EE-205 - Signaux et systémes (pour EL) Ecole Polytechnique Fédérale de Lausanne
Prof. Jean-Philippe Thiran 01.07.2024

Examen Final
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Probléme 1: Un systéme de télécommunication

Heike a récemment décidé de faire son propre réseau de télécommunication. Apres avoir congu I’antenne,
elle décide de s’occuper de la partie signaux et systémes. Elle prévoit de faire de la modulation en
amplitude (voir figure 1).

& Ampliude
— , =, H_.--"'F _-\"“*-.__\
x(t) S e — i
n ~ o A ) I i
e LY il [ ||Ir I'. Illhlll I'II' { |1 | I'| | lk |I Il |I I|
Al wpt) I|| T N o e
\pl) I'..|'-I'-'.|rl|'-.f'.|"|,".rl.l
oo W Voo Wy
KT .-"_\Iﬁ -"J-II"I__-H"\
rl __l||'| f 'IN" ,-'hll II || I
T A T I T B R N [
. NANE ™ | |
Signal AM BRVA WAV, W A B
A ST
TR ¥ s e
~ R R P,

Figure 1: Exemple d’une modulation en amplitude (AM).

a) Admettons que la transformée de Fourier d’un signal z(t) existe et est notée X (w).

)
Donnez I’expression de la transformée de Fourier Y (w) du signal modulé y(t) = z(¢) sin(wpt) en
fonction de X (w).

b) Donnez l'expression de la transformée de Fourier du signal z(t) = w(t)sin(wot), wu(t) étant la
fonction échelon bien connue.

c¢) Posons M(w) = §(w — wp) + d(w + wp) la transformée de Fourier d’un signal m(t)

1, pour |w| < wp

et supposons X (w) = { avec wy << Wp

0, sinon

Donnez l'expression de la transformée de Fourier Y (w) du signal y(t) = m(t)x(t). Représentez
graphiquement le spectre résultant.



d) La figure 2 illustre comment moduler et démoduler le signal y(t).
D(w) est un filtre passe-bas idéal avec une fréquence de coupure w, << wp.
m(t) et x(t) sont des signaux ayant comme spectre M(w) et X (w) définis comme précédemment.
Montrez que le systeme liant yp(t) et x(t) est LIT, causal et stable, justifiez.

Indice: Commencez par simplifier la fonction m(t) cos(wpt) .

m(t) cos(wpt)

2(t) < ylt) I 0

Figure 2: Circuit pour modulation et démodulation.

e) Heike souhaite désormais tester son systéme en changeant la fréquence de la porteuse wy,.

1, pour |w| < wp
. avec we = wy = 2wy .
0, sinon

Supposons X (w) = {

i. Donnez la transformée de Fourier Y (w) du signal y(t) = m(¢t)x(t). Représentez graphique-
ment le spectre résultant.

ii. Que se passe-t-il si 'on utilise le signal x(¢) dans le systeme de la figure 2 ? Est-ce que
yp(t) = z(t) ? Pourquoi ?
Indice: Vous pouvez vous référer a lallure du spectre Y (w) pour justifier sans faire de calculs.

f) Considérons maintenant le systéme composé uniquement du filtre passe-bas idéal D.

On suppose qu'un signal z(t) = < cos(Zwot) a été échantillonné par multiplication par un peigne
de Dirac de période T = 2% avec wy = 2wy . On notera le signal résultant z(t).

i. Donnez Pexpression de x4(t) et celle de sa transformée de Fourier X(w).

ii. Esquissez le spectre de X,(w) (pour |w| < w,) et montrez graphiquement Ueffet du filtre D(t)
ayant une fréquence de coupure w. = wy .
iii. Que constatez-vous ? Pourquoi ?

Indice: Contentez vous d’esquisser les termes du peigne de Dirac en fréquence pour k = 0,
k=1et k=-1.

Solution

a) (0.5 point) On peut utiliser la table des transformées de Fourier et la propriété de convolution. On

obtient donc: )

Y(w) = Z

(X(w = wp) = X(w+wp))

b) (1 point) Nous pouvons ré-écrire la fonction sin(wpt) en somme d’exponentielles complexes:
eJwot _ o—jwot 1 . .
o) =u) TS = L () o)

En utilisant la propriété de décalage dans les fréquences, on obtient la transformée de Fourier:



1

X(w):?j(U(W—wo)—U(w+wo))

1 1 1
:Qj(M“‘M(w—wo)—w—ﬂ(w—i-wo))
—i mo(w —wp) — T (w + wo A
= 5 (8 =)~ )+

¢) (1 point) Utilisons la propriété de multiplication/convolution de la transformée de Fourier.

