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@ probabilité conditionnelle

@® degré de croyance

© principe de l'inférence bayésienne

O décision bayésiennes

@ exemples divers (a priori, a posteriori)

@ distribution gaussienne multidimensionnelle

plan



probabilité conditionnelle
rappel de la définition

Soit deux événements A et B
définition

p(ais) 2 PANE)

P(B)
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probabilité conditionnelle

interprétation fréquentiste

interprétation

Supposons un grand nombre d'expériences n a été effectué et les résultats des
événements A et B ont été enregistrés sous la forme suivante : ng expériences parmi
les n expériences correspondent a |'événement A, et ng expériences correspondent a
I'événement B. On note nanp le nombre d'expériences qui correspondent aux
événements qui ont lieu simultanément A et B. L'interprétation fréquentiste de la
probabilité suggére que si les expériences ont été réalisées de maniére indépendante,
la fréquence 74 sera proche de la probabilité P(A) et la fréquence “E sera proche de
la probabilité P(B). Maintenant,

P(AﬂB) N Dans _ NhanB
P(B) ~ & T g

Ceci mesure |'expectative d'avoir I'événement A se produire lorsque I'événement B
est observé. 4/ 40




distribution conditionnelle

distribution continue

définition
Soit X et Y deux variables aléatoires avec densitté jointe f, distribution marginale

f1 pour X et distribution marginale f» pour Y. La probabilité conditionnelle de Y
sachant X = x est définie par

Bl =T oy <



distribution conditionnelle

distribution continue

Dans le cas continu il faut &tre prudent car P(X = x) = 0. Il faut prendre un
intervalle et le faire tendre vers zéro.

P(AIX = x) = lim P(AJ0 < X < h)




distribution conditionnelle
distribution continue
Une autre facon de rendre la définition plus claire est de passer par les fonctions de
répartition car on peut appliquer la définition sans autre
P(Y <ylx <X <x+h)

Px<X<x+hY<y)
P(x <X <x+h)
F(x+h,y) = F(x.y)
F1(X + h) — Fl(X)
(remarque F1(0) n'apparait pas dans la formule précédente car f(x) = 0 pour
x < 0), et il suffit alors de prendre la limite

IimP(YSy\XSXSX—G—h):/
h—0

Yof(x,t) a [ N
s dx—/_oo f(¢]x)dt

[m]

=
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Soit

Exemple

distribution continue
— o~ (x1y)

f(x,y) =

0<x<+oetl0<y <+

2 h
P(Y<2,0§X§h):/ dy/ e OCMdx = (1—e2)(1—e")

P(Y <2,0 <X < hY) d ~H)g
( ° /y/ T 1vh T E1+h
P(O<X§h):/ dy/ e CMdx=1—¢
0 0

0o h
P(0 < X < hY) :/ dy/ et gx = -
0 0

h

h
+h

[m]

=



Exemple

distribution continue

lorsque h = 0 les deux expressions précédentes sont différentes de zéro, et en
utilisant P(A|B) = p(AN B) P(A)
pr(h) £ P(Y <20<X<h) = 1—e?
1+ h— —2h
pa(h) 2 P(Y <2(0< X <hY) = 1—%
pr 2 limp(h)=1—-e2=0.865
h—0

p2 £ lim py(h) =1—3e 2 =0.594
h—0

(] = -



distribution a priori

rattaché au degré de croyance en un paramétre
® ensemble des échantillons X
e échantillon x
e paramétre de la distribution 6
® notation pour la distribution : f(x|#). Le paramétre 6 est fixe mais inconnu.

e Soit H I'état des connaissances de |'expérimentateur lorsqu'il effectue
I'expérience et collecte |'échantillon x.

