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@ probabilité conditionnelle

@ degré de croyance

© principe de l'inférence bayésienne

@ décision bayésiennes

@ exemples divers (a priori, a posteriori)

@ distribution gaussienne multidimensionnelle
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probabilité conditionnelle

rappel de la définition
) B SL
/_\-.
Soit deux événements A et B ‘@
définition ~

peaB) 2 * (;‘(E)B)
==




probabilité conditionnelle

interprétation fréquentiste

interprétation

Supposons un grand nombre d'expériences n a été effectué et les résultats des
événements A et B ont été enregistrés sous la forme suivante : ng expériences parmi
les n expériences correspondent a |'événement A, et ng expériences correspondent a
I'événement B. On note nanp le nombre d'expériences qui correspondent aux
événements qui ont lieu simultanément A et B. L'interprétation fréquentiste de la
probabilité suggére que si les expériences ont été réalisées de maniére indépendante,
la fréquence 74 sera proche de la probabilité P(A) et la fréquence “& sera proche de
la probabilité P(B). Maintenant,

P(AﬂB) N Dans _ NhanB
P(B) ~ & T g

Ceci mesure |'expectative d'avoir I'événement A se produire lorsque |'événement
est observé. 4/ 40




distribution conditionnelle

distribution continue

définition
Soit X et Y deux variables aléatoires avec densitté jointe f, distribution marginale

f1 pour X et distribution marginale f» pour Y. La probabilité conditionnelle de Y
sachant X = x est définie par

s
(b = L)

—o0o <y <400
A(x) d

v

—



distribution conditionnelle

distribution continue

Dans le cas continu il faut étre prudent car P(X = x) = 0. Il faut prendre une
intervalle et le faire tendre vers zéro.

P(AIX = x) = lim P(A0 < X < h)




P(r18) o TANE)

distribution conditionnelle
bep)

P

distribution continue
Une autre facon de rendre la définition plus claire est de passer par les fonctions de
répartition car on peut appliquer la définition sans autre
P(YSyIXSng—i—h)

P(x<X<x+h Y<y)
P(x <X <x+h)
F(X_'_h?y)_F(va)
-———/H F]_(X—l-h)—Fl(X)
—05

/Y f(x,t)

y
00 dx = /_oo f(t|x)dt

_ X wely
et il suffit alors de prendre la limite

lim P(Y <ylx <X <x+h)=
h—0

Ha
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Exemple
e’e distribution continue
Soit

(xy)—e(X+y) <x<Hxoetld<y< 4+
tj,cz Lzco

P(YgZ,Ongh):deﬁ)e( y)dx=(1—e@)(1—e@) J/
- < _Jo Jo____

hy _ ao—2h
P(Y <2,0< X < hY) = /dy/ ey o N 1th—e

1+h  e(1+h)

P(O< X < h)= / dy/ e OMdx =1—e" 4
0 0

[eS) h
PO < X < hY) :/ dy/ e gy = 1L v
0 0

+h

=] 5



Exemple
distribution continue

lorsque h = 0 les deux expressipns précédentes sont différentes de zéro, et en
utilisant P(A[B) = p(AN BYP(&)

—

7/

pi(h) & P(Y <2|0 < X < h)

pa(h) = P(Y <2|0 < X < hY)

—

pp 2 limpy(h)=1—e2=0.865 v
h—0

p2 £ lim py(h)=1—3e 2 =0.594 v4
h—0

=] 5
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distribution a priori

rattaché au degré de croyance en un paramétre

® ensemble des échantillons X

e échantillon x Y

e paramétre de la distribution 6 / Cadre ‘/dll/ o
® notation pour la distribution : f(x|#). Le paramétre 6 est fixe mais inconnu.

