
Axiomes de la théorie des probabilités

Quels que soient les évènements E et E ′ de l’espace de tous les résultats
possibles Ω:

• 0 ≤ P (E) ≤ 1 et P (Ω) = 1

• E ∩ E ′ = ∅ ⇒ P (E ∪ E ′) = P (E) + P (E ′)

• E ⊂ E ′ ⇒ P (E) ≤ P (E ′)

Variance, covariance, linéarité de l’espérance
mathématique

• Var(X) = E[(X − E[X])2] = E[X2]− E[X]2

• σX : std(X) =
√

Var(X)

• cov(X,Y ) = E[(X − E[X])(Y − E[Y ])] = E[XY ]− E[X]E[Y ]

• corr(X,Y ) = cov(X,Y )/(σX σY )

• [ax+ b] = a[x] + b

• Var(ax+ b) = a2 Var(x)

• std(ax+ b) = |a| std(x)

• cov(ax+ b, cy + d) = a x cov(x, y)

• corr(ax+ b, cy + d) = corr(x, y)

• x, y indép. ⇒ cov(x, y) = 0

• Var(x+ y) = Var(x) + 2cov(x, y) + Var(y)

• x, y indép. ⇒ Var(x+ y) = Var(x) + Var(y)

• ∀x, ∀y, |corr(x, y)| ≤ 1

Si X prend des valeurs dans Rd (cas multidimensionnel), la matrice de
covariance s’écrit

Cov(X) = E[(X − E(X))(X − E(X))T ]

1



Fonction de répartition et densité de probabilité

FX est la fonction de répartition.
pX est la densité de probabilité ou la distribution de probabilité.

• FX(x) , P (X ≤ x)

• pX satisfait FX(x) =
∫ x
−∞ pX(ξ)dξ

• Si Fx est dérivable au point x (la dérivée est définie en x) alors
dFx
dx = pX(x)

Espérance mathématique d’une fonction d’une vari-
able aléatoire

E[h(X)] =

∫
h(ξ) pX(ξ) dξ

Quantiles d’une variable aléatoire continue

Si FX est inversible (i.e. F−1
X existe) alore le quantile de niveau α est

défini par
qα , F−1

X (α)

Distribution jointe d’une paire de variables
aléatoires continues

• Fonction de répartition jointe F (x, y) , P (X ≤ x, Y ≤ y)

• Densité de probabilité jointe: f tel que

F (x, y) =

∫ x

−∞

∫ y

−∞
f(ξ, η)dξ dη

• Densité de probabilité conditionnelle: pY |X(y|x) , pX,Y (x,y)
pX(x)

• Loi de la probabilité totale: pX(x) =
∫
pX,Y (x, y)dy

• Règle de Bayes : pY |X(y|x) =
pX|Y (x|y)pY (y)

pX(x)

• Espérance conditionnelle: E[X|Y = y] =
∫
xpX|Y (x|y)dx

• E[X|Y ] =
∫
xpX|Y (x|Y )dx

• Loi de l’espérance mathématique totale: E[[E|Y ]] = E[X]
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Indépendance

Les variables aléatoires continues X et Y sont indépendantes si et seule-
ment si n’importe laquelle des conditions énumérées suivantes est satis-
faite:

1. ∀(x, y) ∈ X × Y, pX,Y (x, y) = pX(x) pY (y)

2. ∀(x, y) ∈ X × Y, tels que pY (y) > 0, pX|Y (x|y) = pX(x)

3. ∀f, g, E[f(X) g(X)] = E[f(X)]E[g(X)]

Une collectin de variables aléatoires X1, . . ., Xn sont indépendantes, si,
et seulement si, une des trois conditions énumérées suivantes est satisfaite
(notation: X−i , (X1, . . . , Xi−1, Xi+1, . . . , Xn))

1. ∀x ∈ Rn, pX1,...,Xn(x1, . . . , xn) = pX1
(x1) · · · pXn(xn)

2. ∀x ∈ Rn tels que pX−i(x−i) > 0, ∀i, pXi|X−i(xi|x−i) = pXi(xi)

3. ∀f1, . . . , fn, E[f(X1) · · · fn(Xn)] =
∏n
i=1 E[fi(X)]

Les mêmes propriétés sont satisfaites pour les variables aléatoires
discrètes une fois que l’on remplace les densités de probabilités continues
par les distributions de probabilité discrète.

