EPFL &

Mid-Term Exam 2014
Code review

Prof. David Atienza Alonso
Systemes Embarqués Microprogrammeés

m
o
11
—

Exercise 1: Configure SUB engine

= Complete the function configureGraphics_Sub() following the given
comments to configure the SUB engine in mode 5 and activate the
background BG2.
1. Configure engine in Mode 5 activating background 2
2. Enable and configure VRAM bank accordingly

void configureGraphics_Sub(/@
// Configure the MAIN engine in mode 5 and activate background 2

REG DISPCNT SUB = MODE 5 2D | DISPLAY BG2 ACTIVE;
// ConTigure the VRAM bank C accordingly
VRAM C CR = VRAM ENABLE | VRAM C SUB BG;

BG2

Tiled Tiled Sub
Tiled T?Ied Tiled Rotoscale Backgrounds
Tiled | Tiled | Rotoscale Rotoscale
Tiled | Tiled Tiled Ext. Rotoscale
Tiled | Tiled | Rotoscale |Ext. Rotoscale
Tiled | Tiled||Ext. Rotoscale IIExt. Rotoscale

<
® S
<

©ESL/EPFL

???

Page

		Mode

		BG0

		BG1

		BG2

		BG3

		

		0

		Tiled

		Tiled

		Tiled

		Tiled

		

		1

		Tiled

		Tiled

		Tiled

		Rotoscale

		

		2

		Tiled

		Tiled

		Rotoscale

		Rotoscale

		

		3

		Tiled

		Tiled

		Tiled

		Ext. Rotoscale

		

		4

		Tiled

		Tiled

		Rotoscale

		Ext. Rotoscale

		

		5

		Tiled

		Tiled

		Ext. Rotoscale

		Ext. Rotoscale

		

										

		

cPrL Exercise 1: Transform image with grit

= Download the image bottom.png into the “data” folder of the project and
create the configuration grit file in order to obtain the bitmap and the
corresponding palette (therefore using pixels of 8-bit length)
1. Copy “bottom.png” to the data folder and create grit file

- (= data -g
= bottom.grit —Iﬁ _
gb
f&, bottom.png -gBS
P

2. The compilation tool-chain will generate automatically the necessary files

— | = build
lc] bottom.h
5| bottom.s

©ESL/EPFL

m
o
11
—

Exercise 1: Transfer image

= Complete the function configBG2_Sub() following the given comments
to configure the background correctly and transfer the image information
to the corresponding locations in memory.
1. Configure background in rotoscale mode using the palette (8-bit pixels)
2. Transfer bitmap and palette to the graphical memory

void configBG2 Sub() {
// Configure background BG2 in extended rotoscale mode using 8bit pixels
BGCTRL SUB[2] = BG _BMP BASE(©) | BG BMP8 256x256;

// Transfer image and palette to the corresponding memory locations
swiCopy (bottomBitmap, BG GFX SUB, bottomBitmapLen/2);
swiCopy(bottomPal, BG PALETTE SUB, bottomPallLen/2);

// Set up affine matrix
REG_BG2PA SUB = 256;
REG BG2PC SUB = 0;

REG_BG2PB_SUB = 0; Words of 2 Bytes
REG BG2PD SUB = 256: : -
- - when using swiCopy(...)

©ESL/EPFL

m
o
11
—

Exercise 2: Configure MAIN Engine

= Complete the function configureGraphics_Main() following the given
comments in the source code to configure the MAIN engine in mode 5
activating background 2.
1. Configure Engine in mode 5 activating background 2.
2. Enable and configure VRAM memory accordingly

)))) Main
vold configureGraphics_Main() {
// Configure the MAIN engine in mode 5 activating background 2 VRAM
REG DISPCNT = MODE 5 2D | DISPLAY BG2 ACTIVE;
/7 Configure the VRAM Dank A accordingly
VRAM A CR = VRAM ENABLE | VRAM A MAIN BG;

Backgrounds é

Tiled/3D | Tiled Tiled Tiled

Tiled/3D | Tiled Tiled Rotoscale
Tiled/3D | Tiled Rotoscale Rotoscale
Tiled/3D | Tiled Tiled Ext. Rotoscale
Tiled/3D | Tiled Rotoscale __IExt. Rotoscale

Tiled/3D | Tiled||Ext. Rotoscale Itxt. Rotoscale
3D | NA[TageBmmap | NA
FrameBuf. Direct VRAM display as a bitmap

mee@éé\w

©ESL/EPFL

???