6 aura une distribution qui dépend de H au sens du degré de croyance

7(0|H)

Ha e
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Probabilité au sens du degré de croyance

® Plusieurs auteurs ont donné un cadre théorique solide pour les proabilités au
sens du degré de croyance (Savage, Ramsey, Jeffreys, de Finetti, Carnap,
Lindley, pour en citer que quelques-un)

® || est possible de donner un systémes d'axiomes qui rend possible |'inférence en
utilisant une logique inductive, par rapport a la physique et mathématique
classique qui utilise un systéme d'axiomes pour une logique déductive.

® Nous allons utiliser les théorémes de Bayes.
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Axiomes des probabilités

associés au degré de croyance
Axiomes :

©0<(AB)<1etn(AA)=1

@® Si les événements {A;} sont exclusifs sachant B (loi d'addition des probabilités)

m(UAi|B) =Y 7(AiB)
© 7(C|AN B)r(AB) = (AN C|B)

i




indépendance

définition

définition de I'indépendance (loi de multiplication des probabilités)
Deux événements sont indépendants si connaissant C on a

7(AN B|C) = n(A|C)n(B|C)




quelques théoréemes de Bayes...

Thm 1.

w(A|B) = w(An B|B)
démonstration :
Le troisiéme axiome donne en remplacant A par B, B par C et C par A
w(A|IBN C)rx(B|C) = n(BNA|C)
Ensuite on remplace C par B

7(A|B N B)r(B|B) = n(An B|B)

et le membre de gauche égale 7(A|B) car BN B = B et 7(B|B) = 1 par |'axiome 1.

o ] - =
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Thm 2.

Si A= B alors

m(A|B)r(B) = 7(A)

démonstration :

L'axiome 3 peut s'écrire 7(A|BN C)n(B|C) = (BN A|C) et en posant C = B, on
arrive 3 m(A|B N B)n(B|B) = m(B N A|B) et comme A= B, ona A C B et donc
BNA=Acetonan(BnA|B)=mr(A).



Thm 3. (thm. de Bayes)

m(B) # 0 alors

soit {A;} une séquence d'événements et B un événement quelconque avec

(An|B) o m(B|An)p(An)

démonstration

combinant on a

L'axiome 3 donne 7(C|A)m(A) = m(AN C) et 7(A|C)n(C) =7(CNA) eten

m(ClA) = m(A[C)m(C)/(A)



® x = (xi,.

principe de l'inférence bayésienne

a priori, a posteriori
, Xn) un échantillon de variables aléatoires indépendantes posons

n
p(x|0, H) = [ f(xil6, H)
i=1
e ytilisation du théoréme de Bayes

m(6]x, H) o< p(x|6, H) w(0] H)
La constante de proportionalité

{ / p(x[6, H)7r(9|H)d0}_l

ne dépend pas des paramétres.

m(x|H)
® on omettra H par la suite sauf si c’est important

Ha e
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® Vocabulaire : distribution a priori

m(0|H)

® Vocabulaire : distribution a posteriori

7(0]x, H)

® \ocabulaire ; vraisemblance

p(x|0, H)
vue comme une fonction de 6



hypothése et décision bayésienne

fonction de coiit

® CpyH, = Coo : colt d'accepter Hy alors que Hp est vraie.
® Cpy, H, = Cio : colt d'accepter Hy alors que Hy est vraie.

® Cp, 1y, = Cip : colt d'accepter Hy alors que H est vraie.

® CpoHy, = Co1 : colt d'accepter Hy alors que Hj est vraie.



décision bayésienne
coiit attendu

I'espérance mathématique du colit entraine le colit attendu (expected cost)

# = E{ colit }

X = E{ coit |Ho} 7(Ho) + E{ cotit |H1} m(H1)



régions d'acceptation
e Ay : région d'acceptation de Hyp

e A; : région d'accepation de H;

définition de la décision bayésienne

[I faut sélectionner Ag et A; de telle sorte 3 minimiser Z.



