
Exercices	EM-II	:	Série	2	-	Solutions	
	
	
Exercice	 1	 :	 Forme	 intégrale	 des	 équations	 de	 Maxwell.	 En	 utilisant	 le	 théorème	 de	 la	
divergence	(Green-Ostrogradski,	voir	notes	de	cours	p.9),	et	le	théorème	du	rotationnel	(voir	
notes	de	cours	p.	10),	mettre	les	équations	de	Maxwell	
	

∇.𝒟 = 𝜌,	

∇×	ℰ = −
𝜕ℬ
𝜕𝑡 ,	

∇. ℬ = 0,	

∇×	ℋ = 𝚥 +
𝜕	𝒟
𝜕𝑡 ,	

	
sous	leur	forme	intégrale.	Comment	sont	modifiés	les	théorèmes	de	Gauss	et	d’Ampère	dans	
le	cas	dynamique	?	
	
On	commence	par	rappeler	le	théorème	de	Green-Ostrogradski.	Pour	tout	champ	vectoriel	𝑣	
défini	dans	l’espace,		 ∇. 𝑣	𝑑𝑉5 = 𝑣6 . 𝑑𝑆,	avec	𝑉	un	volume	fermé	et	𝑆	la	surface	fermée	
entourant	ce	volume.		
	
Maxwell-Gauss	:	Si	on	applique	ce	théorème	au	champ		𝒟,	on	obtient	

∇.𝒟	𝑑𝑉
5

= 	𝒟
6

. 𝑑𝑆	

Mais,	comme	∇.𝒟 = 𝜌,	cela	donne	

𝜌	𝑑𝑉
5

= 	𝒟
6

. 𝑑𝑆,	

soit	en	notant	𝑄9:; 𝑡 = 𝜌(𝑡)	𝑑𝑉5 ,	on	obtient	une	généralisation	du	théorème	de	Gauss	
	

	𝒟
6

. 𝑑𝑆 = 𝑄9:; 𝑡 .	

C’est	la	version	intégrale	de	l’équation	de	Maxwell-Gauss	∇.𝒟 = 𝜌.	La	seule	différence	avec	
le	théorème	de	Gauss	est	la	dépendance	temporelle	de	la	charge	interne	(et	du	champ	𝒟…).	
	
Equation	𝛁.𝓑 = 𝟎	 :	En	faisant	le	même	raisonnement	à	partir	de	∇. ℬ = 0,	on	obtient	une	
deuxième	équation	sous	forme	intégrale	:		
		

	ℬ
6

. 𝑑𝑆 = 0.	

	



Pour	les	deux	équations	restantes,	il	faut	utiliser	le	théorème	du	rotationnel:	Pour	tout	champ	
vectoriel	 𝑣	 défini	 dans	 l’espace,	 𝑣A . 𝑑𝑙 = ∇×𝑣. 𝑑𝑆6 	 avec	 𝐶	 un	 contour	 fermé	 et	 𝑆	
n’importe	quelle	surface	s’appuyant	sur	ce	contour.		
	
Maxwell-Faraday	:	Si	on	applique	ce	théorème	au	champ		ℰ,	on	obtient	

ℰ
A

. 𝑑𝑙 = ∇×ℰ. 𝑑𝑆
6

	

Mais,	d’après	l’équation	de	Maxwell-Faraday,	∇×	ℰ = −Dℬ
D;
,	ce	qui	implique	

ℰ
A

. 𝑑𝑙 = −
𝜕ℬ
𝜕𝑡 . 𝑑𝑆6

	

	
On	peut	sortir	la	dérivée	temporelle	de	l’intégrale	spatiale	(la	forme	de	la	surface	ne	dépend	
pas	 du	 temps,	 et	 la	 dérivée	 est	 distributive	 par	 rapport	 à	 la	 somme),	 obtenant	 la	 forme	
intégrale	de	l’équation	de	Maxwell-Faraday	:	

ℰ
A

. 𝑑𝑙 = −
𝜕
𝜕𝑡 ℬ. 𝑑𝑆

6
	

	
Maxwell-Ampère	:	Pour	la	forme	intégrale	de	l’équation	de	Maxwell-Ampère,	on	commence	
par	écrire	le	théorème	de	Stokes	pour	ℋ	:	