Page

		Mode

		BG0

		BG1

		BG2

		BG3

		

		0

		Tiled/3D

		Tiled

		Tiled

		Tiled

		

		1

		Tiled/3D

		Tiled

		Tiled

		Rotoscale

		

		2

		Tiled/3D

		Tiled

		Rotoscale

		Rotoscale

		

		3

		Tiled/3D

		Tiled

		Tiled

		Ext. Rotoscale

		

		4

		Tiled/3D

		Tiled

		Rotoscale

		Ext. Rotoscale

		

		5

		Tiled/3D

		Tiled

		Ext. Rotoscale

		Ext. Rotoscale

		

		6

		3D

		N/A

		Large Bitmap

		N/A

		

		FrameBuf.

		 Direct VRAM display as a bitmap

						

		

m
o
11
—

Exercise 2: Configure Background

= Complete the function configBG2_Main() following the given comments
in the source code to configure the background 2 in extended
rotoscale mode emulating framebuffer mode.

void configBG2 Main() {

// Confiqure background BG2 in extended rotoscale mode emulating framebuffer mode
BGCTRL[2] = BG BMP BASE(0®) | BG BMP16 256x256;

// Set up affine matrix

REG BG2PA = 256;
REG BG2PC = 0;
REG BG2PB = 0;
REG_BG2PD = 256;

Tiled/3D | Tiled Tiled Tiled . . .
e (R —— e 2 possible pixel depths in rotoscale mode

Tiled/3D | Tiled | Rotoscale | Rotoscale « 8-bits pixels = Using palette

Tiled/3D | Tiled Tiled Ext. Rotoscale ° hi H i
Tio9/30 | Ticd e 16-bits pixels > Emulating Framebuffer

Tiled/3D | Tiled]|Ext. Rotoscale |Ext. Rotoscale
3D N/A | Large Bitmap ' N/A

FrameBuf. Direct VRAM display as a bitmap

©ESL/EPFL

???

Page

		Mode

		BG0

		BG1

		BG2

		BG3

		

		0

		Tiled/3D

		Tiled

		Tiled

		Tiled

		

		1

		Tiled/3D

		Tiled

		Tiled

		Rotoscale

		

		2

		Tiled/3D

		Tiled

		Rotoscale

		Rotoscale

		

		3

		Tiled/3D

		Tiled

		Tiled

		Ext. Rotoscale

		

		4

		Tiled/3D

		Tiled

		Rotoscale

		Ext. Rotoscale

		

		5

		Tiled/3D

		Tiled

		Ext. Rotoscale

		Ext. Rotoscale

		

		6

		3D

		N/A

		Large Bitmap

		N/A

		

		FrameBuf.

		 Direct VRAM display as a bitmap

						

		

m
o
11
—

Exercise 2: Fill Rectangle

= Complete the function fillRegion_Main(...) following the given comments
in order to fill one of the four regions with the color given as parameter.

void fillRectangle(int left, int right, int top, int bottom, ul6 color){

//Check boundaries of rectangle and return if not correct
//ALL points (top, bottom, left and right) must be within the screen boundaries

if((left < @) |] (right > 255)) return;
if((top < @) || (bottom > 191)) return; —->Check boundaries
if((left > right) || (top > bottom)) return;

//Paint the rectangle
int row, col;

for(row = top; row <= bottom; row++) —>Paint the rectangle
for(col= left; col <= right; col++)
BG BMP RAM(0)[row*256 + col] = color;

} 4 \
| \
Pointer to buffer Matrix Color given
(256x192 matrix) component as input parameter

« Setin configBG2_Main(...)
« BG_GFXis also valid
 VRAM_A only valid in framebuffer mode! 7