Somme de variables aléatoires et convolution des
densités

Si Z = X+Y avec X, Y des variables alétoires continues (resp. discrètes)
indépendantes

pZ(z) = (pX ∗ pY )(z) ,
∫ +∞

−∞
pX(z − y)pY (y)dy

PZ(z) = (PX ∗ PY )(z) ,
+∞∑
y=−∞

PX(x− y)PY (y)
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Décalage, mise à l’échelle et transformation de vari-
ables aléatoires

• Si Y = aX + b alors pY (y) = 1
apX

(
Y−b
a

)
• Si Y = f(X) avec f strictement monotone alors

pY (y) = pX(f−1(y)) |(f−1)
′
(y)|

• Si Z ∼ N (0, 1) alors X2 ∼ χ2
(1)

Somme de variables aléatoires indépendantes et
identiquement distribuées (i.i.d.)

Si Xi ∼iid ... alors
∑
iXi ∼ ...

Ber(p) Bin(n, p)
Pois(θ) Pois(n θ)
N (µ, σ2) N (nµ, n σ2)

Exponentielle E(λ) Γ(n, λ)
Γ(r, λ) Γ(nr, λ)
χ2

(1) χ2
(n)

Pour Xi ∼ Γ(ri, λ) indép.,
∑n
i=1Xi ∼ Γ(

∑n
i=1 ri, λ)

Stabilité de la famille Gaussienne: Si X1 et X2 sont indép. et Xi ∼
N (µi, σ

2
i ), alors a1X1 + a2X2 ∼ N (a1µ1 + a2µ2, a

2
1σ

2
1 + a2

2σ
2
2)

4



Fonctions génératrices des moments

MX(u) = E[euX ] =

∫ +∞

−∞
eux f(x) dx

où u ∈ R et f est la densité de probabilité (la distribution de probabilité).

propriété formule

linéarité a1 f1(x) + a2 f2(x)↔ a1M1(u) + a1M2(u)

décalage en x f(x− x0)↔ eux0 M(u)

décalage en u e−u0x f(x)↔M(u− u0)

mise en échelle en x f(a x)↔ 1
|a|M(u)

renversement f(−x)↔M(−u)

dérivée par rapport à x df(x)
dx ↔ −uM(u)

dérivée par rapport à u x f(x)↔ dM(u)
du

intégration
∫ t
−∞ f(ξ) dξ ↔ − 1

uM(u)

convolution f1(x) ∗ f2(x)↔M1(u) ·M2(u)
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Fonctions caractéristiques

fX(x) ↔F φX(u)

φX(u) , E[e+jux] =

∫ +∞

−∞
fX(x) ejux dx

fX(x) ,
1

2π

∫ +∞

−∞
φ(u) e−jux du

propriété correspondance

linéarité a1f1(x) + a2f2(x)↔ a1 φ1(u) + a2 φ2(u)

décalage en x f(x− x0)↔ ejux0 φ(u)

décalage en u e−ju0x f(x)↔ φ(u− u0)

mise en échelle en x f(a x)↔ 1
|a|φ

(
u
a

)
renversement f(−x)↔ φ(−u)

dualité φ(t)↔ 2π f(u)

dérivée selon x df
dx ↔ −ju φ(u)

dérivée selon u j x f(x)↔ dφ(u)
du

intégration
∫ x
−∞ f(ξ) dξ ↔ πφ(0) δ(u)− 1

juφ(u)

convolution f1 ∗ f2 ↔ φ1(u) · φ2(u)

multiplication f1(x) · f2(x)↔ 1
2π φ1(u) ∗ φ2(u)

Parseval
∫ +∞
−∞ f1(x) f2(x) dx = 1

2π

∫ +∞
−∞ X1(u)X2(−u) du
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Estimation

• Biais(θ̂, θ) , E[θ̂]− θ et Var(θ̂) , E[(θ̂ − E[θ̂])2]

• Erreur quadratique moyenne: MSE(θ̂, θ) , E[(θ̂ − θ)2] = Var(θ̂) +

Bias(θ̂, θ)2

• Méthode du maximum de vraisemblance (MLE): θ̂MLE

θ̂MLE = arg max
θ
l(θ)

avec l(θ) ,
∑n
i=1 log p(xi, θ)

