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plan

1 probabilité conditionnelle

2 degré de croyance

3 principe de l’inférence bayésienne

4 décision bayésiennes

5 exemples divers (a priori, a posteriori)

6 distribution gaussienne multidimensionnelle
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probabilité conditionnelle
rappel de la définition

Soit deux évènements A et B

définition

P(A|B) , P(A \ B)

P(B)
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probabilité conditionnelle
interprétation fréquentiste

interprétation
Supposons un grand nombre d’expériences n a été effectué et les résultats des

évènements A et B ont été enregistrés sous la forme suivante : nA expériences parmi

les n expériences correspondent à l’évènement A, et nB expériences correspondent à

l’évènement B . On note nA\B le nombre d’expériences qui correspondent aux

évènements qui ont lieu simultanément A et B . L’interprétation fréquentiste de la

probabilité suggère que si les expériences ont été réalisées de manière indépendante,

la fréquence
nA

n
sera proche de la probabilité P(A) et la fréquence

nB

n
sera proche de

la probabilité P(B). Maintenant,

P(A \ B)

P(B)
⇡

nA\B

n

nB

n

=
nA\B
nB

⇡ P(A|B)

Ceci mesure l’expectative d’avoir l’évènement A se produire lorsque l’évènement B

est observé. 4 / 40
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distribution conditionnelle
distribution continue

définition
Soit X et Y deux variables aléatoires avec densitté jointe f , distribution marginale

f1 pour X et distribution marginale f2 pour Y . La probabilité conditionnelle de Y

sachant X = x est définie par

f2(y |x) =
f (x , y)

f1(x)
�1 < y < +1
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distribution conditionnelle
distribution continue

Dans le cas continu il faut être prudent car P(X = x) = 0. Il faut prendre une

intervalle et le faire tendre vers zéro.

P(A|X = x) = lim
h!0

P(A|0  X  h)
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distribution conditionnelle
distribution continue

Une autre façon de rendre la définition plus claire est de passer par les fonctions de

répartition car on peut appliquer la définition sans autre

P(Y  y |x  X  x + h) =
P(x  X  x + h, Y  y)

P(x  X  x + h)

=
F (x + h, y)� F (x , y)

F1(x + h)� F1(x)

et il suffit alors de prendre la limite

lim
h!0

P(Y  y |x  X  x + h) =

Z
y

�1

f (x , t)

f1(x)
dx ,

Z
y

�1
f2(t|x)dt
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Exemple
distribution continue

Soit

f (x , y) = e
�(x+y)

0  x < +1 et 0  y < +1

P(Y  2, 0  X  h) =

Z 2

0
dy

Z
h

0
e
�(x+y)

dx = (1 � e
�2)(1 � e

�h)

P(Y  2, 0  X  hY ) =

Z 2

0
dy

Z
hy

0
e
�(x+y)

dx =
h

1 + h
� 1 + h � e

�2h

e2(1 + h)

P(0  X  h) =

Z 1

0
dy

Z
h

0
e
�(x+y)

dx = 1 � e
�h

P(0  X  hY ) =

Z 1

0
dy

Z
h

0
e
�(x+y)

dx =
h

1 + h
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Exemple
distribution continue

lorsque h = 0 les deux expressions précédentes sont différentes de zéro, et en

utilisant P(A|B) = p(A \ B) P(A)

p1(h) , P(Y  2|0  X  h) = 1 � e
�2

p2(h) , P(Y  2|0  X  hY ) = 1 � 1 + h � e
�2h

e2h

p1 , lim
h!0

p1(h) = 1 � e
�2 = 0.865

p2 , lim
h!0

p2(h) = 1 � 3 e
�2 = 0.594
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distribution a priori
rattaché au degré de croyance en un paramètre

• ensemble des échantillons X
• échantillon x

• paramètre de la distribution ✓

• notation pour la distribution : f (x |✓). Le paramètre ✓ est fixe mais inconnu.

• Soit H l’état des connaissances de l’expérimentateur lorsqu’il effectue

l’expérience et collecte l’échantillon x .

• ✓ aura une distribution qui dépend de H au sens du degré de croyance

⇡(✓|H)

10 / 40
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Probabilité au sens du degré de croyance

• Plusieurs auteurs ont donné un cadre théorique solide pour les proabilités au

sens du degré de croyance (Savage, Ramsey, Jeffreys, de Finetti, Carnap,

Lindley, pour en citer que quelques-un)

• Il est possible de donner un systèmes d’axiomes qui rend possible l’inférence en

utilisant une logique inductive, par rapport à la physique et mathématique

classique qui utilise un système d’axiomes pour une logique déductive.

• Nous allons utiliser les théorèmes de Bayes.

