Last name:

Cours de 3éme année,

Section:

Date and place: November 29", 2024, MED 2 2524

Section d’Electricité

Systémes Embarqués Microprogrammeés

Duration: 1h45minutes (from 14h15 to 16h00)

Grade:

Mid-term Exam

IMPORTANT NOTES:

The skeleton project for the exam can be downloaded from the Moodle Site under the link “midterm_code”.
This project is similar to the ones provided during the practical sessions. In the source files, there are
placeholders to implement each exam exercise.

The exercises must be implemented in the skeleton project and completed in the indicated order.

Follow carefully all the instructions given in the current document and the comments of the source code.
Alabel “//...TO COMPLETE EXERCISE X” indicates where to write code for exercise X, X=1...5.

The implemented exercises must work correctly in the NDS simulator to be considered as correctly done.
However, the source code will also be evaluated after the exam and must be uploaded in Moodle.

After finishing each exercise, a compressed file of the project, including the implemented code, must be
submitted using the different forms available on the Moodle Site.

The presence in the exam counts as 1 point.

PROJECT DEFINITION:

The project consists of 5 exercises to implement a mini-game in which we move a character on the main screen
using the touchpad arrows. Moreover, the player must press START or A within 3 seconds after launching the
game to continue playing. Finally, we will implement a portal to teleport the character. The project's logic has
already been implemented, and only a few placeholders (indicated in the provided skeleton) must be completed.

EXERCISE 1 (0.75 points) | Time: Works: YES / NO

Teach.
Sign.:

The bottom screen will show the game's controls, namely the directional arrows for the character movement.
This will be done using an image (arrows.png) already provided under the folder data. For this exercise, the
missing parts of the functions in the file graphics.c, which are prototyped in the header graphics.h, must be
completed following the next steps:

NOTE: the macros related to the SUB engine are followed by the suffix “ SUB” (i.e., «
BG_TILE_RAM_SUB, BG_PALETTE_SUB, BGCTRL_SUB, etc...).

(=g o]
Complete the function configureGraphics_Sub() in the file graphics.c following the
comments to configure the SUB engine in mode 5 and activate the background BG2.
Create the configuration grit file inside the data folder to obtain the bitmap and the
corresponding palette (therefore using pixels of 8bits length)
Complete the function configBG2_Sub() in the file graphics.c following the given
comments to configure the background correctly and transfer the image information
to the corresponding locations in memory.
Compile the project and correct the possible errors.

e

nnnnnnn



EXERCISE 2 (1 point) Time:

Works: YES / NO (PC: Y/ N)

Teach.
Sign.:

The upper screen will be used to show the main character. To do so, the main engine
must be configured to work in tiled mode, the tiles should be manually designed and
mapped, and the character should be placed in the middle of the screen. Complete
the following steps:

Complete the function configureGraphics_Main() in the file graphics.c following
the comments to configure the MAIN engine in mode 5 and activate the
background BGO.

Complete the function configBG0_Main() in the file graphics.c following the
given comments to configure the background correctly.

Create the main character's tile as a red diamond complemented by transparent
pixels (top image). Draw the main character using four identical tiles placed in
the center of the main screen while filling the rest with empty tiles (as provided).
Compile the project and correct the possible errors. The upper screen of the
simulator must only display the main character in the center (bottom image). The
rest of the screen should appear black.

(0]
0
0
1
1
0
0
0

O O = A a4 o o o
O A A A 4O a4 a0

i G W S Y

O = a4 A a 4O a0
O O=m A a4 o o o
O O O = = O O o

EXERCISE 3 (1.25 points) | Time:

Works: YES / NO (BD: Y/ N)

Teach.
Sign.:

The black background on the upper screen must be visible for a short period of time (3 seconds). If the player
does not press START or A within this time, the game finishes and the player loses. A timer will be used to do so.
Completing the functions in the source file timer.c is required. Perform the following steps:

Complete the function initTimer() in the file fimer.c following the given comments
to configure a timer to trigger an interrupt every 200 ms. For maximum points,
choose the divider that offers the best resolution for the indicated time interval.
Then, associate the timer with timerlSR() and enable the interrupts.

