB‘RSS - _2X (y - Xﬁ) (voir dérivation en annexe)

—

et en posant V7RSS = 0,1 on obtient : XTXB’* —XTy

Si X est de rang égal a son nombre de colonnes (m), on a :
— -1 .
/B* — (XTX) XT_y <— solution analytique !
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Régression logistique
But : dans un probleme de classification binaire, étant donné les
variables de X, trouver la classe correspondante y € {0, 1}.

Exemple : x le nombre d’heures passées a travailler pour un
examen et y si I'examen a été réussi ou non (pass/fail).

Modele : on impose un modele probabiliste qui exprime
P(Y=y|X =X),

probabilité d'appartenance a la classe y connaissant la variable x.

Michael Liebling EE-311—Apprentissage machine / 3. Opt. convexe, regressions (multi-var., logit) 39 / 54



Régression logistique, suite

Contrainte pour le modele :

- la probabilité P (Y = y |X = X) doit étre comprise entre 0 et 1

- on veut une fonction de décision f : R — [0, 1]

- la fonction doit faire intervenir une combinaison linéaire des
variables dans x

- une légere perturbation de X lorsque sa probabilité d'appartenance
a une classe est proche de 0 ou 1 devrait avoir peu d'influence sur
I'estimation de la nouvelle probabilité

- une légere perturbation de X lorsque sa probabilité d'appartenance

a une classes est incertaine, e.g. 0.5, pourrait affecter I'estimation
plus fortement
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Définition des fonctions logit et logistique

Définition 5.3 (Fonction logit)
On appelle fonction logit la fonction :

logitip) = log{y+)

logit : [0,1] — R

1 09 0z X} 06 03 o
r

p — log

Azencott

(a) Fonction logit.

La fonction inverse/réciproque :

Définition 5.4 (Fonction logistique)
On appelle fonction logistique la fonction :

o:R—[0,1]

eu

I+ev 14e

(B) Fonction logistique.

u—

Azencott
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Fonctions logit et logistique

Idée : plutdt que d'essayer de modéliser directement la probabilité
par une fonction linéaire, on modélise la transformation logit de
P(Y = 1|x) comme une combinaison linéaire, i.e. une fonction de

(1X)3 =8+ > F 1 xif3), soit :

P(Y =1Ix)
log -
1-P(Y =1|x)

=(1x)5

De maniere équivalente, on peut exprimer la probabilité comme une
fonction logistique dont I'argument est une fonction linéaire :

P(Y:uz):a(u ?)5)
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Apples and Oranges : valeurs RGB (classification binaire sur
le canal bleu x,)

e Digital Color Meter
Display native values

R: 248

G: 224

B: 118

Calar LCD

Aperture Size
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On a deux classes, oranges et pommes : % = {0,1}
On veut une fonction de décision qui indique la probabilité que

I'objet soit une pomme (Y = 1) étant donné la valeur du canal bleu
x> dans I'image, et qui prenne la forme :

F(x) =P (Y =1I%) =0 (1 %) §) = 0 (5 + fxe)

Apples and Oranges
1.0+

081

os) On cherche un “bon” 5:
(%) =

0 (—32.426 + 0.464x,),
en particulier,

D
0.2

0.0+
40 &0 B0 100 120

on utilise la fonction de cot de I'entropie croisée (cross-entropy) :
Ly:{0,1} x]0,1[ - R
¥, f(X) = —ylog f(X) = (1 — y) log (1 — £(x))
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Régression logistique

Définition 5.5 Régression logistique. On appelle régression
logistique le modele f : x — o ((1 X) E) dont les coefficients
sont obtenus tels qu'ils maximisent la vraissemblance :

arg max iyi log o <(1 >?i) [;) +(1—y")log (1 -0 ((1 ;i) g))

BGRP+1

=

Note : Maximiser la vraisemblance de [ sous ce modéle est
équivalent a minimiser le risque empirique défini en utilisant la
fonction de coiit logistique (c.-a-d. I'entropie croisée, comme

? - {Ov 1}) :
Folh) =+ 3" Lu(F(%).y)

- iz ~y'log f(X') = (1~ y') log (1 — £(x"))
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Solution de la régression logistique

La vraisemblance de la régression logistique est une fonction
concave et le gradient en 3 de la vraisemblance pour la régression
logistique vaut :

i 1
1 il
,Z:; (y 1+ e—(lf’)g) ()
e Ce gradient ne peut pas étre annulé de maniére analytique : pas
de solution explicite pour la régression logistique

e solution obtenue par I'algorithme du gradient (ou une de ses
variantes)

e convergence vers la solution optimale car la vraisemblance est
concave (pas de maximum local)

e De maniere équivalente, le colit est convexe et a pour gradient :

n . 1 |
_ S S P
; <y 14 e (1 ?’)3> (1 x")
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Régression Polynomiale

Dans le cas de la régression polynomiale de degré d, on cherche une
fonction de décision de la forme :

p p p
foX Boo+ ) B+ Y Ba0g) + -+ Ba(x)
j=1

=1 j=1
Il s'agit en fait d'une régression linéaire sur p x d variables :

X1y X2y« ooy Xpy

(Xl)zv (X2)27 SRR (Xp)za

(Xl)d7 (X2)d? ) (Xp)da

Michael Liebling EE-311—Apprentissage machine / 3. Opt. convexe, regressions (multi-var., logit) 47 / 54



Régression polynomiale (suite)
Fixonsp=1,d =2
f X oo+ Brxa + Par(x1)?