11 / 40
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Axiomes des probabilités
associés au degré de croyance

Axiomes :

1 0  ⇡(A|B)  1 et ⇡(A|A) = 1

2 Si les évènements {Ai} sont exclusifs sachant B (loi d’addition des probabilités)

⇡ ([Ai |B) =
X

i

⇡(Ai |B)

3 ⇡(C |A \ B)⇡(A|B) = ⇡(A \ C |B)

12 / 40
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indépendance
définition

définition de l’indépendance (loi de multiplication des probabilités)
Deux évènements sont indépendants si connaissant C on a

⇡(A \ B |C ) = ⇡(A|C )⇡(B |C )

13 / 40
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quelques théorèmes de Bayes...

Thm 1.

⇡(A|B) = ⇡(A \ B |B)

démonstration :
Le troisième axiome donne en remplaçant A par B , B par C et C par A

⇡(A|B \ C )⇡(B |C ) = ⇡(B \ A|C )

Ensuite on remplace C par B

⇡(A|B \ B)⇡(B |B) = ⇡(A \ B |B)

et le membre de gauche égale ⇡(A|B) car B \B = B et ⇡(B |B) = 1 par l’axiome 1.

14 / 40
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Thm 2.
Si A ) B alors

⇡(A|B)⇡(B) = ⇡(A)

démonstration :
L’axiome 3 peut s’écrire ⇡(A|B \ C )⇡(B |C ) = ⇡(B \ A|C ) et en posant C = B , on

arrive à ⇡(A|B \ B)⇡(B |B) = ⇡(B \ A|B) et comme A ) B , on a A ⇢ B et donc

B \ A = A et on a ⇡(B \ A|B) = ⇡(A).

15 / 40
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Thm 3. (thm. de Bayes)
soit {Ai} une séquence d’évènements et B un évènement quelconque avec

⇡(B) 6= 0 alors

⇡(An|B) / ⇡(B |An)p(An)

démonstration :
L’axiome 3 donne ⇡(C |A)⇡(A) = ⇡(A \ C ). De plus par définition de la probabilité

conditionnelle, on a ⇡(C |A) = ⇡(C \ A)/⇡(A) et donc en mettant ensemble

⇡(C |A) = ⇡(A|C )⇡(C )/⇡(A)

16 / 40
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principe de l’inférence bayésienne
a priori, a posteriori

• x = (x1, . . . , xn) un échantillon de variables aléatoires indépendantes posons

p(x|✓,H) =
nY

i=1

f (xi |✓,H)

• utilisation du théorème de Bayes

⇡(✓|x,H) / p(x|✓,H)⇡(✓|H)

La constante de proportionalité

⇢Z
p(x|✓,H)⇡(✓|H)d✓

��1
, 1

⇡(x|H)

ne dépend pas des paramètres.

• on omettra H par la suite sauf si c’est important
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• Vocabulaire : distribution a priori

⇡(✓|H)

• Vocabulaire : distribution a posteriori

⇡(✓|x,H)

.

• Vocabulaire : vraisemblance

p(x|✓,H)

vue comme une fonction de ✓

18 / 40
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hypothèse et décision bayésienne
fonction de coût

• CH0 H0 = C00 : coût d’accepter H0 alors que H0 est vraie.

• CH1 H0 = C10 : coût d’accepter H1 alors que H0 est vraie.

• CH1 H1 = C11 : coût d’accepter H1 alors que H1 est vraie.

• CH0 H1 = C01 : coût d’accepter H0 alors que H1 est vraie.
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décision bayésienne
coût attendu

l’espérance mathématique du coût entraîne le coût attendu (expected cost)

R , E{ coût }

R = E{ coût |H0}⇡(H0) + E{ coût |H1}⇡(H1)

20 / 40
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régions d’acceptation

• A0 : région d’acceptation de H0

• A1 : région d’accepation de H1

définition de la décision bayésienne
Il faut sélectionner A0 et A1 de telle sorte à minimiser R.
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décision bayésienne

On décide H0 lorsque

�(x) =
f (x |H0)

f (x |H1)
>

⇡(H1)(C01 � C11)

⇡(H0)(C10 � C00)
, k

et on décide H1 lorsque �(x) < k
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Exemple
illustratif de la décision bayésienne

•
H0 : f (x |H0) =

1p
2⇡

exp

✓
�1

2
x

2
◆

•
H1 : f (x |H1) =

1

2
p

2⇡
exp

✓
�1

8
x

2
◆

• On suppose a priori que les deux hypothèses sont d’égale probabilité

P{H0} = P{H1} = 0.5.