ℋ
A

. 𝑑𝑙 = ∇×	ℋ. 𝑑𝑆
6

,	

mais	d’après	l’équation	de	Maxwell-Ampère,	∇×	ℋ = 𝚥 + D	𝒟
D;
,		ce	qui	donne	

ℋ
A

. 𝑑𝑙 = 𝚥	. 𝑑𝑆
6

+
𝜕	𝒟
𝜕𝑡 	 . 𝑑𝑆6

	

Ici	encore,	on	peut	sortir	la	dérivée	partielle	par	rapport	au	temps	et	on	obtient	une	sorte	de	
théorème	d’Ampère	généralisé	

ℋ
A

. 𝑑𝑙 = 𝚥	. 𝑑𝑆
6

+
𝜕
𝜕𝑡 𝒟	. 𝑑𝑆

6
	

La	différence	par	rapport	au	théorème	d’ampère	est	l’ajout	de	la	contribution	du	courant	de	

déplacement	D	𝒟
D;
	à	celle	du	courant	normal	𝚥.	

	
Exercice	2	:	Ondes	radio	AM.	Les	composantes	des	champ	électriques	et	magnétiques	associés	
à	un	signal	radio	AM	qui	se	propage	dans	l’air	(𝜀F = 𝜇F = 1)	en	l’absence	de	sources	sont	:	

ℰ(𝑥, 𝑦, 𝑧, 𝑡) = 𝑥𝐸M cos 7.5	10S𝑡 − 𝛽𝑧 	

ℋ(𝑥, 𝑦, 𝑧, 𝑡) = 𝑦
𝐸M
𝜂 cos 7.5	10

S𝑡 − 𝛽𝑧 	

ou	𝐸M,	𝛽	et	𝜂	sont	des	nombres	réels.	
a) Calculer	les	champs	𝒟(𝑥, 𝑦, 𝑧, 𝑡)	et	ℬ(𝑥, 𝑦, 𝑧, 𝑡)	associés.	



D’après	 l’énoncé,	 le	milieu	de	propagation	est	 l’air	avec	𝜀F = 𝜇F = 1.	 	D’après	 les	relations	
constitutives,	on	a	simplement	

𝒟=𝜀M𝜀Fℰ = 𝑥𝐸M𝜀M cos 7.5	10S𝑡 − 𝛽𝑧 	
ℬ=𝜇M𝜇Fℋ=𝑦 VWXW

Y
cos 7.5	10S𝑡 − 𝛽𝑧 	

	
	

b) En	écrivant	que	ces	champs	doivent	satisfaire	les	équations	de	Maxwell,	trouver	les	
valeurs	numériques	de	𝛽	et	de	𝜂	(donner	aussi	leurs	unités).	

	
Dans	le	vide,	il	n’y	a	par	définition	pas	de	charges,	sauf	éventuellement	à	l’endroit	où	l’on	en	
place	volontairement	afin	de	créer	une	source	de	champ.	Comme	l’énoncé	nous	informe	qu’il	

n’y	a	pas	de	sources,	on	a	𝚥 = 0	et	𝜌 = 0.	On	part	de	Maxwell-Ampère,		∇×	ℋ = D	𝒟
D;
,	et	on	

remplace	les	champs	𝒟	et	ℋ	par	leurs	expressions	:	
	

∇×	 𝑦
𝐸M
𝜂 cos 7.5	10

S𝑡 − 𝛽𝑧 =
𝜕	
𝜕𝑡 𝑥𝐸M𝜀M cos 7.5	10

S𝑡 − 𝛽𝑧 .	

	
On	calcule	d’abord	
	

∇×	 𝑦
𝐸M
𝜂 cos 7.5	10

S𝑡 − 𝛽𝑧 = −𝑥
𝐸M𝛽
𝜂 sin 7.5	10S𝑡 − 𝛽𝑧 ,	

	
puis	
	

𝜕	
𝜕𝑡 𝑥𝐸M𝜀M cos 7.5	10

S𝑡 − 𝛽𝑧 = −𝑥𝐸M𝜀M7.5	10S sin 7.5	10S𝑡 − 𝛽𝑧 ,	
	
et	l’on	écrit	que	ces	expressions	doivent	être	égales,	ce	qui	donne	
	

−𝑥
𝐸M𝛽
𝜂 sin 7.5	10S𝑡 − 𝛽𝑧 = −𝑥𝐸M𝜀M7.5	10S sin 7.5	10S𝑡 − 𝛽𝑧 .	

	
Après	simplifications,	on	obtient	une	première	relation	:	
	

𝛽
𝜂 = 𝜀M7.5	10S.	