Y (w) = 5= M(w) * X() = - (X(w — ) + X+ ;)

On a donc au final:

Y (w) = %, pour w € |—wy — Wy, wo — wp|U]—wo + wp, wo + wpl
0, sinon

Et le spectre:

v
S

Figure 3: Spectre Y (w).

d) (1.5 points) Pour faciliter les calculs nous allons d’abord étudier la fonction m(t) cos(wpt):

La transformée de Fourier inverse de M(w) = 6(w — wp) + d(w + wp) est:

mi(t) = %cos(wpt)

On obtient donc le systéme suivant:

™

o(0) = dlt)+ ( La(t)cos(it)?) = () 5o 1+ cos(2))

On se rappelle que le filtre D est un filtre passe bas idéale avec une fréquence de coupure w, << wp
et un gain de 1. On obtient donc:

La réponse impulsionelle de ce systeéme est simplement h(t) = %5 (). Il est évident que le systeme
est LIT, stable et causal de la propriété de la fonction Dirac et du fait que le systéme ne dépend
pas de temps future. Cependant, en pratique le filtre idéale D n’est pas réalisable et est aussi
non-causal.



)

(1.5 points) Le raisonnement est similaire & la question (c), on a:

1 1
Y(w)= %M(w) * X(w) = Py (X(w—wp) + X(w+wp))

Mais cette fois-ci:
X(w+w,y) = ﬁ’pollr lw + wp| < wo = 2w, _ i,pour lw| < 3w,

b 0, sinon 0, sinon
et
X(w— wy) = 5, pour |w — wy| < wp = 2w, _ 5, pour |w| < w,

b 0, sinon 0, sinon

On remarque que le spectre se superpose sur lui-méme (repliement), on a au final:

i, pour w €] — 3wy, —wp[Uwp, 3wp|
Y(w) = %, pour w €] — wp, wp|
0, sinon
On obtient la figure (4) pour le spectre.
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Figure 4: Spectre Y (w) pour wy = 2wy .

Si on utilise le signal x(¢) dans le systeme de la figure (2) on va observer des distorsions a cause
du repliement spectral. Le filtre idéale va aussi extraire I'information de la porteuse ce qui peut
interférer avec le signal d’origine.

(1.5 points) On a par définition du peigne de Dirac:

> 21 T
s t) = T 6 t— T y T = —_—= —
z5(t) n;m;z:(n )6(t —nT) , avec T w
En utilisant la table des transformée de Fourier nous avons:
X,(w) =2 i X (w — 2kwo)
& k=—oc0
Wy — T T
-2 S ol e D) oo (1 5o
Wk;wé(w (k: 5 wo) +6(w k+2 wo



On obtient alors ’esquisse du spectre suivante:
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Figure 5: Spectre X (w) lors de 1’échantillonage.

On peut constater qu’il y eu un repliement du spectre. En effet, on ne respecte pas le critere de
Nyquist, la fréquence du signal est w; = %wo et des lors on a pas w, > 2wy . 1l est donc impossible

de reconstituer le signal d’origine.



Probléme 2: Transformée en 7

Partie 1

Soit un systeme LIT a temps discret dont la fonction de transfert est donnée par:

2717
272 —7z71 4127

H(z) =
a) Donnez la réponse impulsionnelle causale de ce systeme.
b) Ce systeme est-il stable? Justifiez.

¢) Donnez I’équation aux différences associée.

Partie 2

Soit le signal x[n], tel que:

a) Nous savons tout d’abord que, Tz étant la transformée en Z appliquée & un signal:

- 1
T _
a"uln] <% g a"z™" = Fpp—
o —az

Calculez la dérivée premiere des termes de chaque coté de ’égalité de droite ci-dessus en fonction
de z71.

b) Sur la base de votre réponse précédente, calculez X (z), la transformée en Z de z[n].

c¢) Considérons a présent le systeme LIT défini & la Partie 1 et le signal x[n] défini ci-dessus. Quelle
est la région de convergence de Y (z), la transformée en Z du signal de sortie y[n] du systéme
pour une entrée xz[n]? Justifiez.

Solution

Partie 1

L on peut tout d’abord factoriser le dénominateur de H(p):

a) (2 points) Posons p =z~
P’ =Tp+12=(p—3)(p—4).

On peut ensuite décomposer H(z) en éléments simples:

A B A+B=2
H = + , ’
(7) p-3) (-4 {—4A—3B_—7
ce qui implique :
1 1 1 1 1 1
H = _ = L .
(2) (Zflf3)+(zflf4) 31 1.1 41 1,1



On retrouve alors la transformée en Z inverse de —— qui est égale & z[n] = a"¢[n] ou z[n] =
—a"e[—n — 1] avec une ROC égale & |z| > |a| ou |z| < |a| respectivement.
Nous savons que h[n] est causal. Il n’y a donc qu’une seule solution:

1 /1\" 1 /1\"
hin] = ~3 <3) uln] — 1 (4) u[n]
b) (1 point) La région de convergence du signal trouvé précédemment est donnée par |z| > & . Elle
contient le cercle unité, le systeme est donc stable.

