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densité de probabilité continue univariée
Soit X une variable aléatoire definie sur l’espace (Ω,F ,P) avec la fonction de
distribution cumulée

F (x) = P(X ≤ x)

définition
S’il existe une fonction f telle que

F (x) =

∫ x

−∞
f (y) dy

alors la fonction f est appelée la densité de probabilité (également appelée
la distribution). Elle satisfait l’égalité∫ +∞

−∞
f (y) dy = 1
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distribution uniforme

définition
La densité de probabilité uniforme (distribution uniforme) est définie par

f (x) =


1

b−a x ∈ [a, b]

0 x 6∈ [a, b]

Elle représente la possibilité qu’un nombre situé dans l’intervalle [a, b] puisse
apparaître comme valeur de la variable aléatoire X avec autant de chance qu’un
autre nombre de ce même intervalle.
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densité de probabilité uniforme
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Figure – la distribution uniforme avec a = 3 et b = 6
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la distribution normale (gaussienne,Laplace Gauss)
centrée à l’origine et de variance unité N (0, 1)

définition
La distribution normale de moyenne nulle et de variance unité notée N (0, 1) est
donnée par

f (x) =
1√
2π

e−
1
2 x

2

Un moyen pour s’en souvenir est de prendre le logarithme naturel et on obtient la
somme d’une constante et d’une forme quadratique négative standard −1

2x
2. Le

facteur devant l’exponentiel est obtenu pour forcer
∫ +∞
−∞ f (x) dx = 1.
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la distribution normale (gaussienne, Laplace-Gauss)
centrée à l’origine et de variance unité N (0, 1)
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Figure – la distribution normale de moyenne nulle et de variance unité N (0, 1)
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la distribution normale
non centrée et de variance quelconque

définition
La distribution normale de moyenne µ et de variance σ2 N (µ, σ2) est donnée par

f (x) =
1

σ
√
2π

e−
1
2( x−µ

σ )
2

Le centrage est autour de la moyenne µ = E[X ] =
∫ +∞
−∞ x f (x) dx et "l’épaisseur"

est proportionnelle à l’écart type σ.
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espérance mathématique

Soit une variable aléatoire continue X de densité de probabilité f et une fonction ψ
de la varibale aléatoire X dans les nombre réels R

ψ : X → R

L’espérance mathématique est définie par

E[ψ(X )] =

∫ +∞

−∞
ψ(x) f (x)dx
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moyenne

Soit une variable aléatoire continue X de densité de probabilité f . La moyenne µ est
l’espérance mathématique de la fonction identité ψ(X ) = X

définition

µ , E[X ] =

∫ +∞

−∞
x f (x)dx
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variance

Soit une variable aléatoire continue X de densité de probabilité f . La variance σ2

est l’espérance mathématique de la fonction ψ(X ) = (X − µ)2

définition

σ2 , E[(X − µ)2] =

∫ ∞
−∞

(x − µ)2 f (x) dx

Remarque : la définition E[(X − µ)2] est identique que X soit discrète ou X
continue. Ce qui change est son calcul, par série lorsque X est discrète et par une
intégrale lorsque X est continue.
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la distribution normale
non centrée et de variance quelconque N (σ, µ)
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Figure – La distribution normale de moyenne nulle variable à gauche pour µ = −1, 0, 1, 4 et
de moyenne nulle mais de variance σ2 variable, avec σ = 0.5, 1, 1.5

.
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la distribution exponentielle

définition
La distribution exponentielle est définie par

f (x) =

{
λ e−λx x ≥ 0
0 x < 0

Il est immédiat de vérifier que
∫ +∞
−∞ λe−λx = 1. De plus, la valeur à l’origine donne

le paramètre λ.
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la distribution exponentielle
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Figure – la distribution la distribution expoentielle de paramètre λ = 0.3.
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la distribution d’Erlang
continue de paramètres k ∈ N et λ ∈ R, λ > 0

définition
La distribution d’Erlang de paramètres k ∈ N et λ ≥ 0 est donnée par

f (x ; k, λ) ,
λk xk−1 e−λx

(k − 1) !
x , λ ≥ 0
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Remarques
intuitives, sans trop de rigueur...

1 En comparant les courbes, on constate que la distribution exponentielle est
monotone décroissante.

2 Les distributions d’Erlang ont une tendance à croître initialement pour
atteindre une valeur maximale et ensuite décroissent comme une exponentielle.