	

Il	reste	à	écrire	l’équation	de	Maxwell-Faraday,	∇×	ℰ = −Dℬ
D;
,	ce	qui	donne	

	

∇×	 𝑥𝐸M cos 7.5	10S𝑡 − 𝛽𝑧 = −
𝜕
𝜕𝑡 𝑦

𝐸M𝜇M
𝜂 cos 7.5	10S𝑡 − 𝛽𝑧 	

	
On	calcule	d’abord	
	

∇×	 𝑥𝐸M cos 7.5	10S𝑡 − 𝛽𝑧 = 𝑦𝐸M𝛽 sin 7.5	10S𝑡 − 𝛽𝑧 	



	
puis	
	

−
𝜕
𝜕𝑡 𝑦

𝐸M𝜇M
𝜂 cos 7.5	10S𝑡 − 𝛽𝑧 = 𝑦

𝐸M𝜇M
𝜂 7.5	10S sin 7.5	10S𝑡 − 𝛽𝑧 ,	

	
et	l’on	écrit	que	ces	expressions	doivent	être	égales,	ce	qui	donne	
	

𝑦𝐸M𝛽 sin 7.5	10S𝑡 − 𝛽𝑧 = 𝑦
𝐸M𝜇M
𝜂 7.5	10S sin 7.5	10S𝑡 − 𝛽𝑧 .	

	
Après	simplifications,	on	obtient	une	deuxième	relation	
	

𝛽 =
𝜇M
𝜂 7.5	10

S.	

	
On	utilise	les	deux	relations	trouvées,	\

Y
= 𝜀M7.5	10S	et	𝛽 =

XW
Y
7.5	10S	pour	calculer	𝛽	et	𝜂.	

En	prenant	le	produit	des	deux,	on	obtient	𝛽] = 𝜇M𝜀M 7.5	10S ],	soit	
	

𝛽 = ±7.5	10S 𝜇M𝜀M = ±0.025	𝑟𝑎𝑑/𝑚	
	
On	en	déduit	
	

𝜂 =
𝜇M
𝛽 7.5	10

S = ±377	Ω.	

	
On	peut	vérifier	que	les	autres	équations	de	Maxwell	sont	satisfaites.	Le	champ	𝒟	est	orienté	
uniquement	suivant	𝑥	donc	∇.𝒟 = D𝒟f

Dg
.	Puisque	𝒟g	ne	dépend	pas	de	la	variable	𝑥,	le	champ		

𝒟		satisfait	 automatiquement	 l’équation	 de	 Maxwell	 ∇.𝒟 = 0.	 Un	 raisonnement	 similaire	
montre	que	∇. ℬ = Dℬh

Di
= 0,	satisfaisant	la	dernière	équation	de	Maxwell	restante.	On	note	

également	que	les	équations	de	Maxwell	n’impose	rien	sur	la	valeur	de	l’amplitude	𝐸M.	
	
	
Exercice	 3	 :	Etude	 d’une	 solution	 aux	 équations	 de	Maxwell	 dans	 le	 domaine	 temporel.	
Considérons	un	champ	électromagnétique	se	propageant	dans	le	vide	(absence	de	sources).	
On	suppose	que	les	composantes	du	champ	électrique	associé	s’écrivent	

ℰg = 𝑓k 𝑧 − 𝑣l𝑡 + 𝑓] 𝑧 + 𝑣l𝑡 	
ℰi = 0	
ℰm = 0	

avec	𝑓k	et	𝑓]	des	fonctions	réelles	arbitraires,	et	𝑣l =
k
XWnW

.	

1)	Montrer	que	ce	champ	électrique	satisfait	l’équation	de	Maxwell-Gauss.	
	
Dans	le	vide	et	en	absence	de	sources,	on	a	𝜌 = 0.	Il	faut	donc	vérifier	que		∇.𝒟 = 0.	En	effet,	



∇.𝒟 = ∇. 𝜀Mℰ = 𝜀M∇. ℰ = 𝜀M
𝜕ℰg
𝜕𝑥 +

𝜕ℰi
𝜕𝑦 +

𝜕ℰm
𝜕𝑧 = 𝜀M

𝜕ℰg
𝜕𝑥 = 0.	

	
2)	Trouver	les	trois	composantes	du	champ	ℋ	associé,	et	montrer	que	toutes	les	équations	
de	Maxwell	sont	satisfaites.	
	