- 1, . — 1 P 1.
e Soit H I'état des connaissances de I'expérimentateur lorsqu'il effectue
I'expérience et collecte |'échantillon

6 aura une distribution qui dépend de H au sens du degré de croyance

7(0|H)

Ha e
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Probabilité au sens du degré de croyance

® Plusieurs auteurs ont donné un cadre théorique solide pour les proabilités au
sens du degré de croyance (Savage, Ramsey, Jeffreys, de Finetti, Carnap,
Lindley, pour en citer que quelques-un)

® || est possible de donner un systémes d'axiomes qui rend possible |'inférence en
utilisant une logique inductive, par rapport a la physique et mathématique
classique qui utilise un systéme d'axiomes pour une logique déductive.

® Nous allons utiliser les théorémes de Bayes.
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Axiomes des probabilités

associés au degré de croyance
Axiomes :

©0<(AB)<1etn(AA) =1

@® Si les événements {A;} sont exclusifs sachant B (loi d'addition des probabilités)

m(UAi|B) =Y 7(AilB)
© 7(C|AN B)r(AB) = n(AN C|B)

i




Deux événements sont indépendants si connaissant C on a

A
7(AN B|C) = (A|C)n(B|C)

—

définition de I'indépendance (loi de multiplication des probabilités)

indépendance

définition



quelques théoréemes de Bayes...

Thm 1.

7(A|B) = n(AnN B|B)

démonstration :
Le troisiéme axiome donne en remplacant A par B, B par C et C par A

m(A|IBN C)x(B|C) =n(BNA|C)
Ensuite on remplace C par B

7(A|B N B)r(B|B) = n(An B|B)

et le membre de gauche égale 7(A|B) car BN B = B et n(B|B) = 1 par |'axiome 1.

o ] - =
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. 5 T
Thm 2.
Si A= B alors @ 2 (,/(A_/

n(A|B)r(B) = (A {6y
78| ?C[MSL)

démonstration :

L'axiome 3 peut s'écrire 7(A|BN C)n(B|C) = (BN A|C) et en posant C = B, on
arrive 3 m(A|B N B)r(B|B) = m(B N A|B) et comme A= B, ona A C B et donc
BNA=Acetonan(BnA|B)=mr(A).

= PN G
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Thm 3. (thm. de Bayes)
m(B) # 0 alors

soit {A;} une séquence d'événements et B un événement quelconque avec

7(An|B) o< m(B|An)p(An)
démonstration

L'axiome 3 donne 7(C|A)mw(A) = m(AN C). De plus par définition de la probabilité
conditionnelle, on a w(C|A) = 7(C N A)/m(A) et donc en mettant ensemble

m(ClA) = m(A[C)m(C)/m(A)
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® x = (xi,.

principe de l'inférence bayésienne

a priori, a posteriori
, Xn) un échantillon de variables aléatoires indépendantes posons

n
p(x|0, H) = [ f(xil6, H)
i=1
e ytilisation du théoréme de Bayes

, L
/A
(6%, H) o< p(x|6, H) w(0] H)
La constante de proportionalité

{ / p(x[6, H)7r(9|H)d9}_l

ne dépend pas des paramétres.

m(x|H)
® on omettra H par la suite sauf si c’est important

Ha e
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® Vocabulaire : distribution a priori

m(0|H)

® Vocabulaire : distribution a posteriori

7(0]x, H)

® \ocabulaire : vraisemblance

p(x|0, H)
vue comme une fonction de 6



hypothése et décision bayésienne

fonction de coiit

® CpyH, = Coo : colt d'accepter Hy alors que Hp est vraie.
® Cpy, H, = Cio : colt d'accepter Hy alors que Hp est vraie.

® Cy, 1y, = Cip : colt d'accepter Hy alors que Hp est vraie.

® CpoHy, = Co1 : colt d'accepter Hy alors que Hj est vraie.



décision bayésienne
coiit attendu

I'espérance mathématique du colit entraine le colit attendu (expected cost)

# = E{ colit }

X = E{ coit |Ho} 7(Ho) + E{ cotit |H1} m(H1)



régions d'acceptation
e Ay : région d'acceptation de Hp

e A; : région d'accepation de H;

définition de la décision bayésienne

[I faut sélectionner Aq et A; de telle sorte a minimiser Z.