MLE pour le modèle gaussien

• µ̂MLE = x̄

• lorsque µ est connu, σ̂MLE = 1
n

∑n
i=1(xi − µ)2

• lorsque µ est inconnu, θ̂MLE = 1
n

∑n
i=1(xi − x̄)2 = x2 − x̄2

• variance d’échantillon: s2 = 1
n−1

∑n
i=1(xi − x̄)2

Lorsque les données sont distribuées de manière normale (gaussienne),
alors :

• µ̂MLE ∼ N
(
µ, σ

2

n

)
• lorsque µ est connu, n σ̂2

MLE/σ
2 ∼ χ2

(n)

• lorsque µ est inconnu, n σ̂2
MLE/σ

2 = (n− 1)s2/σ2 ∼ χ2
(n−1)
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Intervalles de confiance

Pour |zα| = z1−α le quantile de niveau 1− α d’une distribution normale
N (0, 1) et τα , t(1−α),(n−1), le quantile de niveau 1−α d’une distribution
de Student à n − 1 degrés de liberté, les intervalles de confiance ont la
forme suivante:

• Gaussienne: [
X̄ − |zα/2|

σ√
n

; X̄ + |zα/2|
σ√
n

]
• Student: [

X̄ − τα/2
S√
n

; X̄ + τα/2
S√
n

]
• Asymptotique: [

X̄ − |zα/2|
S√
n

; X̄ + |zα/2|
S√
n

]

Tests d’hypothèses selon Neyman-Pearson

H0: hypothèse nulle est une présuposition tentative concernant un
paramètre du modèle. H1: Une hypothèse alternative concernant ce
paramètre.

• H0 : µ ≥ µ0 vs H1 : µ < µ0 (test à une queue, la queue inférieur,
de gauche)

• H0 : µ ≤ µ0 vs H1 : µ > µ0 (test à une queue, la queue supérieure,
de droite)

• H0 : µ = µ0 vs H1 : µ 6= µ0 (test à deux queues)

Erreurs de type I et II:

Erreur de type I rejeter H0 alors que H0 est vraie
Erreur de type II ne pas rejeter H0 alors que H0 est fausse

P (erreur de type I) = α
P (erreur de type II) = β

Puissance: c’est la probabilité de rejeter H0 lorsque H1 est vraie. C’est
égal à 1− β.
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Statistiques de test pour les tests classiques

• Test gaussien exact pour µ:

Xi ∼iid N (µ, σ2) et σ2 connu T ,
X̄ − µ0

σ/
√
n
∼ N (0, 1)

• Test de Student exact sur µ

Xi ∼iid N (µ, σ2) et σ2 inconnu T ,
X̄ − µ0

S/
√
n
∼ t(n−1)

• Test asymptotique gaussien sur µ = E[Xi]:

Xi ∼iid P, et E[Xb
i ] <∞ : T ,

X̄ − µ0

σ̂/
√
n
→ N (0, 1)

• Test du χ2 sur un paramètre σ2 :

Xi ∼iid N (µ, σ2) et µ inconnu T , (n− 1)
S2

σ2
0

∼ χ2
(n−1)

• Paramètre estimé α̂ fonction linéaire des valeurs observées yi, . . .,
ŷn (donc gaussiennes). Variance connue:

α̂ = a1y1 + a2y2 + . . .+ anyn

Var(α̂) =
(∑

a2
i

)
Var(Yi) =

∑
a2
iσ

2

Z ,
α̂− α√
σ2
∑
a2
i

∼ N (0, 1)

• Variance inconnue: s2 , 1
n−q

∑n
i=1(yi − µ̂i)2

T ,
α̂− α√
s2
∑
a2
i

∼ t(n−q)
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Modèle à deux échantillons

•

s2 =
(n1 − 1)s2

1 + (n2 − 1)s2
2

(n1 − 1) + (n2 − 1)

Ȳ1 ∼ N
(
µ1,

1

n1
σ2

)
Ȳ2 ∼ N

(
µ2,

1

n2
σ2

)
Ȳ1 et Ȳ2 sont indépendants ⇒

Ȳ2 − Ȳ1 ∼ N
(
µ2 − µ1, σ

2

(
1

n1
+

1

n2

))

T ,
β̂ − β√

s2
(

1
n1

+ 1
n2

) ∼ t(n−2)
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Régression linéaire