On	part	de	Maxwell-Faraday,	∇×	ℰ = −Dℬ
D;
= −𝜇M

Dℋ
D;
,	et	on	remplace	ℰ	par	𝑥 𝑓k 𝑧 − 𝑣l𝑡 +

𝑓] 𝑧 + 𝑣l𝑡 .	Cela	donne	
	

−𝜇M
𝜕ℋ
𝜕𝑡 = 𝑦 𝑓k′ 𝑧 − 𝑣l𝑡 + 𝑓]′ 𝑧 + 𝑣l𝑡 ,	

	
en	notant		𝑓k′	la	fonction	dérivée	de	la	fonction	𝑓k.	On	a	alors	
	

𝜕ℋ
𝜕𝑡 = −𝑦

1
𝜇M

𝑓k′ 𝑧 − 𝑣l𝑡 + 𝑓]′ 𝑧 + 𝑣l𝑡 ,	

	
et	en	prenant	la	primitive,	on	trouve	
	

ℋ = 𝑦
1

𝜇M𝑣l
𝑓k 𝑧 − 𝑣l𝑡 − 𝑓] 𝑧 + 𝑣l𝑡 .	

	
(En	général,	on	peut	ajouter	un	vecteur	constant	:	ici	on	fait	le	choix	de	ne	regarder	que	la	
solution	pour	laquelle	ce	vecteur	constant	est	nul).	On	peut	vérifier	que	les	deux	équations	de	
Maxwell	restantes,		
	

∇. ℬ = 0,	

∇×	ℋ =
𝜕	𝒟
𝜕𝑡 ,	

	
sont	satisfaites.	La	première	l’est	car		
	

∇. ℬ = 𝜇M∇.ℋ = 𝜇M
𝜕ℋi

𝜕𝑦 = 0.	

	
Pour	vérifier	la	deuxième,	on	calcule	d’abord	
	

∇×	ℋ = −𝑥
1

𝜇M𝑣l
𝑓k′ 𝑧 − 𝑣l𝑡 − 𝑓]′ 𝑧 + 𝑣l𝑡 ,	

puis		
	

𝜕	𝒟
𝜕𝑡 = −𝜀M𝑣l𝑥 𝑓k′ 𝑧 − 𝑣l𝑡 − 𝑓]′ 𝑧 + 𝑣l𝑡 .	

On	a	alors	



∇×	ℋ −
𝜕	𝒟
𝜕𝑡 = 𝑥

1
𝜇M𝑣l

− 𝜀M𝑣l 𝑓k′ 𝑧 − 𝑣l𝑡 − 𝑓]′ 𝑧 + 𝑣l𝑡 .	

Mais	comme,	d’après	l’énoncé,	𝑣l = 1/ 𝜀M𝜇M,	on	a	
k

XWpq
− 𝜀M𝑣l =

nWXW
XW

− nW
nWXW

= 0,	et	on	

trouve	bien	∇×	ℋ − D	𝒟
D;
= 0.	

	
Exercice	4	:	Phaseurs	complexes	

1. Transformer	les	champs	réèls	suivants	en	leurs	phaseurs	complexes	:	
a) ℰ 𝑧, 𝑡 = 𝑦 cos 𝜔𝑡 − 𝑧 	
b) ℋ 𝑥, 𝑡 = 0.1 𝑦 cos 𝜔𝑡 − 0.3𝑥 + 0.5𝑧 sin 𝜔𝑡 + 0.3𝑥 	
c) ℬ 𝑦, 𝑧, 𝑡 = 𝑥 40	sin 3×10t𝑡 + 0.8𝑦 − 0.6𝑧 + 𝜋/4 		
d) ℰ 𝑧, 𝑡 = 𝑥 sin 𝛽𝑧 sin 21	×10x𝜋𝑡 − 𝑧 	
	
On	utilise	la	définition	du	phaseur	complexe:	ℰ 𝑥, 𝑦, 𝑧, 𝑡 = 𝑅𝑒	 	E 𝑥, 𝑦, 𝑧 𝑒|}; .	
	
	
a) ℰ 𝑧, 𝑡 = 𝑦 cos 𝜔𝑡 − 𝑧 = 𝑅𝑒	 	𝑦𝑒~|m𝑒|}; 	donc	E 𝑧 = 𝑦𝑒~|m.	

