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Problème 1: Un système de télécommunication

Heike a récemment décidé de faire son propre réseau de télécommunication. Après avoir conçu l’antenne,
elle décide de s’occuper de la partie signaux et systèmes. Elle prévoit de faire de la modulation en
amplitude (voir figure 1).

Figure 1: Exemple d’une modulation en amplitude (AM).

a) Admettons que la transformée de Fourier d’un signal x(t) existe et est notée X(ω) .

Donnez l’expression de la transformée de Fourier Y (ω) du signal modulé y(t) = x(t) sin(ωpt) en
fonction de X(ω) .

b) Donnez l’expression de la transformée de Fourier du signal x(t) = u(t) sin(ω0t) , u(t) étant la
fonction échelon bien connue.

c) Posons M(ω) = δ(ω − ωp) + δ(ω + ωp) la transformée de Fourier d’un signal m(t)

et supposons X(ω) =

{
1, pour |ω| < ω0

0, sinon
avec ω0 << ωp

Donnez l’expression de la transformée de Fourier Y (ω) du signal y(t) = m(t)x(t) . Représentez
graphiquement le spectre résultant.
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d) La figure 2 illustre comment moduler et démoduler le signal y(t) .

D(ω) est un filtre passe-bas idéal avec une fréquence de coupure ωc << ωp .

m(t) et x(t) sont des signaux ayant comme spectre M(ω) et X(ω) définis comme précédemment.

Montrez que le système liant yD(t) et x(t) est LIT, causal et stable, justifiez.

Indice: Commencez par simplifier la fonction m(t) cos(ωpt) .

Figure 2: Circuit pour modulation et démodulation.

e) Heike souhaite désormais tester son système en changeant la fréquence de la porteuse ωp .

Supposons X(ω) =

{
1, pour |ω| < ω0

0, sinon
avec ωc = ω0 = 2ωp .

i. Donnez la transformée de Fourier Y (ω) du signal y(t) = m(t)x(t) . Représentez graphique-
ment le spectre résultant.

ii. Que se passe-t-il si l’on utilise le signal x(t) dans le système de la figure 2 ? Est-ce que
yD(t) ≡ x(t) ? Pourquoi ?

Indice: Vous pouvez vous référer à l’allure du spectre Y (ω) pour justifier sans faire de calculs.

f) Considérons maintenant le système composé uniquement du filtre passe-bas idéal D .

On suppose qu’un signal x(t) = 1
π cos(π2ω0t) a été échantillonné par multiplication par un peigne

de Dirac de période T = 2π
ωs

, avec ωs = 2ω0 . On notera le signal résultant xs(t) .

i. Donnez l’expression de xs(t) et celle de sa transformée de Fourier Xs(ω) .

ii. Esquissez le spectre de Xs(ω) (pour |ω| ≤ ωs ) et montrez graphiquement l’effet du filtre D(t)
ayant une fréquence de coupure ωc = ω0 .

iii. Que constatez-vous ? Pourquoi ?

Indice: Contentez vous d’esquisser les termes du peigne de Dirac en fréquence pour k = 0 ,
k = 1 et k = −1 .

Solution

a) (0.5 point) On peut utiliser la table des transformées de Fourier et la propriété de convolution. On
obtient donc:

Y (ω) =
1

2j
(X(ω − ωp)−X(ω + ωp))

b) (1 point) Nous pouvons ré-écrire la fonction sin(ω0t) en somme d’exponentielles complexes:

x(t) = u(t)
ejω0t − e−jω0t

2j
=

1

2j

(
ejω0tu(t)− e−jω0tu(t)

)
En utilisant la propriété de décalage dans les fréquences, on obtient la transformée de Fourier:

2



X(ω) =
1

2j
(U(ω − ω0)− U(ω + ω0))

=
1

2j

(
1

j(ω − ω0)
+ πδ(ω − ω0)−

1

j(ω + ω0)
− πδ(ω + ω0)

)
=

1

2j

(
πδ(ω − ω0)− πδ(ω + ω0) +

2ω0

(ω2
0 − ω2)

)
c) (1 point) Utilisons la propriété de multiplication/convolution de la transformée de Fourier.