©ESL/EPFL

m
o
11
—

Exercise 3: Configure Timer

= Complete the function configureTimer() following the given comments in
order to configure a timer to trigger an interrupt every 100 ms.
1. Configure the timer to trigger an interrupt at 10 Hz (10 times per second)
2. Associate the ISR to the interrupt line and enable the interrupt line

void initTimer() {
// Initialize timer ticks
timer ticks = 0;

// Configure timer to trigger an interrupt every 100 ms
TIMERO DATA = TIMER FREQ 1024(10);
TIMERO CR = TIMER DIV 1024 | TIMER IRQ REQ | TIMER ENABLE;

// Associate the ISR (timerISR) to the interrupt line and enable it

irqSet(IRQ TIMERO, &timerISR);
irqEnable(IRQ TIMERO);

As specified in the text, irqlnit() must NOT be called!

©ESL/EPFL

=1 Exercise 3: Implement
Interrupt Service Routine

m
U

||
O
o
3
j=i
@
—
@
e
3
@
-t
v
A
-
)]
o
~—
-
®
—~

timer interrupt and calls the
function playerLoses()
1. Increment timer_ticks

2. After 15 timer_ticks (1.5 seconds),
disable the timer interrupt and call
the function playerLoses()

void timerISR() {
// Disable the timer when 1.5 seconds have passed and call the function

// playerLoses() to finish the game (player did not play on time)

timer ticks++;

if(timer ticks >= 15){
irqDisable(IRQ TIMERO);
playerLoses();

©ESL/EPFL 10

=Pi~L Exercise 4: Touchscreen management

= Complete the function exercise_4() to read the keys and the
touchscreen following the given comments in the source code.

while(1) {
1. Scan the keys that have // Scan the keys that have been pressed down
gone down (from not scanKeys () ;

keys = keysDown();

pressed to pressed)
2. Restart the game if the

// Check if the player has pressed START
// In that case restart the timer (initTimer) and the game (initGame)

START key has been 1f(keys & KEY START) {
d initGame();
presse initTimer();
3. Read the touchscreen if ;
it has been touched and // Check if the touchscreen has been touched and if YES get the coordinates

: // 1f WHITE region touched, call playerPlaysWhite()
do _the correspondlng // 1f BLACK region touched, call playerPlaysBlack()
action // if touch dis not dn one of those regions, do nothing

if(k & KEY TOUCH
53px _ 150px 53 1f(keys _TOuCH) {

touchRead (&touch);
if((touch.px >= 53) && (touch.px < 203)) {
if(touch.py < 96)
playerPlaysWhite();
else
playerPlaysBlack();

96 pM

}

}
swiWalitForVBLlank();

96 pXq

©ESL/EPFL 1

cpreL Exercise 5: Activate Background 0 and
Change Configuration of Background 2

= Modify the function configureGraphics_Main() such that the MAIN
engine is configured to use two backgrounds (BGO and BG2).

// Configure the MAIN engine in mode 5 activaiing backgroungd
REG DISPCNT = MODE 5 2D | DISPLAY BG2 ACTIVE|| DISPLAY BG® ACTIVE; |

= Change Background 2 configuration in function configBG2_Main() to
work in BG_ BMP_BASE(1) as specified in the exam sheet.

// Configure_background BG2 in extended rotoscale mode emulating framebuffer mode
BGCTRL[2] H BG BMP BASE(1)| | BG BMP16 256x256; P

= Change the function fillRectangle(...) using the corresponding macro as
specified in the exam sheet.

int row, col;
for(row = top; row <= bottom; row++)

for(col= left; col <= right; col++)
BG_BMP_RAM(1) [frow*256 + col] = color;