3 Il y a un ’combat’ entre le facteur de croissance xk−1 la croissance monomiale
et la décroissance exponentielle : pour de petite valeur de x le facteur xk−1,
croissance monomiale, l’emporte sur e−x , la décroissance exponentielle. Pour
de grande valeur de x , le facteur de décroissance exponentielle e−x l’emporte
sur la croissance monomiale xk−1.
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la fonction Γ(α)
la fonction gamma généralise la factorielle

définition
La fonction Γ(n) disrète est la fonction pour n ∈ N

Γ(n) , (n − 1) !

Pour une valeur α ∈ R, on a la définition

Γ(α) ,
∫ ∞

0
xα−1e−xdx α > 0
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la fonction Γ
propriétés

propriétés

Pour tout α > 0, α ∈ R
1
∫∞
0 xα−1 e−λx dx = Γ(α)

λα λ > 0
2 Γ(α + 1) = αΓ(α)

3 Γ(n) = (n − 1) ! n ∈ N
4 Γ

(1
2

)
=
√
π
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la distribution Γ (gamma)
C’est une autre façon de décrire un distribution du type de celle de Poisson où
s’interpose l’effet de la croissance de la fonction d’un facteur xα avec la
décroissance de e−x . L’exposant α évolue selon la fonction Γ.
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1

2
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4

5

Figure – Graphiques de xα−1 e−x pour α = 1, 2, 3, 4, 5
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la distribution gamma Γ(α, λ, x)

définition
α > 0, α ∈ R

f (x) = Γ(α, λ, x) =

{
λαxα−1e−λx

Γ(α) x > 0
0 x ≤ 0
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la distribution gamma Γ(α, λ, x)
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Figure – Représentation graphique de la densité de probabilité Γ(α, 1, x) pour les valeurs
α = 1, 2, 3, 4, 5. Remarque α = 1 correspond à la distribution exponentielle.
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cas particulier : la distribution du χ2

X ∼ χ2
ν ⇔ X ∼ Γ

(
α =

ν

2
, λ =

1
2

)
ν désigne les degrés de liberté (grosso modo le nombre de façons que possède le
hasard de perturber de manière indépendante le résultat de l’expérience). On
étudiera χ2

ν à la leçon 4.
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fonction d’une variable aléatoire
Y = h(X )

Soit X une variable aléatoire avec une densité de probabilité f et de fonction de
répartition F . On aimerait déterminer la densité de probabilité de Y = h(X ) où h
est une fonction réelle d’une variable réelle.

méthode recommendée
Il est commode de travailler avec la fonction de répartition

G (y) = P(Y ≤ y)

à partir de la fonction de répartition F (x) = P(X ≤ x). Ensuite on utilise

g(y) =
dG (y)

dy
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exemple d’une fonction de variable aléatoire
Y = e−X
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0.6

0.8

1.0

Figure – à gauche la densité de probabilité f (x) et à droite la fonction de répartition F (x)
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exemple d’une fonction de variable aléatoire
Y = e−X

Soit X une variable aléatoire continue de densité de probabilité

f (x) =

{
x e−x x > 0

0

la fonction de répartion correspondante est

F (x) =
(
1− (x + 1)e−x

)
Etudions

Y = e−X
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exemple d’une fonction de variable aléatoire
Y = e−X

Soit G la fonction de répartition de Y .

G (y) = P(Y ≤ y) = P(e−X ≤ y) = P(−X ≤ ln y)

= P(X ≥ − ln y) = 1− P(X < − ln y)

= 1− F (− ln y)

en substituant x = − ln y cela donne

G (y) = y(1− ln y)
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exemple d’une fonction de variable aléatoire
Y = e−X

On obtient g par dérivation

g(y) =
dG

dy
=

{
− ln y 0 < y < 1
0 sinon
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exemple d’une fonction de variable aléatoire
Y = e−X
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Figure – à gauche la densité de probabilité g(y) et à droite la fonction de répartition F (y)

28 / 49



Eléments de
Statistiques

EE-209

Dr. Ph.
Müllhaupt

densité de
probabilité
univariée
distribution
uniforme

distribution
normale

espérance
mathéma-
tique
moyenne

variance

la
distribution
exponentielle

la
distribution Γ

la distribution du
χ2

densité de
probabilité
jointe

marginale

somme de
variables
aléatoires

fonction
génératrice

produit de
convolution

fonction monotone d’une variable aléatoire
croissante ou décrossante

Le résultat est général quel que soit le fonction monotone de h(x) avec Y = h(X ).

