

n/a

n/a

SCIPER: **999999**

Signature:

Do not turn the page before the start of the exam. This document is double-sided, has 24 pages, the last ones possibly blank. Do not unstaple.

- Place your student card on your table.
- For the **multiple choice with unique answer** questions, we give
 - +3 points if your answer is correct,
 - 0 points if your answer is incorrect.
- For the **multiple choice with multiple answers** questions, we give
 - +4 points for all correct answers,
 - +2 points for one incorrect answer and three correct answers,
 - 0 points for other possibilities of answers.
- Use a **black or dark blue ballpen** and clearly erase with **correction fluid** if necessary.
- If a question is wrong, the teacher may decide to nullify it.

Respectez les consignes suivantes Read these guidelines Beachten Sie bitte die unten stehenden Richtlinien		
choisir une réponse select an answer Antwort auswählen	ne PAS choisir une réponse NOT select an answer NICHT Antwort auswählen	Corriger une réponse Correct an answer Antwort korrigieren
ce qu'il ne faut PAS faire what should NOT be done was man NICHT tun sollte		

CATALOG

First Part: Multiple Choice Questions

For each question, mark all boxes corresponding to the correct answers. Note that some questions are marked as having multiple correct answers – **check all that apply!** – while others have **a unique correct answer**.

Question [MCQ-01] : A continuous-time signal

$$x(t) = e^{j\omega_0 t} + K_0 e^{j(\omega_0 t + \pi)} + K_1 e^{j2\omega_0 t}$$

is sampled with a sampling frequency $\omega_s = 10\omega_0$ to produce a discrete-time representation $x[n] = x(nT)$ where T is the corresponding sampling interval. Then (**check all that apply!**)

- $x[n] = C$, for some constant C
- $x[n] = (1 + K_0)e^{j\frac{\pi}{5}n} + K_1 e^{j\frac{2\pi}{5}n}$
- $x[n] = (1 - K_0)e^{j\frac{\pi}{5}n} + K_1 e^{j\frac{2\pi}{5}n}$
- $x[n] = (1 - K_0)(\cos(\frac{11\pi}{5}n) + j \sin(\frac{11\pi}{5}n)) + K_1(\cos(\frac{12\pi}{5}n) + j \sin(\frac{12\pi}{5}n))$

Question [SCQ-02] : What is the Nyquist rate of the signal

$$x(t) = x_1(t)x_2(t)$$

if $x_1(t)$ has a Nyquist rate of ω_0 and $x_2(t)$ has a Nyquist rate of $\frac{\omega_0}{3}$? (**check the unique answer!**)

- $\frac{4\omega_0}{3}$
- $\frac{3\omega_0}{2}$
- ω_0
- $\frac{\omega_0^2}{2}$

Question [SCQ-03] : The Fourier Transform of the signal

$$x(t) = \begin{cases} 1, & 0 \leq t \leq 1 \\ 0, & \text{otherwise} \end{cases}$$

is (**check the unique answer!**)

- $X(\omega) = e^{-j\frac{1}{2}\omega} \text{sinc}(\frac{\omega}{2\pi})$
- $X(\omega) = \text{sinc}(\frac{\omega}{2\pi})$
- $X(\omega) = \text{sinc}(\frac{\omega - \frac{1}{2}}{2\pi})$
- $X(\omega) = \frac{1}{\sqrt{2}} \text{sinc}(\frac{\omega - \frac{1}{2}}{2\pi})$

Question [MCQ-04] : The Laplace transform for a signal $x(t)$ is known to have exactly two poles at $s = j$ and $s = -j$. Then $x(t)$ could be (**check all that apply!**)

- a left-sided signal
- a right-sided signal
- a two-sided signal
- an absolutely integrable signal

CATALOG

Question [MCQ-05] : A linear continuous-time system \mathcal{H} is known to yield the following input-output pairs:

$$e^{j3\omega_0 t} = \mathcal{H}\{e^{j\omega_0 t}\} \quad \text{and} \quad e^{-j3\omega_0 t} = \mathcal{H}\{e^{-j\omega_0 t}\}$$

for some frequency ω_0 . Then (check all that apply!)

- the system \mathcal{H} is time-invariant
- $\cos(3\omega_0 t) = \mathcal{H}\{\cos(\omega_0 t)\}$
- $\cos(3\omega_0(t - \frac{1}{3})) = \mathcal{H}\{\cos(\omega_0(t - 1))\}$
- $\cos(3\omega_0(t - 1)) = \mathcal{H}\{\cos(\omega_0(t - 1))\}$

Question [SCQ-06] : Define $x_a(t) = x(at)$ and $y_a(t) = y(at)$ for $a > 0$. Let $z(t) = (x * y)(t)$. Then, we have (check the unique answer!)