©ESL/EPFL 12

>
O olo|lo|lo|lo|o
...n_le > olo|lo|lo|lo|o
nuu D...I@ o|lo|lo|o|o|o
c
- ..W T 9 olo|o|lo|o|o
@) m .m olo|lo|lo|lo|o
" — =
-m o o|lo|lo|lo|lo|o
"l ()]
S S olo|lo|lo|lo|o
—_— C olo|lollo|lo|o
% % olo|ollo|lo|o
D HHUW olo|lo|lo|lo|o
O W% olo|ollo|o|o
—_— mum olo|lollo|o|o
T wV olo|ollo|lo|o
.. aw olo|lollo|lo|o
o) s
O O
O =T
]
>
@D | gl A N\ 2
pa
O g 23
o O THR
~~
D © © g
< B S
ea
L] S >
n..nm | . O
Bm o & .S
eZ ed m om R om om om om om IhQrUh
DL IHccccaeaeg il
-~ 0O HFO OO0 OO o &
eh M_L IIIIIII Sm
= v Laeeeaeaq9 © C 0
(@) = o000 00 — © ¢
< o PO oo n_nu..ls
— S.m mﬂd,llﬂﬂﬂﬂﬂ n.B.nlu
O o H%lllllﬂ.ﬂu.ﬂu mu..ol.wrw
L SS S8~ c 3 20
o ©OF 22 NEEEE
— —— O a%*Elo

|
©ESL/EPFL

L

m
o
11

= Complete the function configBG0_Main()

Exercise 5: Configure Background

1. Configure background BGO in tiled mode using a 32x32 map, tiles with 8bit pixels,
the tile base 0 and a map base between 1 and 7 as specified in the exam sheet.
2. Trar.msfer custom tile to the proper location in memory VRAM bank
3. Assign color of the used component of the palette AP BAGE § ILE SAEE G
4. Create map MAP BASE 1 /
BMP BASE 0
void configBG® Main() { MAP BASE 2
//Configure background MAP BASE 3 (16 KB)
BGCTRL[®] = BG MAP BASE(1) | BG TILE BASE(@) | BG 32x32 | BG COLOR 256; MAP BASE 4
//Copy the tile(s) MAP BASE 5
dmaCopy(coverTile, (u8*)BG TILE RAM(0), 64); MAP BASE 6
//Set _color(s) in the palette MAP BASE 7
BG PALETTE[1] = BLUE; MAP BASE 8 TILE BASE 1
/
//Create map SRR BMP BASE 1
int i,j;
for(i=0;i<24;i+=2) -

}

}

for(j=0;j<32;j+=2) {
BG MAP RAM(1)[i*32+j] = 0;
BG_MAP RAM(1)[1*32+j+1] = 0O |
BG_MAP_RAM(1) [(i+1)*32+j] = 0 | (1<<11);
BG_MAP RAM(1) [(i+1)*32+j+1]

(1<<10); // Flip H
// Flip V

0 | (1<<10) | (1<<11); // Flip H & V

©ESL/EPFL

14

2)

IoN

. Tile Declaration (Versi

Exercise 5

=PrFL

Multiples tile, no flipping of the tiles.

// With 256-color palette
u8 coverTileOl[6

]

4

~ ~ ~ ~ ~ ~ ~ ~
L B e B e B e B B B o B |
~ ~ ~ ~ ~ ~ ~ ~
O OO

~ ~ ~ ~ ~ ~ ~

14

1
1
1
1
0
0
0
0

~ ~ ~ ~ ~ ~ ~ ~
O O O OO
~ ~ ~ ~ ~ ~ ~ ~
— O O O O OO
~ ~ ~ ~ ~ ~ ~ ~
— O - O O O OO
~ ~ ~ ~ ~ ~ ~ ~
— O O O O O oo
~ ~ ~ ~ ~ ~ ~ ~

— O O O O O oo

4

0

—~ ~ ~ ~ ~

~ ~ NN
Lo I e B s R e O s R e O e O |

~ ~ ~ ~

~ ~ NN
O O O v

—/ N N N N N N NN
O OO O v
O NN N N N N NN

[
0
0
0
0
0
1
1
1

1

(W0 0/0|0|J0|0|0|O0
(@ 0/ 0/0|{0|0|J0|0|0|0|0

0o/0j|0|0fO|O|O|O|0O|0|0|0|0|0
0/0/0|0|0|0|0|0|0|0|0|0|0|0
0/0/0|0f0O|0O|0O|0|0|0|0|0|0|0 M
o/|0j0|0fO|O|O|O|0O|0|0|0|0|0

(g ojojofojo|ojojof0j0f0|0O
0o(0j0j0|0|Of0O]JOfO|0O|0O|O0]|O

1

// With 256-color palette
u8 coverTile00[64]

)