On décide Hy lorsque

)\(X) _ ;(X|H0)

(x[Fh) ~

décision bayésienne

et on décide H; lorsque \(x) < k

m(H1)(Cor — C11) 5
7m(Ho)(Cio — Coo)



P{Ho} = P{H.} = 0.5.

Hl'

L F(x|Hy) =

® Cop=Cpo=1let Coop=C11=0

Exemple

illustratif de la décision bayésienne

® On suppose a priori que les deux hypothéses sont d'égale probabilité



le rapport de vraisemblance
1 1 1 1 3
Ax) = 5 &P <§x2 - §x2) =S exp (—g)

1
k=2 "

Le niveau

NI= N[ =
— |~

Si 1/2exp(—3/8x2) < 1 on privilégie Hy



théoréme
variable aléatoire gaussienne avec a priori gaussien
Thm.
® X ~ 4 (0,0%) ot 0 est connu
® moyenne 6 inconnue mais supposée distribuée a priori w(0) ~ A (10, 03).

. x/o® + o/ 03

La distribution a posteriori sera alors m(0|x) ~ A (u1,0%) avec
1/02+1/0 "’

-2 _ -2 -2
0" =0 “+o0g



commentaire

e La distribution initiale influence le résultat par rapport a I'échantillon
® | a moyenne est une pondération entre |'échantillon x et la valeur a priori de la
moyenne fig.

® | a variance de la distribution a posteriori et la moyenne harmonique de la
variance apriori o et de celle de la variance de la distributin de I'échantillon o2

1

1
2
%0

2 _
01 = 5
o2
e | 'échantillon x remet a jour notre croyance initiale en # donné sous la forme de

7(0) pour constituer un nouveau degré de croyance en 6 donné sous la forme
de la distribution a posteriori m(0|x) pour le paramétre 6.
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la vraisemblance

a priori

a posteriori

m(0]x)

démonstration
p(x|0) o< exp[—(x — 6)?/(202)]
m(0) oc exp[—(0 — uj)/(%g)]

Baye

exp{_<x—e)2 ) (9—uo)2}

2072 203
1
oxp { ~30°/0% +1/08) + 00x/0% + /o) }

exp {—%92/05 +9u1/05}

exp{—1/2(0 — y11)%/03} CQFD

=} 5



corollaire

corollaire
Soit x = (x1, X2,

., Xn) un échantillon de n variables aléatoires indépendantes
Xi ~ A (0,0%) ol 02 est connu et avec la distribution a priori 7(0) ~ A (10, 03).
La distribution a posteriori est alors (|x) ~ A (un, 02) avec

nx/o® + po/ g 2 2, -2
= , o, =noc ~+o0
" nfo2+1/a3)/ " 0
et X =1/n)_ x; la moyenne d'échantillon.
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démonstration

p(x|0) o< exp [— > (i —6)*/(20%)

démonstration

n ] ')-(: = l
n
i=1 4
o exp[~1/26%(n/o®) + 6R(n/o)]

o« exp[—1/2(x — 0)?(n/o?)] CQFD

2 X,

Qe



s & /e ém/n(,,

Encore un théoréme...
gaussienne avec moyenne connue, mais variance inconnue
théoréme
Soit x = (x1, x2,
nsidére |'apriori

., Xn) un échantillon de n variables aléatoires indépendantes
Xi ~ A (u,0), avec la moyenne connue mais la variance § = o

2

inconnue. On
2 2
1/00'0/9 ~ X(Vo)
alors la distribution a posteriori de

_—

2 2 2
(100G +57)/0 ~ X{yo+n)
avec la variable

30/40



lemme utile
lors d'intégrale de fonctions gamma
lemme

/ e Mg mdg = (m—2)I/A"T  (A>0,m>1)
0

La démonstration peut étre obtenue par intégration par partie itérée aprés la
substitution x = A/f et dx = —Ad6/6°.