¢) (0.5 point) L’équation aux différences est donnée par:
Y(z) = H(2)X(2)
Y(2) (272 =727 +12) = X(2)(227 1 = 7)
y[n — 2] = Ty[n — 1] + 12y[n] = 2z[n — 1] — Tz[n]

Partie 2

a) (1 point) On dérive de chaque cdté comme demandé dans la consigne.

J 1 a J - n_—n - n_—n
0z~ 1 ( 1):(1—az—1)2 = 0z~ 1 <Za i ):zZna ‘
n=0

1— —
az ne0

b) (1 point) On en déduit que:

o o 1,1
o) =g uln] = X(2) = Y on(3)" " = s

n=0

c) (2 points) Nous avons toutes les formes factorisées de H(z) et de X(z), de plus nous savons que
Y(z) = H(2)X(z). Les poles sont donc donnés par |z| = &, |z| = 1 et |z| = 2. Sachant que
h[n] est causal et qu’il s’agit d’un systeme LIT, que x[n] est aussi causal, alors la sortie y[n] est

causale. Dans ce cas, la ROC est donnée par |z| > 3.



Probléme 3: Transformée de Laplace

Partie 1

Déterminez si chacun des systemes décrits ci-dessous est stable ou non. Justifiez votre réponse.

a) Un systéme qui, avec un signal d’entrée x(t) = e~‘u(t), produit le signal de sortie y(t) = e~ 2 u(t).
b) Un systéme causal dont la fonction de transfert est la suivante H(s) = w5557 -

c¢) Un systeéme causal dont la fonction de transfert H(s) présente le tracé poles-zéros suivant:

d) Un systeme LIT dont la réponse impulsionnelle est la suivante h(t) = e'sin(2t)u(t).

Partie 2

Considérez la composition en boucle fermée de deux systemes LIT continus avec les fonctions de transfert

H,(s) et Hy(s) (voir Figure 6).
+
x(®) _*i:} H, »@)
H)

Figure 6: Composition de systemes.

a) Supposons que Hi(s) = 7 et Ha(s) = -35.

i. Quelle est la fonction de transfert H(s) du systéme global H ?
ii. Le systeme global H est supposé causal, est-il également stable ?
b) Supposons que le systéeme global H soit causal et qu’il possede un systeme inverse causal G.
Donnez la fonction de transfert G(s) et la réponse impulsionnelle g(¢) du systeéme inverse.

Indication: Au besoin, notez 0'(t) la dérivée premiére de la fonction 6(t) de Dirac.



Solution

Partie 1
a) (1 point) On calcule tout d’abord la transformée de Laplace du systéme avec X(s) = Sil et
Y(s) = 545 - Ainsi, Hy(s) = E/{E:g = %EZI?; = =5 On observe un zéro pour s = —1 et un pole
pour s = —2. Le partie réelle du pole est négative, donc le systeme est stable.

b) (1 point) On commence par exprimer la transformée de Laplace d’une maniére & mettre en évidence
ses poles et zéros. Pour ce faire, on calcule d’abord le discriminant: A =22—4.1-10 =4—40 = —36
puis les racines:

-2+ +/-36
Les poles sont identifiés comme s = —1 + 35 dont les parties réelles des poles sont négatives. Le

systeme est donc stable.

c) (1 point) Les parties réelles des poles sont toutes négatives (—1). Par conséquent, le systeme est
stable.

d) (1 point) Gréce & la propriété du sinus unilatéral, on trouve la transformée de Laplace du systeme:
Hi(s) = ﬁ dont on déduit les poles : s = 1+ j2. Comme les poles ont des parties réelles
positives, le systéeme n’est pas stable.

Partie 2

a) 1. (1 point) La fonction de transfert en boucle fermée du systeme illustré est la suivante:

H(s) = ﬁ% Avec Hy(s) = -1 et Hy(s) = =25, nous obtenons :
1 1 L
H(S) = s+1 — s+13 = s+1 = 1 . (S + 1)(8 + 2)
3 T (s+D(s+2)+3 2
1+<si1) (siz) 1+ e m I
Qui se simplifie en : H(s) = szi§52+5

ii. (1 point) Le systéme est causal, mais pour vérifier la stabilité, nous regardons les poles de la
fonction de transfert H(s). Les poles sont les racines de s? +3s+5=10.

oo T3EV9-20 34 V-1T -3+ /11
- : = =

2 2
Les poles sont donc s = —% + g jet s= —% — @ 7 . Puisque les parties réelles de ces poles

sont négatives, le systéeme est stable.
b) (2 points) Si le systeme global H est causal et a un inverse causal G, alors H(s)G(s) = 1. Donc,

1 s24+354+5
G(S)_H(s)_ s+2

La réponse impulsionnelle est la transformée inverse de Laplace de G(s), que l'on peut simplifier
comme suit:

2
5°+3s+5 3
G(s)=—————=s+14+——
() s+2 s+2
En appliquant la transformée inverse de Laplace sur chacun des termes, on obtient la réponse

impulsionnelle :

gty =L7" {s +1+ s+32} = &'(t) + 6(t) + 3¢~ u(t)