~ ~ ~ ~ ~ ~ ~ ~
— O O O O O O O
~ ~ ~ ~ ~ ~ ~ ~
— O O O O O O O
~ ~ ~ ~ ~ ~ ~ ~
— O O O O O O O
~ ~ ~ ~ ~ ~ ~ ~
— O O O O O O
~ ~ ~ ~ ~ ~ ~ ~
O O O O O
~ ~ ~ ~ ~ ~ ~ ~
O O O O
~ ~ ~ ~ ~ ~ ~ ~
O O O
~ ~ ~ ~ ~ ~ ~ ~

D T e B s B s O s B R s B

4

(]
-
-
2
(1]
Q.
1
O — ~ ~ &~ &~ N NN
—__1 O O OO OO
oellllllll
QO 1coocococoo -
W 1 ~ N~ N~ N N N NN
WEHOODOOOOOH
AN 4 ~ &~ &~ &~ o~ o~~~
heOOOOOOOl
= >
O
S0
~. OO o~
/u —
o
O | O Ralihad
O | OO B
o|lo|Oo|O
o|lo|o|o
oO|lo|O0O|O
o|lo|Oo|Oo
o|lo|Oo|O
OO0 |O
oO|lo|0O|Oo
o|lo|Oo|O
O | O |O B
[oB el —
O Bl
~— N N N N N N NN
O OO OO oo
m__ N S
b4 O OO OO oo
m_l_llllllll
C I O OO OO OO
0 W N & N~ & & N NN
w — O OO O O O
OO ~ ~ &~ &~~~ o~ x
_— 1 O O O O O v v
oellllllll
Q 1 cococo A -
W 1 ~ N~ N~ N N N NN
WEHOOO A A A —
AN 4 S~ N~ N~ N~ N~ N~~~
hellllllll
=2
O
S0
~ o~
/u —~

15

©ESL/EPFL

F

=Pr~L Exercise 5: Configure Background (Vers. 2)

= Complete the function configBG0_Main()

1. Configure background BGO in tiled mode using a 32x32 map, tiles with 8bit pixels,
the tile base 0 and a map base between 1 and 7 as specified in the exam sheet.

2. Transfer custom tiles to the proper location in memory

Assign color of the used component of the palette

4. Create map

void configBGO Main() {
//Configure background
BGCTRL[0] = BG_32x32 | BG_COLOR_2 56 | BG_MAP_BASE (1) | BG_TILE_BASE (0) ;

w

//Copy the full tiles to the corresponding RAM location according to the chosen TILE BASE
// If dmaCopy is used, do not forget to cast the destination pointer as a 'byte pointer'
dmaCopy (Tile00, &BG TILE RAM(0) [0], 64);
dmaCopy (Tile0O1l, &BG TILE RAM(0) [32], 64);
dmaCopy (TilelO, &BG TILE RAM(0) [64], 64);
dmaCopy (Tilell, &BG TILE RAM(0) [96], 64);

//Assign components 254 and 255 as explained in the manual
EG_PALETTE[l] = BLUE; |

//Set the pointer to the RAM location of the chosen MAP BASE
int i, 3;
for (i = 0; i < 24; i+=2) {
for (j = 0; j < 32; j+=2) {
BG_MAP RAM(1) [32 * (i) + j] = O;
BG_MAP RAM(1)[32 * (i) + j + 1] 1;
BG_ MAP RAM(1)[32 * (i + 1) + j] = 2;
BG MAP RAM(1)[32 * (i + 1) + j + 1] = 3;

16

©ESL/EPF

	Systèmes Embarqués Microprogrammés
	Exercise 1: Configure SUB engine
	Exercise 1: Transform image with grit
	Exercise 1: Transfer image
	Exercise 2: Configure MAIN Engine
	Exercise 2: Configure Background
	Exercise 2: Fill Rectangle
	Exercise 3: Configure Timer
	Exercise 3: Implement �Interrupt Service Routine (ISR)
	Exercise 4: Touchscreen management
	Exercise 5: Activate Background 0 and Change Configuration of Background 2
	Exercise 5: Tile Declaration
	Exercise 5: Configure Background
	Exercise 5: Tile Declaration (Version 2)
	Exercise 5: Configure Background (Vers. 2)