Y (ω) =
1

2π
M(ω) ∗X(ω) =

1

2π
(X(ω − ωp) +X(ω + ωp))

On a donc au final:

Y (ω) =

{
1
2π , pour ω ∈ ]−ω0 − ωp, ω0 − ωp[ ∪ ]−ω0 + ωp, ω0 + ωp[

0, sinon

Et le spectre:

Figure 3: Spectre Y (ω) .

d) (1.5 points) Pour faciliter les calculs nous allons d’abord étudier la fonction m(t) cos(ωpt) :

La transformée de Fourier inverse de M(ω) = δ(ω − ωp) + δ(ω + ωp) est:

m(t) =
1

π
cos(ωpt)

On obtient donc le système suivant:

yD(t) = d(t) ∗
(
1

π
x(t) cos(ωpt)

2

)
= d(t) ∗

(
1

2π
x(t) (1 + cos(2ωp))

)
On se rappelle que le filtre D est un filtre passe bas idéale avec une fréquence de coupure ωc << ωp

et un gain de 1. On obtient donc:

yD(t) =
1

2π
x(t)

La réponse impulsionelle de ce système est simplement h(t) = 1
2π δ(t) . Il est évident que le système

est LIT, stable et causal de la propriété de la fonction Dirac et du fait que le système ne dépend
pas de temps future. Cependant, en pratique le filtre idéale D n’est pas réalisable et est aussi
non-causal.
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e) (1.5 points) Le raisonnement est similaire à la question (c), on a:

Y (ω) =
1

2π
M(ω) ∗X(ω) =

1

2π
(X(ω − ωp) +X(ω + ωp))

Mais cette fois-ci:

X(ω + ωp) =

{
1
2π , pour |ω + ωp| < ω0 = 2ωp

0, sinon
=

{
1
2π , pour |ω| < 3ωp

0, sinon

et

X(ω − ωp) =

{
1
2π , pour |ω − ωp| < ω0 = 2ωp

0, sinon
=

{
1
2π , pour |ω| < ωp

0, sinon

On remarque que le spectre se superpose sur lui-même (repliement), on a au final:

Y (ω) =


1
2π , pour ω ∈]− 3ωp,−ωp[∪]ωp, 3ωp[
1
π , pour ω ∈]− ωp, ωp[

0, sinon

On obtient la figure (4) pour le spectre.

Figure 4: Spectre Y (ω) pour ω0 = 2ωp .

Si on utilise le signal x(t) dans le système de la figure (2) on va observer des distorsions à cause
du repliement spectral. Le filtre idéale va aussi extraire l’information de la porteuse ce qui peut
interférer avec le signal d’origine.

f) (1.5 points) On a par définition du peigne de Dirac:

xs(t) =

∞∑
n=−∞

x(nT )δ(t− nT ) , avec T =
2π

ωs
=

π

ω0

En utilisant la table des transformée de Fourier nous avons:

Xs(ω) =
ω0

π

∞∑
k=−∞

X(ω − 2kω0)

=
ω0

π

∞∑
k=−∞

δ
(
ω −

(
2k − π

2

)
ω0

)
+ δ

(
ω −

(
2k +

π

2

)
ω0

)
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On obtient alors l’esquisse du spectre suivante:

Figure 5: Spectre Xs(ω) lors de l’échantillonage.

On peut constater qu’il y eu un repliement du spectre. En effet, on ne respecte pas le critère de
Nyquist, la fréquence du signal est ω1 = π

2ω0 et dès lors on a pas ωs ≥ 2ω1 . Il est donc impossible
de reconstituer le signal d’origine.
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Problème 2: Transformée en Z

Partie 1

Soit un système LIT à temps discret dont la fonction de transfert est donnée par:

H(z) =
2z−1 − 7

z−2 − 7z−1 + 12
.

a) Donnez la réponse impulsionnelle causale de ce système.

b) Ce système est-il stable? Justifiez.

c) Donnez l’équation aux différences associée.