théorème
Soit X une variable aléatoire continue de densité de probabilité f (x) et Y une
variable aléatoire continue de densité de probabilité g(y). Soit également une
fonction Y = h(X ) monotone dérivable (et donc continue) qui relie les deux
variables aléatoires.On a le résultat

g(y) = f (x) ·
∣∣∣∣dxdy

∣∣∣∣
x = h(y) y = h−1(x) dx =

dh

dy
dy
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densité de répartition jointe

Soit un couple de variables aléatoires X et Y .
A tout évènement exprimé par X et Y correspond une région A du plan. On a

P(X ,Y ) = P(A)

hypothèse
L’hypothèse est que P(A) puisse se représenter par une intégrale double

P(A) ,
∫ ∫

h(x , y) dx dy

alors la fonction h(x , y) est appelée la densité de probabilité jointe.
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fonction de répartition jointe
Soit l’évènement

{ω ∈ Ω|X (ω) ≤ x} ∩ {ω ∈ Ω|Y (ω) ≤ y}

que l’on peut écrire avec un "abus de notation"

(X ≤ x) ∩ (Y ≤ y)

définition
S’il existe une fonction H(x , y) telle que

P(X ≤ x) ∩ P(Y ≤ y) , H(x , y)

alors H(x , y) est appelée la fonction de répartition jointe.
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densité marginale

définition
Soit h(x , y) la fonction de densité jointe des deux variables aléatoires X et Y . Pour
une valeur de x donnée, on peut définir la fonction de densité de
probabilité marginale

fX (x) ,
∫ +∞

−∞
h(x , y)dy

de même la fonction de densité marginale selon y

fY (y) ,
∫ +∞

−∞
h(x , y)dx
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somme de variables aléatoires

Soit la somme de deux variables aléatoires continues réelles

Z = X + Y

et une fonction φ(x , y) quelconque, on a

définition

E[φ(x , y)] ,
∫ +∞

−∞

∫ +∞

−∞
φ(x , y) h(x , y) dx dy
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en particulier pour φ(x , y) = x + y

E[Z ] =

∫ +∞

−∞

∫ +∞

−∞
(x + y) h(x , y) dxdy

=

∫ +∞

−∞
x

(∫ +∞

−∞
h(x , y) dy

)
dy +

∫ +∞

−∞
y

(∫ +∞

−∞
h(x , y) dx

)
dx

=

∫ +∞

−∞
x fX (x) dx +

∫ +∞

−∞
y fY (y) dy

= E(X ) + E(Y )
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corrélation
variables aléatoires X et Y continues

σXY , E[(X − µX ) (Y − µY )] =

∫ +∞

−∞

∫ +∞

−∞
(x − µx) (y − µy ) h(x , y) dx dy
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corrélation
variables aléatoires X et Y discrètes

σXY , E[(X − µX ) (Y − µY )] =
+∞∑
k=0

+∞∑
l=0

(k − µX ) (l − µY ) p(k , l)
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variable aléatoire discrète complexe

En introduisant une variable aléatoire discrète complexe

Z = X + j Y

avec j =
√
−1 la variable imaginaire et X et Y des variables aléatoires discrètes à

valeurs dans les entiers naturels N on peut définir

E[Z ] , E[X ] + j E[Y ]

si, et seulement si, E[X ] ∈ R et E[Y ] ∈ R sont définis.
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fonction génératrice
En introduisant le paramètre s ∈ C, |s| < 1, on a comme cas particulier de variable
aléatoire discrète complexe

Z = sX

définition
Soit une seule variable aléatoire discrète X qui donne des nombres naturels X ∈ N.
La fonction génératrice est la fonction de s ∈ C et |s| ≤ 1 qui associe à ce nombre
(le paramètre s ∈ C)) l’espérance mathématique de la variable aléatoire discrète
complexe Z = sX

GX (s) , E[sX ] =
∞∑
k=0

sk pk ∀s ∈ C, |s| ≤ 1

A l’intérieur du cercle unité, la série converge uniformément et de manière absolue
pour s dans le cercle unité car

∑∞
k=1 pk |sk | ≤

∑∞
k=1 pk = 1. 38 / 49
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produit de convolution
entre distributions discrètes

définition

h(k) , f ∗ g ,
k∑

l=0

f (l)g(k − l)
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théorème
Soit Z = X + Y la somme de deux variables aléatoires discrètes avec
• f (k) la densité de probabilité discrète de X

• g(k) la densité de probabilité discrète de Y

• h(k) la densité de probabilité discrète de Z

on alors les deux résultats suivants

h = f ∗ g

GZ (s) = GX+Y (s) = GX (s)GY (s)
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produit de convolution
entre densité de probabilité (distributions continues)