On décide Hy lorsque

)\(X) _ ;(X|H0)

(x[Fh) ~

décision bayésienne

et on décide H; lorsque \(x) < k

7(H1)(Co1 — C11) a

7(Ho)(Cro — Coo) g



P{Ho} = P{Hy} = 0.5.

Hl'

L F(x|Hy) =

® Cop=Cpo=1let Coop=C11=0

Exemple

illustratif de la décision bayésienne

® On suppose a priori que les deux hypothéses sont d'égale probabilité



le rapport de vraisemblance
1 1 1 1 3
A(x) = 5 &P <§x2 - §x2) =S exp (—g)

1
k=2 "

Le niveau

NI= N[ =
— |~

Si 1/2exp(—3/8x2) < 1 on privilégie Hy



théoréme
variable aléatoire gaussienne avec a priori gaussien
Thm.
® X ~ 4 (0,0%) ot 02 est connu
® moyenne 6 inconnue mais supposée distribuée a priori w(0) ~ A (10, 03).

. x/o® + o/ 03

La distribution a posteriori sera alors m(0|x) ~ A (u1,0%) avec
1/02+1/0 "’

-2 _ -2 -2
01" =0 “+o0g



commentaire

e La distribution initiale influence le résultat par rapport a I'échantillon
® | a moyenne est une pondération entre |'échantillon x et la valeur a priori de la
moyenne fig.

® | a variance de la distribution a posteriori et la moyenne harmonique de la
variance apriori o et de celle de la variance de la distributin de I'échantillon o2

1

1
2
90

2 _
01 = T
o2

1, . <t e e L
e | 'échantillon x remet a jour notre croyance initiale en # donné sous la forme de

7(0) pour constituer un nouveau degré de croyance en 6 donné sous la forme
de la distribution a posteriori m(0|x) pour le paramétre 6.
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la vraisemblance

a priori

a posteriori

m(0]x)

démonstration

p(x0) oc exp[—(x — 0)?/(20%)]

m(0) o< exp[— (0 — 15)/(203)]

exp{_<x—e)2 ) (9—uo)2}

2072 203
1
oxp { ~30°/0% +1/08) + 00x/0% + o)}

exp {—%92/05 +9u1/05}

exp{—1/2(0 — y11)?/03} CQFD

=} 5



corollaire

corollaire
Soit x = (x1, X2,

., Xn) un échantillon de n variables aléatoires indépendantes
Xi ~ A (0,0%) ol 02 est connu et avec la distribution a priori 7(0) ~ A (10, 03).
La distribution a posteriori est alors (0|x) ~ A (un, 02) avec

nx/o® + po/ g 2 2, -2
= , o, =noc “+o0
" nfo2+1/a3)/ " 0
et X =1/n)_ x; la moyenne d'échantillon.
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démonstration

démonstration

p(x|0) o exp [— Z(Xi - 9)2/(202)]

i=1
o exp[—1/26°(n/o?) + 0%(n/c?)]
o exp[—1/2(x — 0)%(n/o?)] CQFD

Qe



théoréme

Encore un théoréme...
gaussienne avec moyenne connue, mais variance inconnue
Soit x = (x1, X2,

., Xn) un échantillon de n variables aléatoires indépendantes
Xi ~ A (,0), avec la moyenne connue mais la variance § = o
considére |'apriori

2
alors la distribution a posteriori de

inconnue. On
2 2
VOGO/Q ~ X(Vo)

2 2 2
(100G +57)/0 ~ X{yo+n)
avec la variable

Qe
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lemme utile
lors d'intégrale de fonctions gamma
lemme

/ e Mg mdy = (m—2)I/A" T (A>0,m>1)
0

La démonstration peut étre obtenue par intégration par partie itérée aprés la
substitution x = A/f et dx = —Ad6/6°.