• C01 = C10 = 1 et C00 = C11 = 0

23 / 40
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le rapport de vraisemblance

�(x) =
1

2
exp

✓
1

8
x

2 � 1

2
x

2
◆

=
1

2
exp

✓
�3

8

◆

Le niveau

k =
1
2(1 � 0)
1
2(1 � 0)

= 1

Si 1/2 exp(�3/8x2) < 1 on privilégie H1

24 / 40



Eléments de
Statistiques

EE-209

Dr. Ph.
Müllhaupt

probabilité
condition-
nelle

degré de
croyance

principe de
l’inférence
bayésienne

décision
bayésiennes

exemples
divers (a
priori, a
posteriori)

distribution
gaussienne
multidimen-
sionnelle

théorème
variable aléatoire gaussienne avec a priori gaussien

Thm.
• X ⇠ N (✓,�2) où �2

est connu

• moyenne ✓ inconnue mais supposée distribuée a priori ⇡(✓) ⇠ N (µ0,�2
0).

La distribution a posteriori sera alors ⇡(✓|x) ⇠ N (µ1,�2
1) avec

µ1 =
x/�2 + µ0/�2

0
1/�2 + 1/�2

0
, ��2

1 = ��2 + ��2
0

25 / 40
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commentaire

• La distribution initiale influence le résultat par rapport à l’échantillon

• La moyenne est une pondération entre l’échantillon x et la valeur a priori de la

moyenne µ0.

• La variance de la distribution a posteriori et la moyenne harmonique de la

variance apriori �0 et de celle de la variance de la distributin de l’échantillon �2

�2
1 =

1

1
�2 + 1

�2
0

• L’échantillon x remet à jour notre croyance initiale en ✓ donné sous la forme de

⇡(✓) pour constituer un nouveau degré de croyance en ✓ donné sous la forme

de la distribution a posteriori ⇡(✓|x) pour le paramètre ✓.
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démonstration
la vraisemblance

p(x |✓) / exp[�(x � ✓)2/(2�2)]

a priori

⇡(✓) / exp[�(✓ � µ2)/(2�2
0)]

a posteriori

⇡(✓|x) / exp

⇢
�(x � ✓)2

2�2 � (✓ � µ0)2

2�2
0

�

/ exp

⇢
�1

2
✓2(1/�2 + 1/�2

0) + ✓(x/�2 + µ0/�
2
0)

�

= exp

⇢
�1

2
✓2/�2

1 + ✓µ1/�
2
1

�

/ exp{�1/2(✓ � µ1)
2/�2

1} CQFD
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corollaire

corollaire
Soit x = (x1, x2, . . . , xn) un échantillon de n variables aléatoires indépendantes

Xi ⇠ N (✓,�2) où �2
est connu et avec la distribution a priori ⇡(✓) ⇠ N (µ0,�2

0).
La distribution a posteriori est alors ⇡(✓|x) ⇠ N (µn,�2

n) avec

µn =
n x̄/�2 + µ0/�2

0
n/�2 + 1/�2

0/
, ��2

n = n ��2 + ��2
0

et x̄ = 1/n
P

xi la moyenne d’échantillon.
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démonstration

démonstration

p(x|✓) / exp

"
�

nX

i=1

(xi � ✓)2/(2�2)

#

/ exp[�1/2 ✓2(n/�2) + ✓n̄(n/�2)]

/ exp[�1/2 (x̄ � ✓)2(n/�2)] CQFD
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Encore un théorème...
gaussienne avec moyenne connue, mais variance inconnue

théorème
Soit x = (x1, x2, . . . , xn) un échantillon de n variables aléatoires indépendantes

Xi ⇠ N (µ, ✓), avec la moyenne connue mais la variance ✓ = �2
inconnue. On

considère l’apriori

⌫0�
2
0/✓ ⇠ �2

(⌫0)

alors la distribution a posteriori de

(⌫0�
2
0 + s

2)/✓ ⇠ �2
(⌫0+n)

avec la variable

s ,
nX

i=1

(xi � µ)2
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lemme utile
lors d’intégrale de fonctions gamma

lemme
Z 1

0
e
�A/✓ ✓�m

d✓ = (m � 2)!/Am�1 (A > 0,m > 1)

La démonstration peut être obtenue par intégration par partie itérée après la

substitution x = A/✓ et dx = �Ad✓/✓2
.
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démonstration

Rappel de la distribution du �2
(2m)

exp�1/2x
x
m�1/(2m(m � 1)!)

Si X = ⌫0�0/✓ ⇠ �(⌫0=2m) alors

⇡(✓) = exp

⇢
�⌫0�2

0
2✓

� ✓
⌫0�2

0
✓

◆ 1
2⌫0�1

⌫0�2
0

✓2 /[2
1
2⌫0(

1

2
⌫0 � 1)!]

!