Variables aléatoires X et Y et soit Z la somme des variables aléatoires

Z = X + Y

théorème de convolution

fZ (z) =

∫ +∞

−∞
fX (x) fY (z − x) dx =

∫ +∞

−∞
fY (y) fX (z − y) dy

On note de manière compact cette formule par le produit de convolution

fZ = fX ∗ fY
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fonction caractéristique d’une variable aléatoire
La définition de l’espérance mathématique peut-être étendue au cas où la variable
X est une variable aléatoire complexe

X = X1 + j X2

où X1 et X2 sont des variables aléatoires rélles. On a

E[X ] = E[X1] + jE[X2]

définition
La fonction caractéristique d’une variable aléatoire X avec une densité de
probabilité fX est définie par

φX (u) , E[e jux ] =

∫ +∞

−∞
e jux fX (x)dx

C’est la transformée de Fourier de la densité de probabilité. 42 / 49
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théroème des sommes de variables aléatoires

X = X1 + X2

fX (x) =

∫ τ

−∞
fX1(τ)fX2(x − τ)dτ

théorème

ΦX (u) = ΦX1(u) ΦX2(u)

43 / 49



Eléments de
Statistiques

EE-209

Dr. Ph.
Müllhaupt

densité de
probabilité
univariée
distribution
uniforme

distribution
normale

espérance
mathéma-
tique
moyenne

variance

la
distribution
exponentielle

la
distribution Γ

la distribution du
χ2

densité de
probabilité
jointe

marginale

somme de
variables
aléatoires

fonction
génératrice

produit de
convolution

convolution
illustration

10 20

0

0.05

20

0

0.02

0.04

0.06

0 20 40

0

0.02

0.04

0 50

0

0.02

44 / 49



Eléments de
Statistiques

EE-209

Dr. Ph.
Müllhaupt

densité de
probabilité
univariée
distribution
uniforme

distribution
normale

espérance
mathéma-
tique
moyenne

variance

la
distribution
exponentielle

la
distribution Γ

la distribution du
χ2

densité de
probabilité
jointe

marginale

somme de
variables
aléatoires

fonction
génératrice

produit de
convolution

convolution
illustration

0 10 20 30 40 50

0

0.02

0.04

0.06

0.08

45 / 49



Eléments de
Statistiques

EE-209

Dr. Ph.
Müllhaupt

densité de
probabilité
univariée
distribution
uniforme

distribution
normale

espérance
mathéma-
tique
moyenne

variance

la
distribution
exponentielle

la
distribution Γ

la distribution du
χ2

densité de
probabilité
jointe

marginale

somme de
variables
aléatoires

fonction
génératrice

produit de
convolution

approximation de la distribution discrète binomiale

Théorème de De Moivre - Laplace
Si la probabilité de n expériences de Bernouilli p est constante, la probabilité d’avoir
k succès parmi n durant ces expériences tend vers une distribution normale, plus
précisément

√
npqBin(n, p) :

1
2π

e−
1
2 x

2 → 1

lorsque n→∞ et de manière uniforme pour tout k pour lequel la variable x est
contenue dans un certain intervalle fini. Ici la correspondance

x =
k − np√

nkq

Rappel : q = 1− p

46 / 49



Eléments de
Statistiques

EE-209

Dr. Ph.
Müllhaupt

densité de
probabilité
univariée
distribution
uniforme

distribution
normale

espérance
mathéma-
tique
moyenne

variance

la
distribution
exponentielle

la
distribution Γ

la distribution du
χ2

densité de
probabilité
jointe

marginale

somme de
variables
aléatoires

fonction
génératrice

produit de
convolution

approximation de la distribution discrète binomiale
Bin(n, p)

Soit la distribution binomiale Bin(n, p) donnée par

Pn(k) =

(
n
k

)
pk(1− p)n−k k = 0, 1, . . . , n

On a l’approximation lorsque n est grand par

Pn(k) ∼ 1√
2πnp(1− p)

e
− 1

2

(
k−np√
np(1−p)

)2
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Figure – Illustration du théorème de Laplace–de Moivre pour n = 40 et p = 0.3.
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Mathematica :

fct = 1/Sqrt[ 2 Pi n p (1 - p)] Exp[-1/ 2 ((k - n p)
/Sqrt[n p (1 - p)])^2] /. {n -> 40, p -> 0.3};

pp1 = Plot[fct, {k, 0, 40}, PlotRange -> {0, 0.14},
PlotStyle -> Black];

pp2 = PDF[BinomialDistribution[40, 0.3], #] & /@
Table[k, {k, 1, 40}] //
ListPlot[#, PlotStyle -> Black] &;

Show[pp1,pp2]
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