démonstration
Rappel de la distribution du X{(2m)

eXp—1/2x m—1/(2m(m _ 1) )
Si X = 1poo/6 ~

vo=2m) alors

0
eXp VOUO ((UOO'O 1/00'0/[22110( Vo — 1)|]>
0~

m(0) =

x exp{ VOUO} 30—
20

car dx = —1po2df /6>,




La vraisemblance de |'échantillon est

i=1

n
p(x/6)  exp {— S 4 - u)"‘/(ze)} x e g/
Distribution a posteriori

7(0]x) o o—(n003+5%)/(20) g—1/2(n+10)—1

CQFD




deux échantillons gaussiens
théoreme
Si

Xii ~ e/V(Ql,O'%) et ij ~ /(92,0’%)

® x1 = (x11,x12, - - ., X1n; ) un échantillon avec Xy; ~ A/ (01,0%)

® xp = (X21,X22,...,X2p,) un échantillon avec Xp; ~ JV(Hz,a%).
e |a distribution a priori pour 6; et 6> est uniforme sur | — oco; +00[
alors la distribution a posteriori de 6 £ 61 — 6, est donnée par

2 2
_ _ O (o
(5NJV<X1—X2, L 2

%, _)
ni n»
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deux distributions gaussiennes

Xii NJV(91,¢)) et ij NJV(92,¢)
XliNJV(91,¢), i = 17"‘7”1

X2J'NJV(02,¢),_].: 1,...,n2
distributions a priori pour 61 et 65 uniforme sur | — oo; +o00[
distribution uniforme pour log ¢ sur | — co; +o0]

alors
vs? 5
b ~AX@w)
avec
n;
2 Z AT
ViS; = (X,'J' — X,') s V1 = n; — 1
Jj=1
vs® = stlz + 1/35227 V=uv1+12

[m] [ =



esquisse de la démontration
® en multipliant les vraisemblances par les a priori, cela conduit a la distribution a
posteriori

7T(0]_, 023 X1, X2)
oc M AMFNF2) eyl Lny(xq — 01)2 + ma(R1 — 02)% + 1157 + 1253}/ (20)]

® Pour obtenir la distribution a posteriori de ¢ il faut intégrer |'expression
précédente par rapport a 07 et 6, (distribution mariginale) et cela donne
m(p|x1,%2) x e

et on découvre le Xfyﬁw)

—vs2/(2¢) ¢—1/2u—1
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B 1 1
p(X) - (271')”/2‘C|1/2 exp

—5x=n)
® vecteur de moyenne

distribution normale multidimensionnelle

TC_I(X—M))

E[Xi]
'LL fry

= E[X]
E[Xn]

® matrice de covariance (matrice semi—définie positive), appelée également
parfois matrice des variances et matrice de covariance
-
C=E[(X - E[X]) (X - E[X]) ']

® en composantes C = [0;] avec ojj = E[(x; — ui)(xj — /)]

C est notée également X ou I et Kxx selon les auteurs et les sources.
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distribution normale multidimensionnelle

Thm.
o x ~ (A, C)
® () ~ A (po, Co)

sous ces conditions la matrice A est connue (i.e. telle que E(x) = Af), le vecteur de
moyennes [ est oconnu et la matrice de covariance Cy est connue mais les vecteur
des paramétres 6 n'est pas connu, la distribution a posteriori s'écrit

m(0lx) = A (p1,01)
p 2 (GEHATCTTA) T (Gt + AT C )
G & (Gr+ATCciA)T
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esquisse de démonstration
p(x|0) o exp (—%(X—AQ)TC_I (x—Ae))

1
w0) o e (5010 GO~ o))

Alors 7(8]x) o< p(x|€) w(#). En éliminant les termes constants multiplicatifs on
arrive aprés quelques manipulations

1
m(0]x) o exp (—E[HT(Co‘l +ATCrA)0 - 207 (Cy o + ATc—lx)])

o exp (—%[(9 —m) (G +ATCTTA) (0 - Ml))

[m]

=
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distance de Mahalanobis

r est la distance de x a p

rP=(x—pu) C (x—p)
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