Exercices EM-II : Série 2 - Solutions

Exercice 1 : Forme intégrale des équations de Maxwell. En utilisant le théoréme de la
divergence (Green-Ostrogradski, voir notes de cours p.9), et le théoréme du rotationnel (voir
notes de cours p. 10), mettre les équations de Maxwell

V.D =p,
~ . 0B
VX_)g_)——E,

V.B =0,
- =~ , 0D
VX?‘[—]‘FE,

sous leur forme intégrale. Comment sont modifiés les théorémes de Gauss et d’Ampeére dans
le cas dynamique ?

On commence par rappeler le théoréme de Green-Ostrogradski. Pour tout champ vectoriel ¥

définidans I'espace, [ff, V.¥dV ={f. v.dS,avecV unvolume fermé et S la surface fermée
entourant ce volume.

—

Maxwell-Gauss : Si on applique ce théoréme au champ D, on obtient

fffﬁdv:# 3. 35
vV S

Mais, comme V.D = p, cela donne

[ oar-ff 5.2

soit en notant Qi (t) = [ff, p(t) dV, on obtient une généralisation du théoreme de Gauss

§ D3 = Que(®

S
C’est la version intégrale de I'équation de Maxwell-Gauss V.D = p. La seule différence avec

le théoreme de Gauss est la dépendance temporelle de la charge interne (et du champ 5)

Equation V.B = 0 : En faisant le méme raisonnement 2 partir de V.B = 0, on obtient une
deuxieme équation sous forme intégrale :

#@.3:

S



Pour les deux équations restantes, il faut utiliser le théoréme du rotationnel: Pour tout champ

vectoriel ¥ défini dans I'espace, [. ¥.dl = [[, VX¥.dS avec C un contour fermé et S
n’importe quelle surface s’appuyant sur ce contour.

Maxwell-Faraday : Si on applique ce théoréme au champ 5, on obtient

—

On peut sortir la dérivée temporelle de I'intégrale spatiale (la forme de la surface ne dépend
pas du temps, et la dérivée est distributive par rapport a la somme), obtenant la forme
intégrale de I’équation de Maxwell-Faraday :

Maxwell-Ampeére : Pour la forme intégrale de I'équation de Maxwell-Ampére, on commence
par écrire le théoreme de Stokes pour H :

fﬁ.7:ff U 7. 45,
S
C

—

. 7 \ )z . \ = iy - 0D .
mais d’apres I'’équation de Maxwell-Ampere, VX H = j + —, ce qui donne

at

[ra-f] 1w+ ] 2 s
J dl = S]. T

Ici encore, on peut sortir la dérivée partielle par rapport au temps et on obtient une sorte de
théoréme d’Ampeére généralisé

— —> — a — —
f}f.dlzﬂ j.ds+—ff D.dS
C S at S

La différence par rapport au théoréeme d’ampere est 'ajout de la contribution du courant de

—

, D , .
déplacement 5 @ celle du courant normal J.

Exercice 2 : Ondes radio AM. Les composantes des champ électriques et magnétiques associés
a un signal radio AM qui se propage dans l'air (¢, = u,, = 1) en I'absence de sources sont :

E(x,v,2,t) = RE, cos(7.5 106t — Bz)
- E
H(x,y,zt) = ﬁ#cos(7.5 10°t — Bz)

ou Ey, [ et n sont des nombres réels.
a) Calculer les champs 2_5(36, v,z t) et §(x, Y, Z,t) associés.



D’apres I'énoncé, le milieu de propagation est I'air avec €, = u,, = 1. D’apres les relations
constitutives, on a simplement

D=gye,E = RE ¢, cos(7.5 10°t — Bz)

@zuourﬁzﬁ%cos(ZS 10°t — Bz)

b) En écrivant que ces champs doivent satisfaire les équations de Maxwell, trouver les
valeurs numériques de 8 et de n (donner aussi leurs unités).

Dans le vide, il n’y a par définition pas de charges, sauf éventuellement a I'endroit ol I'on en
place volontairement afin de créer une source de champ. Comme I’énoncé nous informe qu'’il

—

N — . — — 0D
n’y a pas de sources, onaj = 0 et p = 0. On part de Maxwell-Ampere, VX H = a0 et on

remplace les champs DetH par leurs expressions :
- [.E a
VX [y;cos(7.5 106t — Bz)] =2 [RE,&, cos(7.5 106t — Bz)].
On calcule d’abord
— E E
VX [ﬁ;ocos(7.5 106t — ,b’z)] = —f%ﬁsin(ZS 10°t — Bz),
puis
0 R .
% [REygo cos(7.5 10t — Bz)] = —XE,5,7.5 10° sin(7.5 10t — Bz),
et I'on écrit que ces expressions doivent étre égales, ce qui donne

E
_Q%'Bsin(ZS 10°t — Bz) = —XE,&,7.5 10°sin(7.5 10t — Bz).