/ exp

⇢
�⌫0�2

0
2✓

�
✓�

1
2⌫0�1

car dx = �⌫0�2
0d✓/✓

2
.
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La vraisemblance de l’échantillon est

p(x|✓) / exp

(
�

nX

i=1

(x1 � µ)2/(2✓)

)
/ e

�s
2/2✓ ✓�1/2n

Distribution a posteriori

⇡(✓|x) / e
�(⌫0�2

0+s
2)/(2✓) ✓�1/2(n+⌫0)�1

CQFD
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deux échantillons gaussiens
X1i ⇠ N (✓1,�

2
1) et X2j ⇠ N (✓2,�

2
2)

théorème
Si

• x1 = (x11, x12, . . . , x1n1) un échantillon avec X1i ⇠ N (✓1,�2
1)

• x2 = (x21, x22, . . . , x2n2) un échantillon avec X2j ⇠ N (✓2,�2
2).

• la distribution a priori pour ✓1 et ✓2 est uniforme sur ]�1; +1[

alors la distribution a posteriori de � , ✓1 � ✓2 est donnée par

� ⇠ N

✓
x̄1 � x̄2,

�2
1

n1
+

�2
2

n2

◆
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deux distributions gaussiennes
X1i ⇠ N (✓1,�) et X2j ⇠ N (✓2,�)

• X1i ⇠ N (✓1,�), i = 1, . . . , n1
• X2j ⇠ N (✓2,�), j = 1, . . . , n2
• distributions a priori pour ✓1 et ✓2 uniforme sur ]�1; +1[
• distribution uniforme pour log � sur ]�1; +1[

alors

⌫s2

�
⇠ �2

(⌫)

avec

⌫i s
2
i =

niX

j=1

(xij � x̄i )
2, ⌫1 = ni � 1

⌫s2 = ⌫2
1s

2
1 + ⌫2

2s
2
2 , ⌫ = ⌫1 + ⌫2
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esquisse de la démontration

• en multipliant les vraisemblances par les a priori, cela conduit à la distribution a

posteriori

•

⇡(✓1, ✓2, x1, x2)

/ ��1/2(n1+n2+2) exp[�{n1(x̄1 � ✓1)
2 + n2(x̄1 � ✓2)

2 + ⌫1s
2
1 + ⌫2s

2
2}/(2�)]

• Pour obtenir la distribution a posteriori de � il faut intégrer l’expression

précédente par rapport à ✓1 et ✓2 (distribution mariginale) et cela donne

⇡(�|x1, x2) / e
�⌫s2/(2�) ��1/2⌫�1

et on découvre le �2
(⌫1+⌫2)
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distribution normale multidimensionnelle

p(x) =
1

(2⇡)n/2|C |1/2
exp

✓
�1

2
(x � µ)TC�1(x � µ)

◆

• vecteur de moyenne

µ =

0

B@
E[X1]

.

.

.

E[Xn]

1

CA = E[X ]

• matrice de covariance (matrice semi–définie positive), appelée également

parfois matrice des variances et matrice de covariance

C = E[(X � E[X ]) (X � E[X ])T ]

• en composantes C = [�ij ] avec �ij = E[(xi � µi )(xj � µj)]

C est notée également ⌃ ou � et KXX selon les auteurs et les sources.
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distribution normale multidimensionnelle

Thm.
• x ⇠ N (A✓,C )

• ⇡(✓) ⇠ N (µ0,C0)

sous ces conditions la matrice A est connue, le vecteur de moyennes µ0 est oconnu

et la matrice de covariance C0 est connue mais les vecteur des paramètres ✓ n’est

pas connu, la distribution a posteriori s’écrit

⇡(✓|x) = N (µ1, ✓1)

µ1 , (C�1
0 + A

T
C

�1
A)�1 (C�1

0 µ0 + A
T
C

�1
x)

C1 , (C�1
0 + A

T
C

�1
A)�1
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esquisse de démonstration

p(x|✓) / exp

✓
�1

2
(x � A ✓)T C

�1 (x � A ✓)

◆

⇡(✓) / exp

✓
�1

2
(✓ � µ0)

T
C

�1
0 (✓ � µ0)

◆

Alors ⇡(✓|x) / p(x|✓)⇡(✓). En éliminant les termes constants multiplicatifs on

arrive après quelques manipulations

⇡(✓|x) / exp

✓
�1

2
[✓T (C0

�1 + A
T
C

�1
A) ✓ � 2✓T (C�1

0 µ0 + A
T
C

�1
x)]

◆

/ exp

✓
�1

2
[(✓ � µ1)

T (C�1
0 + A

T
C

�1
A) (✓ � µ1)

◆
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distance de Mahalanobis
r est la distance de x à µ

r
2 = (x � µ)T C

�1 (x � µ)
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