Fixons ensuite n = 4, on peut alors construire la matrice :

1 X ()
12 (@)
=11 % ey
1 xt ()

et avec le vecteur d'étiquettes y et celui de paramétres [77:

y2 . Boo
y= y3 B=|0bu
g Bor
y
on a alors bien une expression linéaire pour les résidus, identique a
la régression linéaire : T

RSS — (y— xg) (y— xﬁ)
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Résumé

du cours 3

o méthodes d'optimisation : nécessaires a la résolution numérique de
problemes de minimisation de coiit

e convexité : assure convergence vers solution unique

« gradient : suivre la pente la plus forte, avec un pas a déterminer

rebroussement

Newton (requiert calcul de la matrice hessienne et de son inverse)
gradient conjugué (requiert hessienne mais pas son inverse)
gradient stochastique : fonction coiit sous forme de somme,
minimisation partielle

descente de coordonnées (fixer toutes les variables sauf une)

» Régressions paramétriques

Michael Liebling

correspondes a maximisation de la vraissemblance des parametres du
modele étant donné des observations

minimisation des moindes carrés (régression linéaire)

régression logistique : fonction non-linéaire, modélisation de
probabilités

régression polynomiale : c'est une régression linéaire !
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Guide de lecture pour ce cours

Chloé-Agathe Azencott “Introduction au Machine Learning”,
Dunod, 2019, ISBN 978-210-080153-4

Appendice A : Notions d'optimisation convexe

Chapitre 5 : Régressions paramétriques

« 5.1 Apprentissage supervisé d'un modeéle paramétrique
« 5.2 Régression linéaire

« 5.3 Régression logistique

« 5.4 Régression polynomiale
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Dérivation solution des moindres carrés pour probleme
régression linéaire donné sous forme matricielle (new)

On veut trouver le vecteur (3 tel qu'il minimise la somme des résidus
quadratiques (residual sum of squares) :

n p 2
wss =3 (1= (e ) ) = (7-x) (5 x9)
i=1 j=1
On développe le produit scalaire :

V-7 XG-F"X"y+3" X" XB=y"y -2y X3+ 3 X" X3
S—— \/

YTX[; const.

Fixonsn=2etp=1(etm=p+1=2):

1 X 2 Bo - Yo
(), ),
1 xq nxm=2x2 A mx1=2x1 Y1) pxi=2x1
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Dérivation des moindres carrés sous forme matricielle 2(new)
L'opérateur gradient est : 9
Vi= (85)
op1
Dévelopons le terme croisé :

= 1
XF= ) (RS0 =y ) 20 4 )

et calculons ses dérivées par rapport a (3 :

0  ryz 1 2 (yl) >
oV XB) =y ty (1 1) % (1 1)y
ainsi que par rapport a (37 :
0, 1o= 1 .
S TXB =ty = (6 ) (%) = ()7

d'ou on peut identifier |'expression matricielle :
Vi(y"TXp) = X"y
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Dérivation des moindres carrés sous forme matricielle 3(new)
Développons ensuite le terme quadratique :

BT&E: (ﬁo 51) <C11 C12> (g?) = c1185+2c128051+ 2037

C1 2
C

(ou I'on a utilisé le fait que ¢ = ¢»1) et calculons les dérivées par
rapport a [y et 3y :

8(2)’0(/§TXTX5) = 2011580 + 2c1281 = 2 (Cll C12) g

;&(ETXTXE) = 2c1200 + 2¢2f1i+ =2 (cr2 2) g

on peut a nouveau mettre ces expressions sous forme matricielle :

V(B XTXB) =2CF =2XTX)3
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Dérivation des moindres carrés sous forme matricielle 4
(new)
Finalement, on utilise les deux expressions calculées :

V(7T XF) =Xy

VAB X XB) =2(X"X)8

pour simplifier I'expression et obtenir, finalement :

ViRSS =V | 77 —27"XG+ 3 X XA
t

— _oxT <y— XE)

Pour n et p plus grands, I'expression matricielle reste la méme et on
pourrait prendre la méme approche que dans notre cas particulier

pour le montrer.
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