• inférence sur β̂

β̂ =
σxy
σxx

=

∑
(xi − x̄)yi
σxx

=
∑

aiyi

avec ai les constantes

ai = (xi − x̄)/σxx i = 1, 2, . . . , n

T ,
β̂ − β√
s2
∑
a2
i

∼ t(n−2)

• inférence sur E[y] Pour toute valeur de x, la valeur attendue
(espérence mathématique) de Y associée est y = α + βx, avec
l’estimateur MLE

ŷ = α̂+ β̂x

comme α̂ = ȳ + β̂x̄

µ̂ = ȳ + β̂(x− x̄)

=
1

n

∑
yi + (x− x̄)

∑
aiyi

=
∑[

1

n
+ (x− x̄)ai

]
yi

µ̂ ∼ N (µ, σ2
∑

(1/n− (x− x̄)2/σxx)

T ′ ,
µ̂− µ√

s2
(

1
n + (x−x̄)2

σxx

) ∼ t(n−2)

T ′′ ,
α̂− α√

s2
(

1
n + x̄2

σxx

) ∼ t(n−2)
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Valeurs critiques pour les test classiques

Les valeurs critiques tc au niveau de signification (NS) α (ou de manière
équivalente au niveau de confiance 1−α) : Tests exacts et asymptotiques
avec zα le quantile de niveau α d’une distribution normale N (0, 1)

• queue inférieure (de gauche): tc = zα

• queue supérieure (de droite): tc = z1−α = |zα|

• deux queues: tc = z1−α/2 = |zα/2|

Pour les tests de Student: avec t(n−1),α le quantile de niveau α de la
distribution de Student t(n−1):

• queue inférieure: tc = −τα , t(n−1),α

• queue supérieure: tc = τα , t(n−1),1−α = |t(n−1),α/2|

Pour les tests du χ2, avec χ2
(n−1),α le quantile de niveau α d’une distri-

bution χ2
(n−1):

• queue inférieure: tc = χ2
(n−1),2

• queue supérieure: tc = χ2
(n−1),1−α

• deux queues: requiert deux seuils, la région critique est]
−∞ ; χ2

(n−1),α/2

]
∪
[
χ2

(n−1),1−α/2 ; +∞
[

Tests: règle pour le rejet et région critique C

Soit tobs la valeur de la statistique observée

• queue inférieure: rejeter H0 lorsque tobs ∈ C ,]−∞ ; tc]

• queue supérieure: rejeter H0 lorsque tobs ∈ C , [tc ; +∞[

• deux queues: rejeter H0 lorsque tobs ∈ C ,]−∞ ; −tc] ∪ [tc ; +∞[
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Tests: p-valeur pobs

Soit tobs la valeur observée de la statistique, et P0 la probabilité sous H0,
la p-valeur pobs est

• queue inférieure: pobs = P0(T ≤ tobs)

• queue supérieure: pobs = P0(T ≥ tobs)

• deux queues: pobs = P0(|T | ≥ |tobs|)

Tests: puissance

Soit P1 la probabilité sous H1. La puissance est

• queue inférieure: 1− β = P1(T ≤ tc)

• queue supérieure: 1− β = P1(T ≥ tc)

• deux queues: 1− β = P1(|T | ≥ tc)

Concepts bayésiens et principes

Soit un échantillon X = {x1, x2, . . . , xn}

• distribution a priori: π(θ)

• vraisemblance: p(X|θ) =
∏n
i=1 p(xi|θ)

• distribution a posteriori: π(θ|X = p(X|θ)π(θ)
p(X ) avec

p(X ) =

∫
p(X|θ)π(θ) dθ

• la moyenne a posteriori (posterior mean PM)

θPM = E[θ|X ] =

∫
θ π(θ|X )dθ

• le maximum a posteriori

θMAP = arg maxπ(θ|X ) = arg max
θ
l(θ) + log π(θ)
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Variables aléatoires de Bernouilli, binomiale et
multinomiale

• Distribution de Bernouilli: X ∼ Ber(p)

P (X = x) = px(1− p)1−x pour x = 0.1

espérance E[X] = p
variance Var(X) = p(1− p)

• Distribution Binomiale: distribution de sommes de n variables
aléatoires indépendantes de Bernouilli: N ∼ Bin(n, p)

P (N = x) =

(
n
x

)
px(1− p)n−x pour x = 1, . . . , n

Note

(
n
x

)
= n!

x!(n−x)!

espérance E[X] = np
variance Var(X) = np(1− p)

• Distribution multinomiale(
n

k1 k2 . . . km

)
,

n!

k1!k2! · · · km!