Partie 2

Soit le signal x[n], tel que:

x[n] = n(
1

2
)nu[n]

a) Nous savons tout d’abord que, TZ étant la transformée en Z appliquée à un signal:

anu[n]
TZ←→

∞∑
n=0

anz−n =
1

1− az−1

Calculez la dérivée première des termes de chaque côté de l’égalité de droite ci-dessus en fonction
de z−1 .

b) Sur la base de votre réponse précédente, calculez X(z) , la transformée en Z de x[n] .

c) Considérons à présent le système LIT défini à la Partie 1 et le signal x[n] défini ci-dessus. Quelle
est la région de convergence de Y (z) , la transformée en Z du signal de sortie y[n] du système
pour une entrée x[n] ? Justifiez.

Solution

Partie 1

a) (2 points) Posons p = z−1 , on peut tout d’abord factoriser le dénominateur de H(p) :

p2 − 7p+ 12 = (p− 3)(p− 4).

On peut ensuite décomposer H(z) en éléments simples:

H(p) =
A

(p− 3)
+

B

(p− 4)
, avec

{
A+B = 2

−4A− 3B = −7
,

ce qui implique :

H(z) =
1

(z−1 − 3)
+

1

(z−1 − 4)
= −1

3

1

1− 1
3z

−1
− 1

4

1

1− 1
4z

−1
.
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On retrouve alors la transformée en Z inverse de 1
1−az−1 qui est égale à x[n] = anϵ[n] ou x[n] =

−anϵ[−n− 1] avec une ROC égale à |z| > |a| ou |z| < |a| respectivement.
Nous savons que h[n] est causal. Il n’y a donc qu’une seule solution:

h[n] = −1

3

(
1

3

)n

u[n]− 1

4

(
1

4

)n

u[n]

b) (1 point) La région de convergence du signal trouvé précédemment est donnée par |z| > 1
3 . Elle

contient le cercle unité, le système est donc stable.

c) (0.5 point) L’équation aux différences est donnée par:

Y (z) = H(z)X(z)

Y (z)(z−2 − 7z−1 + 12) = X(z)(2z−1 − 7)

y[n− 2]− 7y[n− 1] + 12y[n] = 2x[n− 1]− 7x[n]

Partie 2

a) (1 point) On dérive de chaque côté comme demandé dans la consigne.

δ

δz−1

(
1

1− az−1

)
=

a

(1− az−1)2
:=

δ

δz−1

( ∞∑
n=0

anz−n

)
= z

∞∑
n=0

nanz−n

b) (1 point) On en déduit que:

x[n] = n
1

2

n

u[n]←→ X(z) =

∞∑
n=0

n(
1

2
)nz−n =

1
2z

−1

(1− 1
2z

−1)2

c) (2 points) Nous avons toutes les formes factorisées de H(z) et de X(z) , de plus nous savons que
Y (z) = H(z)X(z) . Les pôles sont donc donnés par |z| = 1

2 , |z| =
1
3 et |z| = 1

4 . Sachant que
h[n] est causal et qu’il s’agit d’un système LIT, que x[n] est aussi causal, alors la sortie y[n] est
causale. Dans ce cas, la ROC est donnée par |z| > 1

2 .
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Problème 3: Transformée de Laplace

Partie 1

Déterminez si chacun des systèmes décrits ci-dessous est stable ou non. Justifiez votre réponse.

a) Un système qui, avec un signal d’entrée x(t) = e−tu(t) , produit le signal de sortie y(t) = e−2tu(t) .

b) Un système causal dont la fonction de transfert est la suivante H(s) = 1
s2+2s+10 .

c) Un système causal dont la fonction de transfert H(s) présente le tracé pôles-zéros suivant:

d) Un système LIT dont la réponse impulsionnelle est la suivante h(t) = etsin(2t)u(t) .