démonstration
Rappel de la distribution du X{(2m)

eXp—1/2x m—1/(2m(m _ 1) )
Si X = 1poo/0 ~

vo=2m) alors

0
eXp VOUO ((UOO'O 1/00'0/[22110( Vo — 1)|]>
0~

m(0) =

x exp{ VOUO} 10—
20

car dx = —1po2d6 /6>,




La vraisemblance de |'échantillon est

i=1

n
p(x(6)  exp {— S 4 - u)"‘/(ze)} x e/ g/
Distribution a posteriori

7(0]x) o e~ (n003+5%)/(20) g—1/2(n+10)—1

CQFD




deux échantillons gaussiens
théoreme
Si

Xii ~ e/V(Hl,O'%) et ij ~ /(02,0’%)

® X1 = (X11,X12, c. ,Xlnl) un échantillon avec Xj; ~ /(91, O‘%)
® xp = (x21,X22, - . . , X2n,) Un échantillon avec Xp; ~ A (62, 03).
® |a distribution a priori pour 67 et 0, est

alors la distribution a posteriori de 6 £ 61 — 6, est donnée par

2 2
_ _ O o
5NJV<X1—X2, L 2

%, _)
m na




deux distributions gaussiennes

Xii NJV(91,¢)) et ij NJV(92,¢)
XliNJV(91,¢), i = 17"‘7”1

X2J'NJV(02,¢),_].: 1,...,n2
distributions a priori pour 61 et 6, uniforme sur | — oo; +00[
distribution uniforme pour log ¢ sur | — co; +o0]

alors
vs? 5
b ~Xw)
avec
n;
2 Z AT
ViS; = (X,'J' — X,') s V1T = n; — 1
Jj=1
vs® = stlz + 1/35227 V=uv1+12

[m] [ =



esquisse de la démontration
® en multipliant les vraisemblances par les a priori, cela conduit a la distribution a
posteriori

7T(0]_, 023 X1, X2)
oc M AMFNF2) eyl Lny(xq — 01)2 + ma(R1 — 02)% + 1157 + 1253}/ (20)]

® Pour obtenir la distribution a posteriori de ¢ il faut intégrer |'expression
précédente par rapport a 07 et 6, (distribution mariginale) et cela donne
m(p|x1,%2) x e

et on découvre le Xfyﬁw)

—vs2/(2¢) ¢—1/2u—1
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,&/,/,,,/ A Pyo  mesie P def poibre V, LV, nzg

distribution normale multldlmen5|onne||e

P>o
1 1 B
B Al ) ‘
® vecteur, de moyenne V, )\| ,70/1'(
E[X1]
b )Ll?: =E[X] 1

XY\ B

® matrice de covariance (matrice semi—définie positive), appelée également
parfois matrice des variances et matrice de covariance

% g4
C =E[(X —E[X]) (X —E[X])7] Uxﬁy (rg

® en composantes C = [0jj] avec 0 = E[(x, i) (X ,uj)]

C est notée également X ou ' et Kxx selon les auteurs et les sources.

37/40



distribution normale multidimensionnelle

Thm.
o x ~ (A, C)
® () ~ A (po, Co)

sous ces conditions la matrice A est connue, le vecteur de moyennes jip est oconnu
et la matrice de covariance (y est connue mais les vecteur des paramétres 6 n'est
pas connu, la distribution a posteriori s'écrit

m(0lx) = A (p1,01)
p 2 (GEHATCTTA) T (Gt + ATC )
G & (Gr+ATCA)T
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esquisse de démonstration
p(x|0) o exp (—%(X—AQ)TC_I (x—Ae))

1
w0) o e (5010 GO~ o))

Alors 7(8]x) o< p(x|€) w(#). En éliminant les termes constants multiplicatifs on
arrive aprés quelques manipulations

1
m(0]x) o exp (—E[HT(Co‘l +ATCrA)0 - 207 (Cy o + ATc—lx)])

x exp (—%[(9 —m) (G +ATCTTA) (0 - Ml))

[m]

=
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distance de Mahalanobis

r est la distance de x a p

rP=(x—pu) C T (x—p)