P (k1, k2, . . . , km) =
(
k1 k2 . . . km

)
pk11 p

k2
2 · · · pkmm

Combinatoire

• loi multinomiale (cf. ci-dessus) — tirage avec remise

• loi hypergéométrique — tirage sans remise

P (Ak) =

(
r
k

)(
N − r
n− k

)
(
N
n

) k = 0, 1, 2, . . . ,min(r, n)
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Disrtributions courantes

Distribution uniforme: X ∼ U(a, b)
espérance µ = E[X] = a+b

2

variance Var(X) = (b−a)2

12

f(x) =

{
1
b−a a ≤ x ≤ b
0 sinon

F (x) =


0 x < a
x−a
b−a a ≤ x ≤ b
1 x > b

Distribution exponentielle: X ∼ E(λ)
espérance µ = E[X] = 1

λ
variance Var(X) = 1

λ2

f(x) = λ e−λx1{x≥0} F (x) = (1− e−λx) 1{x≥0}

Distribution Gamma: X ∼ Γ(r, λ)
espérance µ = E[X] = r

λ
variance Var(X) = r

λ2

f(x) =
λr

Γ(r)
xr−1e−λx1{x≥0}

F (x) pas d’expression mathématique simple

Distribution du chi carré: X ∼ χ2
(ν) équivalent à Γ(ν/2, 1/2)

espérance µ = E[X] = ν
variance Var(X) = 2ν

f(x) =
2−ν/2

Γ(ν/2)
xν/2−1e−

1
2x1{x≥0}

Distribution de Student: T ∼ t(ν)

espérance µ = E[T ] = 0 si ν > 1, n’existe pas si ν = 0
variance Var(T ) = ν

ν+2 si ν > 2 sinon +∞

f(x) = c(1 +
t2

ν
)−

n+1
2 avec c =

Γ(n+1
2 )

√
nΓ(1/2)Γ(ν/2)
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Distribution gaussienne, (distribution normale)

à une dimension: X ∼ N (µ, σ2)
espérance µ = E[X] = µ
variance var(X) = σ2

f(x) =
1√

2πσ2
exp

(
− 1

2σ2
(x− µ)2

)
F (x) pas de forme fermée simple

Normale réduite: Z ∼ N (0, 1) avec Z = X−µ
σ

multivariable: X ∼ N (µ,Σ) X = (X1, . . . , Xd)

pX(x)− (2π)−d/2|Σ|−1/2 exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
EX = µ Σij = E[(Xi − EXi)(Xj − EXj)]

distance de Mahalanobis : r

r2 = (x− µ)TΣ−1(x− µ)

Distribution géométrique

Variable aléatoire géométrique : Une variable aléatoire géométrique
correspond au nombre d’essai de Bernouilli nécessaires avant une
première réussite.

Distribution géométrique :
X ∼ Geo(p) avec p la probabilité de réussite

P (X = x) = p(1− p)x−1 pour x = 1, 2, 3, . . .

espérance µ = E[X] = 1
p

variance Var(X) = 1−p
p2
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Distribution de Poisson

X ∼ Pois(λ) avec λ le taux des évènements (taux d’occurences)

P (X = x) = f(x) =
λx e−λ

x!
pour x = 0, 1, 2, 3, . . .

espérance E[X] = λ
variance Var(X) = λ

Calcul récursif:

f(x)

f(x− 1)
=
λ

x

Laplace—de Moivre

Soit la distribution binomiale Bin(n, p) donnée par

Pn(k) =

(
n
k

)
pk(1− p)n−k k = 0, 1, . . . , n

On a l’approximation lorsque n est grand par

Pn(k) ∼ 1√
2πnp(1− p)

e
− 1

2

(
k−np√
np(1−p)

)2

Binomiale et Poisson

Lorsque λ = np et n >> np, la binomiale s’approxime par une distribu-
tion de Poisson (

n
x

)
px (1− p)n−x ∼ λx e−λ

x!
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