NOTE: do not call irglInit() since the touchscreen will be used later.

Complete the Interrupt Service Routine of the timer timerISR() in the file fimer.c
so that after 3 seconds, it disables the timer interrupt and ends the game by
calling the function playerLoses(), which is already implemented within the
project and prototyped in the header file game.h.

Complete the code in the main() function inside the while loop to call the function

Initgame() in case the START or A key were pressed.

NOTE: In the simulator, X is bound to A and ENTER to START by default.
Compile the project and correct any possible errors. Check that after 3 seconds
without pressing the START or A key, the upper screen becomes red, as shown
in the top image (effect of calling playerLoses()). Check if the START or A key is
pressed within 3 seconds, and the upper screen must transform, as shown in the
bottom image below (effect of calling gamelnit()).

EXERCISE 4 (1.25 points) | Time:

Works: YES / NO (SB: Y/ N)

Teach.
Sign.:

The player can move the character around by touching the arrows on the bottom screen. To do so, you must
complete the code for scanning the touch position in the source file main.c and the logic inside the functions
movePlayer<direction>() in game.c. Follow the next steps:

Complete the code inside the while loop in the file main.c following carefully

the comments given within the function. The size of the touch areas of the 100 px
arrows can be seen on the right. Assume the boxes are 80x50px and touch

the screen edges.

NOTE: We do not require a pixel-perfect touch precision. EI S
Complete the code inside the functions movePlayerUp(), —

movePlayerDown(), movePlayerLeft()) movePlayerRight(). Follow
carefully the comments to move the character correctly (one tile
displacement at each arrow press).

70 px

=)

HINT: Use the given variables playerX1, playerX2, playerY1, and playerY2 where (X1, Y1) and (X2, Y2)
are the coordinates of the top-left and bottom-right player’s tiles, respectively.

For maximum points, ensure that the character remains within the screen borders.

Compile the project and correct the possible errors. Ensure that the character is smoothly moving around.




Teach.

EXERCISE 5 (0.75 points) | Time: P1:Y/N,P2:Y/N, TP:Y/N Sign.:

In this exercise, a superposed background (BG2) in extended rotoscale mode will display a portal on the right
edge of the upper screen. The portal transports the character to the left edge of the screen when the character
attempts to pass through it. Follow the next steps:

¢ Modify the function configureGraphics_Main() in the file graphics.c to

activate background 2 (do not deactivate background 0).

e Complete the function configBG2_Main() in the file graphics.c following

the instructive comments. Emulate the framebuffer mode to draw a

magenta column (portal) with a width equal to 1 tile on the right edge of

the screen, as shown in Figure 1. The magenta is defined in colors.h.

HINT: Use the macro BG_BMP_BASE() wisely to configure

BGCTRL_2 and avoid overlapping the map of this background with

the tiles and tile map of background 0 (set in exercise 2).

e Uncomment the definition of PORTAL_ACTIVE in game.h.

¢ Modify the priority of BG 2 to appear on top of BG 0, as in Figure 2. Figure 1 — Initial portal
HINT: Use the macros BG_PRIORITY(0) and BG_PRIORITY(1) to

configure the registers BGCTRL_2 and BGCTRL_O0, respectively.

e Complete the code inside the function movePlayerRight() in the file

game.c to teleport the full character to the left edge of the screen

when the right-most tiles of the character are about to enter the

portal. The character should not overlap with the portal or be split at

any moment. The y position of the character must be the same after the

teleportation move. The teleportation result is shown in Figure 3 below.

e Compile the project and correct any possible errors. Check that the

magenta portal appears on the right edge of the screen and that the

character teleports correctly when passing through it. Figure 2 — Updated portal

—

Figure 3 — Teleportation example

PLEASE MAKE SURE YOU HAVE SIGNED AT THE END OF THE EXAM AND ALL THE TEACHER
SIGNATURES IN ALL THE EXERCISES SLOTS ARE COMPLETED BEFORE YOU LEAVE THE EXAM,
OTHERWISE SOME OF THE EXERCISES MAY NOT BE COUNTED FOR THE FINAL MARK

FINAL TIME: Student Sign.:




	IMPORTANT NOTES:
	PROJECT DEFINITION:

