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Le probléme de |'estimation

expectative et valeurs asymptotiques
Soit # un estimateur pour un paramétre 6

propriétés désirées de |'estimateur 0
® On aimerait I'absence de biais
Ey[0] = 6

¢ Une erreur quadratique moyenne (MSE) petite :

R(0,0) £ Eo[(0 - 0)*]

Espérance mathématique a partir de |'observation

Dans certain cas, prendre |'espérance mathématique est remplacé par une moyenne

d'un grand nombre de réalisations. On remplace |'opérateur E par une moyenne sur
un grand nombre de réalisation.

[m] [ =

3/37



statistique suffisante

® Soit un vecteur de variables aléatoires Y qui décrit un échantillon. Une
expérience conduit a observer y, une valeur particuliére du vecteur aléatoire Y.

® | a variable aléatoire est paramétrisée par 6. La suffisance est un concept qui
permet de caractériser une statistique h(Y) afin de résumer tout ce qui qui est
dans Y concernant la déduction de la valeur de 6 en laissant de cété ce qui ne
donne pas d'information concernant 6.

® |a plupart du temps, la statistique h est de dimension plus petite que
I'échantillon
dim h < dimY

® | a valeur de la statistique h partitionne I'espace des échantillons en catégories.

® Au sein d'une partition il n'y a plus d'information utile concernant le paramétre

6.
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statistique suffisante
définition

définition
Soit un vecteur de variables aléatoires qui décrit un échantillon

Y=(Y1,.-., Yn)
Une statistique

U = h(Y)
est dite suffisante pour 6 si la dstribution conditionnelle

ne dépend pas de 6.

P(Y|U)



statistique suffisante

e |a définition se référe a la distribution de Y.
répartition

remarques
® Pour cette raison, on se référe également a une famille de fonctions de

{Fv(10)]0 € ©}

e | a définition est équivalente a dire que la fonction de répartition conditionnelle

FY|U(y7 U)
n'est pas une fonction de 6

® autrement dit la densité de probabilité conditionnelle

Au(y, u)
ne dépend pas de 6

Ha
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statistique suffisante

lemme

lemme : conditionnement sur une fonction de |'échantillon
Supposons que Y soit un échantillon d'un vecteur de variables aléatoires discrétes.

Soit U = h(Y) une statistique. La distribution de probabilité conditionnelle discréte
est donnée par :

pyju(y, u) = { po(w  lorsque h(y) = u, py(u) # 0

0 sinon
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exemple
variables de Bernouilli

Soit Y = (Y1,..., Ys), n expériences de Bernouilli (réussite 1, raté 0). La
distribution de probabilité discréte pour chaque composante Y; est :

py,(vi) = { fl _p) ; z(l)

Pour chaque vecteur de variables aléatoires observées y = (y1,y2,...,yn), on ale
nombre total de réussites u = >"7 ; yj, et le nombre total de ratés n — u. Par la

propriété d'indépendance, on peut multiplier les probabilité de chaque variable de
Bernouilli

pv(y)=p'(1=p)""  u=)_y
i=1

u]
|
I

u
i
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Considérons la statistique

le lemme donne

pY|U(y7 u) = pY(y)

n

n

Uu=>_v

i=1
Elle suit la distribution binomiale U ~ Zin(n, p) donnée par :

pu(u) = ( Z ) pi(l—p)"

p'(1—p)""

1

Intuition : S'il y a u réussites, il y a

toutes (tous) équiprobables.

pulu) ( "

)p“(l—p)"‘“_ (Z)

[m]

=

) facons (arrangements) de le faire, et
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h(y) =

=u

Y=y = h(Y)=h(y)
Au sens des événements cela signifie

on déduit alors

{Y=ytc{U=u}

pyuly,u) = P(Y =y,U=u) = P(Y =vy)
si h(u) # u, alors {Y =y} N {U =u} =0 et donc py u(y,

statistique suffisante

démonstration du lemme

=U=u

= pv(y)

u) =

[m]

0.

=

(1)



principe de suffisance

principe de suffisance

Si U = h(Y) est une statistique suffisante pour 6, alors toute déduction concernant
6 doit pouvoir s'effectuer a travers les réalisations de la statistique (variable
aléatoire) U. (L'inférence a partir de la variable aléatoire Y concernant 6 doit
pouvoir s'effectuer seulement a partir de u.)

En reprenant I'exemple des variables de Bernouilli et de la statistique U = >_ Y;, et
en considérant deux réalisations de la statistique U celles donnant v =2 avec n =5
dans les deux cas suivants :

y1 =(0,1,0,1,0)
y2 =(1,0,0,1,0)

Dans ce cas y; # yp mais > y1; = »_ y»; = 2 ainsi la réalisation de la statistique U
est la méme dans les deux cas. L'estimation de p sera bien déterminé entiérement

par la statistique suffisante ) y;. En effet p = 2/5 dans les deux cas.
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théoréme de factorisation
théoréme de factorisation
Soit Y = (Y1, Y2,..., Y,) un vecteur de variables aléatoires de distribution jointe

p(Y,8). La statistique U = h(Y) est suffisante pour 0 si, et seulement si, il est
possible de trouver deux fonctions b et ¢ telles que

p(Y,0) = b(h(Y),0) c(Y)




statistique suffisante
e Soit X1, X2,... X, avec X; ~ Pois(u).

exemple : X; ~ Pois(1)
e On va montrer que h = > X; est une statistique suffisante pour
Pour tous les entiers non négatifs xi, xo,
discréte jointe de Xi,

., Xp est donnée par

n

p(.0) =]] T

1
_ ) oy
paley x; ! (Hx,-!>e H

.. Xp la distribution de probabilité

avec

i=1

n
y= ZX,'
i=1

Le résultat suit du théoréme de factorisation.
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rapport de vraisemblance et suffisance

proposition
L’estimateur selon le maximum de vraisemblance fy g est fonction de toute
statistique suffisante pour 6.

La démonstration est une conséquence du théoréme de factorisation Soit U = h(Y)
une statistique suffisante pour 6. On a

py(y,0) = b(h(y),0)c(y)

1(8) = log b(h(y,8)) + log c(y)

Maximiser /(6) revient & maximiser b(h, #). Ainsi le maximum de vraisemblance
dépend de 0 seulement a travers la dépendance de b par rapport a 0 et b est
fonction de I'observation y qu'au travers de la statistique h(y).
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suffisance minimale

définition
Une statistique suffisante U est dite minimale si elle est une fonction de toute autre
statistique suffisante.

e Cela signifie que U extrait |'information sur # avec une perte minimale de
données.

e Toute autre statistique suffisante contient au moins autant d'information que
U, mais pas moins.
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famille exponentielle

définition
Soit Y une variable aléatoire dont la distribution dépend d'un seul paramétre 6 et

qui est de la forme
f(y7 9) - A(G) . B(y) . eC('9)'d(y)

est appelée une famille exponentielle, avec A, B, ¢ et d des fonctions connues.

variables indépendantes et famille exponentielle

Soit Y1, ... Y,, nvariables aléatoires indépendantes qui sont individuellement
distribuée par un membre identique de la famille exponentielle, la densité jointe
s'écrit :

f(y1,y2,..-,yn) = A(0)" [H B(Yi)] exp {C(G) : Z d(}/i)}
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théoréme de Rao-Blackwell

idée principale
On peut améliorer un estimateur en le conditionnant par une statistique suffisante.

® Soit Xi,..., X, un échantillon avec loi dépendant d'un paramétre 6.
® Soit W un estimateur de 6, pas forcément optimal.

e Soit T une statistique suffisante pour 6.

e Alors : | = E[W | T]|est meilleur ou égal a W (méme espérance mais

variance plus petite).

théoreme de Rao-Blackwell
L'estimateur E[W | T] est meilleur que W en variance quadratique, et a méme

espérance.
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Soit Xy,

exemple : Rao-Blackwell sur une Bernoulli
, Xn ~ Bernoulli(#), avec 6 € [0, 1].

e Considérons un estimateur naif : W = Xj.

® Onsait que T =7 ; X; est une statistique suffisante.

® Rao-Blackwell propose d'améliorer W :

0 =E[X | T]
® En utilisant la symétrie entre les X;, on obtient :

-
E[Xi | T]=—
n

Conclusion

L'estimateur T /n est meilleur que X;

méme espérance, variance plus faible.

[m] [ =
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® X; est un estimateur de 0, avec :

IE:[)<1] = 97

Var(X1) = 0(1 —0)
e )=T/n= %ZX,- est aussi sans biais :

E[T/n] =0,
® Donc :

Var(T/n) = 60 = 9)

n

Var(T/n)

1
—Var(X
n ar( 1)

illustration : variances de Xj et T /n
e X ~ Zin(n,0), X1 ~ Ber(0)

Xiy.ooy Xn, Xi ~ PBer(6)



Exemple numérique pour Rao-Blackwell
On considére Xy, X5, X3 id Ber/(p). On veut estimer p, et on définit :
T =Xy + Xo + X3 ~ Bin(3, p)
Soit p1 = X1 un estimateur naif. On construit |'estimateur amélioré :

P2 =E[Xy | T]

On peut expliciter la loi de X; | T =t pour t = 0,1,2,3. Etant donné la symétrie
des X;, on a:

\'
I

t) E[Xi|T=t]

—wihwik O+
= wINWI= O

u]
|
I
u
i

) T
= h=EX|T]=3
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On compare la variance des deux estimateurs :

Comparaison des variances
pr=X1 et pp=E[X| T]:g
Variance de p;
Variance de p;

Var(py) = Var(X1) = p(1 — p)

T 1
Var(p) = Var (g) = §Var( T)
Or T = X1 + Xo + X3 ~ Bin(3, p) = Var(T) = 3p(1 — p), donc :

Var(p2) =
Conclusion

1 1

= 3p(1— “p(1—

g 3P(L—p)=3p(1-p)
N 1 N
Var(p) = §Var(p1)
= Rao-Blackwell réduit bien la variance.

=
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Figure — En trait plein la Var(X;) et en traitille Var(T/n). Ici n = 10.
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théoréme de Rao-Blackwell

théoréme de Rao-Blackwell

Soit une variable aléatoire Y associée a un échantillon. Soit U une statistique et T
une statistique suffisante pour 6. Définissons S = E(U|T). On a

MSE,(S) < MSEy(U)




information de Fisher

® Soit X une variable aléatoire.

e Soit f(,0) la densité de probabilité qui dépend d'un paramétre dont la valeur

est inconnue mais doit se situer dans un intervalle ouvert de |'espace des
paramétres ©.

® X prend des valeurs dans X et f(x,60) > 0 pour chaque valeur de x € X’ et
chaque valeur de 6 € ©.

u]
|
I
u
i
)]
)
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information de Fisher
rappel

2 k-f(x,0)
0,x) = logL(0,x)
01(0, x)

06
021(0, x)
062

~
—~~
N
X
~
>

dans la suite on considére le cas simple k =1



information de Fisher

définition

I'information attendue de Fisher est définie par :

Z(0,x) = Eg[1(6, x)]

DA
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information de Fisher
exemple : distribution de Bernouilli Zer(p)

0=p

I(x,p) = log f(x,p) = xlog p + (1 — x) log(1 — p)

7 X 1—x

i, p)=— 54 —— %
n = (5t g )

Comme E[X] =pona

I(p) = —Eoll" (X, p)] = = +




information de Fisher
exemple : distribution normale .4 (1, 0®)
Soit la variable aléatoire X ~ .4 (11, 0%) de moyenne —oo < p < 0o inconnue et de
variance o connue.

Déterminons |'information Z () dans X. Pour —oo < x < 400,

1
I(x.12) = — & log(2mo?) —
de telle sorte que

— p)?
202
’ X — ,LL
I(x, 1) =
(x, 1) p
et 1
I// __
(. n) = ——
et |'information de Fisher s'écrit donc

I(n) = ~1"(ep) =

g

28 /37



information de Fisher

d'un échantillon

Supposons un ensemble de variables aléatoires X1, Xo, ..., X, dont une réalisation
de chacune des variables donne un échantillon de taille n. Toutes les variables
aléatoires sont identiquement distribuées et indépendantes.

On peut donc multiplier les probabilités

fn(x,0) = f(x,0)h(x,0) - fo(x,0)
= f(x,0)f(x,0) --- f(x,0)

et ainsi additionner les informations.

Ta(6) = nZ(0)

Ha e
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borne de Cramér-Rao

inégalité concernant I'information

une définition équivalente |'information consiste a poser

Z(0) £ Eo[(/ (x.0))?]
si f(x,0) est une densité de probabilité, on a

(0) = /S (I'(x,0))? f(x, ) dx




On sait que

/sf(x, O)dx =1

pour chaque valeur de 6 € 6. On suppose que |'on peut permuter |'opération de
dérivation par rapport a 0 et d'intégration par rapport a x, et donc

/f’(x,o)dx=o fco
S
En prenant une dérivée supplémentaire

(3)

/f”(x,e):o heco
S



Comme /'(x,0) =

et donc

o[/ (x,0)] = /5 [ (x,0) f(x, 0) = /5 £ (x,0), dx

Eo(/' (X,6)] =0

DA
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Comme la moyenne de /'(X,6) est 0 (le raisonnement est le suivant : le logarithme
de vraisemblance est maximisé et en moyenne la pente du logarithme de
vraisemblance est alors nulle), et comme Z = Ey[(/'(X,0))?] on a a cause de (3) on
a

T() = Varg[/'(x,0)]

de plus

f(x,0)f (x,0) — (f (x,0))> ' (x,0)

/'(x.6) = o = gy~ U)y

et finalement

muxmzéﬂgmw—ﬂm

u]
|
I
u
i
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borne de Cramér-Rao

inégalité concernant I'information

Soit un ensemble de variables aléatoires indépendantes X3, Xo, ..., X,

identiquement distribuées de densité de probabilité f(x, ) avec 6 un paramétre
appartenant a un intervalle ouvert.

On notera f,(x, 6) la densité de probabilité jointe de Xi, Xo, ..., Xj.
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borne de Cramér-Rao

inégalité concernant I'information
Soit

T=r(X1,...,Xs) = r(X)
un estimateur arbitraire de 6 pour lequel la variance est finie.
Considérons la covariance entre T et la variable aléatoire /,(X,8). Comme
I (x,0) = £, (x,0)/fr(x, 0) il s'ensuit que pour une observation unique

Eg[/’(x,e)]:/S.../Sf,;(x,e)dxl...dxn:o

En conséquence

Covg[T, [ (X,0)] =

r(x) 1 (x, ) fo(x, 0) dxi . . . dx,

r(x) f.(x, 0) dxq .. . dxp

(] = -

6157



borne de Cramér-Rao
Maintenant Eg(T) = m(0) pour 6 € © et donc

/ / ) fa(x,0) dx ..

. dx, = m(0)
I'intégrale

pourf) € ©
En dérivant par rapport a 6 cette derniére équation en prenant la dérivée dans

/ / r(x) f.(x, 0) dxq . . . dxp, = m (6) pourf € ©
et donc

Covg[T,/(X,0)] =m'(6) 6Hec®
par les propriétés de la covariance (cf. lecon suivante, Cauchy-Schwarz))

[m]

=
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borne de Cramér-Rao

inégalité de I'information

{Cov[T I'(X,0)]}* < Varg(T)Varg[l'(X,0)]

[m'(0)]?
Varg(T) > nZ(0)
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