- $(x_a * y_a)(t) = \frac{z(at)}{a}$
- $(x_a * y_a)(t) = z(at)$
- $(x_a * y_a)(t) = az(at)$
- $(x_a * y_a)(t) = z(a^2 t)$

Question [MCQ-07] : A discrete-time LTI system has impulse response

$$h[n] = \left(\frac{2}{3}\right)^n u[n-1].$$

Which of the following claims are true? (check all that apply!)

- if the input $x[n] = 1$ then the output is $y[n] = 2$
- if the input $x[n] = 1$ then the output $y[n]$ is undefined
- the system is stable
- the system is causal

Question [MCQ-08] : An LTI system \mathcal{H} has its input $x(t)$ and output $y(t)$ related through a linear constant-coefficient differential equation of the form

$$\frac{d^2}{dt^2}y(t) - 2\alpha\frac{d}{dt}y(t) + (\alpha^2 + 1)y(t) = x(t)$$

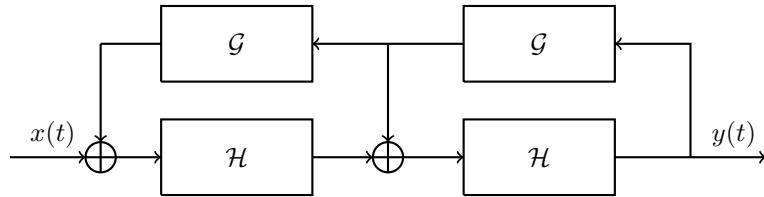
for some real α . Which of the following claims are true? (check all that apply!)

- if \mathcal{H} is stable and $\alpha = -1$ then \mathcal{H} is causal
- if \mathcal{H} is causal and $\alpha = 1$ then \mathcal{H} is stable
- \mathcal{H} has a two-sided impulse response
- if $\alpha = 0$ then \mathcal{H} must not be stable

Question [MCQ-09] : Consider discrete-time signals $x[n] = (\frac{1}{3})^n u[n] + 2^n u[n]$ and $y[n] = -(\frac{1}{2})^n u[-n-1] - 2^n u[n]$. Which of the following claims are true? (check all that apply!)

- The signal $x[n] + y[n]$ is not absolutely integrable
- The signal $x[n]$ is not absolutely integrable
- z -transform of $x[n] + y[n]$ exists (that is, has a non-empty ROC)
- z -transform of $y[n]$ exists (that is, has a non-empty ROC)

CATALOG


Question [MCQ-10] : A continuous-time LTI system has a transfer function

$$H(s) = \frac{1}{s^2 + s}, \operatorname{Re}(s) > 0.$$

Then, $H(s)$ could be constructed by composing two LTI systems $H_1(s)$ and $H_2(s)$ where **(check all that apply!)**

- $H_1(s) = \frac{1}{s}, \operatorname{Re}(s) > 0, H_2(s) = \frac{1}{s+1}, \operatorname{Re}(s) > -1$, and the systems are composed in series
- $H_1(s) = \frac{1}{s}, \operatorname{Re}(s) > 0, H_2(s) = \frac{1}{s+1}, \operatorname{Re}(s) > -1$, and the systems are composed in parallel
- $H_1(s) = \frac{1}{s}, \operatorname{Re}(s) > 0, H_2(s) = -\frac{1}{s+1}, \operatorname{Re}(s) > -1$, and the systems are composed in parallel
- $H_1(s) = \frac{1}{s}, \operatorname{Re}(s) > 0, H_2(s) = -\frac{1}{s+1}, \operatorname{Re}(s) > -1$, and the systems are composed in series

Question [SCQ-11] : Consider the continuous-time system interconnect shown as follows, where the component systems \mathcal{G} and \mathcal{H} are LTI systems with transfer functions $G(s)$ and $H(s)$, respectively.

What is the overall transfer function of the system as a function of $G(s)$ and $H(s)$? **(check the unique answer!)**

- $\frac{G^2(s)}{1 - H(s)G(s) - H^2(s)G^2(s)}$
- $\frac{H^2(s)}{(1 - H(s)G(s))^2}$
- $\frac{H^2(s)}{1 - H(s)G(s) - H^2(s)G^2(s)}$
- $\frac{G^2(s)}{(1 - H(s)G(s))^2}$

Question [MCQ-12] : Which of the following systems are invertible? **(check all that apply!)**

- An LTI system with an impulse response $h(t) = \delta(t - 7)$
- A system defined by the input-output relation $y[n] = |n - 1|x[n - 1]$
- A system defined by the input-output relation $y(t) = x(3t)$
- An LTI system with an impulse response $h[n] = \delta[n] + \delta[n - 1]$

Q12.4: Both answers could be accepted. See @202 on piazza for more details.