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Régression Logistique : comment afficher l’équation de la
frontière
Fonction logistique

σ(u) =
1

1 + e−u
=

eu

1 + eu

5.3. Régression logistique 69

Nous pourrions alors envisager unmodèle probabiliste, dans lequelP(Y = y|X = ~x) soit modélisé par
une combinaison linéaire des variables de ~x. Cependant, P(Y = y|X = ~x) doit être comprise entre 0 et 1,
et intuitivement, cette fonction n’est pas linéaire : si P(Y = 0|X = ~x) est très proche de 1, autrement dit
qu’il est très probable que ~x est négative, une petite perturbation de ~x ne doit pas beaucoup a�ecter cette
probabilité ; mais à l’inverse, si P(Y = 0|X = ~x) est très proche de 0.5, autrement dit que l’on est très peu
certain de l’étiquette de ~x, rien ne s’oppose à ce qu’une petite perturbation de ~x n’a�ecte cette probabilité.
C’est pour cela qu’il est classique de modéliser une transformation logit de P(Y = y|X = ~x) comme une
combinaison linéaire des variables.

Définition 5.3 (Fonction logit) On appelle fonction logit la fonction

logit : [0, 1]! R

p 7! log
p

1� p

⌅

La fonction logit (figure 5.2a) est la réciproque de la fonction logistique (figure 5.2b).

Définition 5.4 (Fonction logistique) On appelle fonction logistique la fonction

� : R! [0, 1]

u 7! 1

1 + e�u
=

eu

1 + eu
.

Attention à ne pas confondre la fonction logistique avec l’écart-type, tous deux étant couramment notés
�. ⌅

(�) Fonction logit. (�) Fonction logistique.

F����� 5.2 – Fonctions logit et logistique.

5.3.1 Formulation

Ainsi, nous cherchons donc à modéliser log P(Y =1|~x)
1�P(Y =1|~x) comme la combinaison linéaire ~�

>~x, où, de

manière équivalente, P(Y = 1|~x) comme �(~� >~x). Nous utilisons ici la transformation 5.5 de ~x.
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Régression logistique quand x⃗ = (x1, x2), fonction de décision :

g(x1, x2) = σ(β0 + β1x1 + β2x2)

On fixe le seuil en spécifiant la probabilité p d’être dans la classe 1 :

p = σ(β0 + β1x1 + β2x2)

∣∣∣∣∣ logit(·)

logit(p) = β0 + β1x1 + β2x2, logit(p) = log
p

1− p

x2︸︷︷︸
y

= −β1

β2
x1︸ ︷︷ ︸

ax

+
logit(p)− β0

β2︸ ︷︷ ︸
b
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En utilisant les notations sklearn

Équation de la frontière de décision sous forme “y = mx + h”

x2︸︷︷︸
y

= −β1

β2
x1︸ ︷︷ ︸

mx

+
logit(p)− β0

β2︸ ︷︷ ︸
h

from sklearn.linear_model import LogisticRegression

classif = LogisticRegression().fit(X_train, y_train)

Les coefficients β0 β1 et β2 peuvent être récupérés dans les variables
suivantes de l’objet classif :

• β0 : classif.intercept_
• β1 : classif.coef_[0,0]
• β2 : classif.coef_[0,1]
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SVM : comment afficher l’équation de l’hyperplan H ?
L’hyperplan H est donné par l’équation :

⟨x⃗ , w⃗⟩+ b = 0

w1x1 + w2x2 + b = 0

w2x2 = −b − w1x1

x2︸︷︷︸
y

= −w1

w2
x1︸ ︷︷ ︸

mx

− b

w2︸︷︷︸
+h

from sklearn.svm import SVC

classif_svm = SVC(kernel='linear', C=10000).fit(X_train, y_train)

• b : classif_svm.intercept_
• w1 : classif_svm.coef_[0,0]
• w2 : classif_svm.coef_[0,1]
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Calculer la distance d’un point à une droite

On veut la distance d’un point à une droite spécifiée par :

b + w1x1 + w2x2 = 0

Ce problème est équivalent à chercher la distance dH d’un point
arbitraire x⃗ à l’hyperplan H dans l’équation de la SVM :

dH =
∣∣∣ d︸︷︷︸

b
∥w⃗∥

−
〈 −w⃗

∥w⃗∥2
, x⃗
〉∣∣∣

( = la distance d de l’hyperplan à l’origine
moins la longeur de la projection du vecteur
x⃗ sur la droite perpendiculaire à l’hyperplan)
Il s’ensuit :

dH =

∣∣∣∣ b

∥w⃗∥ +
w1

∥w⃗∥x1 +
w2

∥w⃗∥x2
∣∣∣∣ = ∣∣∣∣⟨w⃗ , x⃗⟩+ b

∥w⃗∥2

∣∣∣∣
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