	
b) Comme		ℋ 𝑥, 𝑡 = 0.1 𝑦 cos 𝜔𝑡 − 0.3𝑥 + 0.5𝑧 cos 𝜔𝑡 + 0.3𝑥 − �

]
,	on	a	

	
ℋ 𝑥, 𝑡 = 𝑅𝑒	 	0.1	𝑦𝑒~|M.�g𝑒|}; − 0.05𝑗𝑧𝑒|M.�g𝑒|}; 	

	
donc	
	

H 𝑥 = 0.1	𝑦𝑒~|M.�g − 0.05𝑗𝑧𝑒|M.�g	
	

c) Comme	ℬ 𝑦, 𝑧, 𝑡 = 𝑥 40	cos 3×10t𝑡 + 0.8𝑦 − 0.6𝑧 + �
�
− �

]
,	on	a	en	posant	𝜔 =

3×10t,	
ℬ 𝑦, 𝑧, 𝑡 = 𝑅𝑒	 	𝑥20 2	(1 − j)𝑒|(M.ti~M.Sm)𝑒|}; 	

donc	
B 𝑦, 𝑧 = 𝑥20 2	(1 − j)𝑒|(M.ti~M.Sm)	

	
d) Comme	 ℰ 𝑧, 𝑡 = 𝑥 sin 𝛽𝑧 cos 21	×10x𝜋𝑡 − 𝑧 − �

]
,	 on	 a	 en	 posant	 𝜔 = 21	×

10x𝜋,	
ℰ 𝑧, 𝑡 = 𝑅𝑒	 −𝑗𝑥 sin 𝛽𝑧 𝑒~|m𝑒|}; 	

donc		
E 𝑦, 𝑧 = −𝑗𝑥 sin 𝛽𝑧 𝑒~|m	

	
	
	
	
	



2. Transformer	 les	 phaseurs	 complexes	 suivants	 en	 leurs	 champs	 réèls	 associés.	 On	
notera	𝜔	la	pulsation	temporelle.	

a) E 𝑦 = 5𝑧𝑒~|	�M�i	
b) B 𝑧 = 0.1𝑥𝑒~|	]�m-0.3𝑦𝑗𝑒~|	]�m	
c) E 𝑥 = 0.1𝑧(𝑒~|	kt	g − 0.5	𝑒|	kt	g)	
d) H 𝑥, 𝑧 = 𝑦(𝑒~|	�t	�g𝑒|	S�	�m)	

	
Une	 fois	 encore,	 on	 utilise	 la	 définition	ℰ 𝑥, 𝑦, 𝑧, 𝑡 = 𝑅𝑒	 	E 𝑥, 𝑦, 𝑧 𝑒|}; .	 La	 partie	 réelle	
peut	 se	 calculer	 de	 la	 manière	 suivante	 :	𝑅𝑒	 	E 𝑥, 𝑦, 𝑧 𝑒|}; = E 𝑥, 𝑦, 𝑧 𝑒|}; +
E∗ 𝑥, 𝑦, 𝑧 𝑒~|}; /2,	ou	on	note	*	le	conjugué	complexe.	Les	calculs	donnent	:	
	

a) 	ℰ 𝑦, 𝑡 = 5𝑧𝑒~|	�M�i𝑒|}; + 5𝑧𝑒|	�M�i𝑒~|}; /2 = 5𝑧 cos 𝜔𝑡 − 40𝜋𝑦 	
b) 	
c) ℬ 𝑦, 𝑧, 𝑡 = 0.1𝑥 �

�	 ������ ����	 ������

]
+ 0.3𝑦 ��	 ������ ~���	 ������

]|
	

	
donc	
	

ℬ 𝑦, 𝑧, 𝑡 = 0.1𝑥 cos 𝜔𝑡 − 2𝜋𝑧 + 0.3𝑦 sin 𝜔𝑡 − 2𝜋𝑧 	
	

d) ℰ 𝑥, 𝑡 = 0.1𝑧(𝑒|	 };~ktg + 𝑒~|	 };~ktg − 0.5	𝑒|	 };�ktg − 0.5	𝑒~|	 };�ktg ) /
2 = 𝑧 0.1cos 𝜔𝑡 − 18𝑥 − 0.05 cos(𝜔𝑡 + 18𝑥) 	

	
e) ℋ 𝑥, 𝑧, 𝑡 = 0.5𝑦 𝑒|	(};~�t	�g�S�	�m) + 𝑒~|	(};~�t	�g�S�	�m) = 𝑦 cos 𝜔𝑡 − 48	𝜋𝑥 +

64	𝜋𝑧 	
	