Partie 2

Considérez la composition en boucle fermée de deux systèmes LIT continus avec les fonctions de transfert
H1(s) et H2(s) (voir Figure 6).

Figure 6: Composition de systèmes.

a) Supposons que H1(s) =
1

s+1 et H2(s) =
3

s+2 .

i. Quelle est la fonction de transfert H(s) du système global H ?

ii. Le système global H est supposé causal, est-il également stable ?

b) Supposons que le système global H soit causal et qu’il possède un système inverse causal G .
Donnez la fonction de transfert G(s) et la réponse impulsionnelle g(t) du système inverse.

Indication: Au besoin, notez δ′(t) la dérivée première de la fonction δ(t) de Dirac.
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Solution

Partie 1

a) (1 point) On calcule tout d’abord la transformée de Laplace du système avec X(s) = 1
s+1 et

Y (s) = 1
s+2 . Ainsi, H2(s) =

Y (s)
X(s) = 1/(s+2)

1/(s+1) = s+1
s+2 . On observe un zéro pour s = −1 et un pôle

pour s = −2 . Le partie réelle du pôle est négative, donc le système est stable.

b) (1 point) On commence par exprimer la transformée de Laplace d’une manière à mettre en évidence
ses pôles et zéros. Pour ce faire, on calcule d’abord le discriminant: ∆ = 22−4·1·10 = 4−40 = −36
puis les racines:

s =
−2±

√
−36

2
= −1± 3j

Les pôles sont identifiés comme s = −1 ± 3j dont les parties réelles des pôles sont négatives. Le
système est donc stable.

c) (1 point) Les parties réelles des pôles sont toutes négatives (−1 ). Par conséquent, le système est
stable.

d) (1 point) Grâce à la propriété du sinus unilatéral, on trouve la transformée de Laplace du système:
H1(s) =

2
(s−1)2+4 dont on déduit les pôles : s = 1 ± j2 . Comme les pôles ont des parties réelles

positives, le système n’est pas stable.

Partie 2

a) i. (1 point) La fonction de transfert en boucle fermée du système illustré est la suivante:

H(s) = H1(s)
1+H1(s)H2(s)

. Avec H1(s) =
1

s+1 et H2(s) =
3

s+2 , nous obtenons :

H(s) =
1

s+1

1 +
(

1
s+1

)(
3

s+2

) =
1

s+1

1 + 3
(s+1)(s+2)

=
1

s+1

(s+1)(s+2)+3
(s+1)(s+2)

=
1

s+ 1
· (s+ 1)(s+ 2)

s2 + 3s+ 2 + 3

Qui se simplifie en : H(s) = s+2
s2+3s+5

ii. (1 point) Le système est causal, mais pour vérifier la stabilité, nous regardons les pôles de la
fonction de transfert H(s) . Les pôles sont les racines de s2 + 3s+ 5 = 0 .

s =
−3±

√
9− 20

2
=
−3±

√
−11

2
=
−3±

√
11j

2

Les pôles sont donc s = − 3
2 +

√
11
2 j et s = − 3

2 −
√
11
2 j . Puisque les parties réelles de ces pôles

sont négatives, le système est stable.

b) (2 points) Si le système global H est causal et a un inverse causal G , alors H(s)G(s) = 1 . Donc,

G(s) =
1

H(s)
=

s2 + 3s+ 5

s+ 2

La réponse impulsionnelle est la transformée inverse de Laplace de G(s) , que l’on peut simplifier
comme suit:

G(s) =
s2 + 3s+ 5

s+ 2
= s+ 1 +

3

s+ 2

En appliquant la transformée inverse de Laplace sur chacun des termes, on obtient la réponse
impulsionnelle :

g(t) = L−1

{
s+ 1 +

3

s+ 2

}
= δ′(t) + δ(t) + 3e−2tu(t)
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