Apres simplifications, on obtient une premiére relation :

E - 8075 106
n
Il reste a écrire I’équation de Maxwell-Faraday, Vx € = — Z—z:, ce qui donne
_ d71_E
VX [RE, cos(7.510%t — Bz)] = ——|y 0t cos(7.5 10t — Bz)

at

On calcule d’abord

VX [RE, cos(7.5 106t — Bz)] = PE,pB sin(7.5 106t — Bz)



puis

. Eotto

o[ E
90 o0s(7.5 105 — B2)| = 9

—7 Y

7.5 10 sin(7.5 10t — Bz),

et I'on écrit que ces expressions doivent étre égales, ce qui donne

E
9E,B sin(7.5 106t — Bz) = §—2H0

7.5 106 sin(7.5 10t — Bz).

Apres simplifications, on obtient une deuxieme relation

Ho
B =—7.510°.
n

On utilise les deux relations trouvées, S =£,7.510%et B = %7.5 10° pour calculer B et 7.

En prenant le produit des deux, on obtient 52 = uy&,(7.5 10°)?, soit

B =+7.510°/uye, = £0.025 rad/m

On en déduit

n= %7.5 106 = +377 Q.

On peut vérifier que les autres équations de Maxwell sont satisfaites. Le champ D est orienté
. . = = 0D . , .

uniqguement suivant x donc V.D = a—x". Puisque D, ne dépend pas de la variable x, le champ

D satisfait automatiquement I'équation de Maxwell V.D = 0. Un raisonnement similaire

- — 0B . . . . .
montre que V.B = a—yy = (, satisfaisant la derniere équation de Maxwell restante. On note

également que les équations de Maxwell n’impose rien sur la valeur de 'amplitude E,.

Exercice 3 : Etude d’une solution aux équations de Maxwell dans le domaine temporel.
Considérons un champ électromagnétique se propageant dans le vide (absence de sources).
On suppose que les composantes du champ électrique associé s’écrivent
Ey = fl(z - vpt) + fz(z + vpt)
& =0
E, =0

. , . . 1
avec f; et f, des fonctions réelles arbitraires, et v, =

\/ﬂogo'

1) Montrer que ce champ électrique satisfait I'équation de Maxwell-Gauss.

Dans le vide et en absence de sources, on a p = 0. Il faut donc vérifier que V.D =0.En effet,



0.

- —> — —> - > agx agy agz agx
VD_vgﬁ)_%vg_%<w;+®f+& =g o> =

_
2) Trouver les trois composantes du champ H associé, et montrer que toutes les équations
de Maxwell sont satisfaites.

On part de Maxwell-Faraday, Vx € = — 98

o = Mo g, et on remplace g par J?{fl (Z — vpt) +
1 (z + vpt)}. Cela donne

OH
“Hoge T Wh'(z = vpt) + £/ (2 + vpt)},
en notant f;' la fonction dérivée de la fonction f;. On a alors

OH 1
at —9—{fi'(z = vpt) + f'(z + vpt)},
Uo

et en prenant la primitive, on trouve

— 1
H = 37—{f1(z — vpt) — fz(z + vpt)}.
/’Lovp

(En général, on peut ajouter un vecteur constant : ici on fait le choix de ne regarder que la
solution pour laquelle ce vecteur constant est nul). On peut vérifier que les deux équations de
Maxwell restantes,

V.B =0,
_ . 0D
VX H =—
t
sont satisfaites. La premiere I'est car
V.B = MOV:]{ = MOW =0

Pour vérifier la deuxieme, on calcule d’abord

= 1
VX H = —f—{fl'(z — vpt) — fz'(z + vpt)},
.Uovp

puis

D
¥ —eovpa?{fl’(z — vpt) — fz'(z + vpt)}.

On a alors



: s . _ 1 _
Mais comme, d’apres I'énoncé, v, = 1/,/&l,, ON a ooy EVp =

. - 9D (1 , ,
VX = ot x<:u017p a Eovp>{f1 (z = vpt) = £o'(z + vpt)}:

vEkHo &
Ho vV €oko

=0, et on

— 9D _

trouve bien Vx H — o 0.

Exercice 4 : Phaseurs complexes

1.
a)
b)
c)
d)

Transformer les champs réels suivants en leurs phaseurs complexes :
g(z, t) = y cos(wt — z)

H(x,t) = 0.1[9 cos(wt — 0.3x) + 0.5Z sin(wt + 0.3x)]

B(y,z,t) = £ 40 sin(3x108¢ + 0.8y — 0.6z + /4)

£(z,t) = £ sin(Bz) sin(21 x10°7t — z)

On utilise la définition du phaseur complexe: g(x, y,z,t) = Re {E(x, y, Z)ej“’t}.

a)

b)

d)

E(z,t) = y cos(wt — z) = Re { 9e~Izei®t} donc E(2) = ye /2.
Comme }_)[(x, t) =0.1 [37 cos(wt — 0.3x) + 0.5Z cos (wt + 0.3x — g)], ona
H(x,t) = Re { 0.1 §e/03%eJwt — 0,05j2¢/03% ]t}
donc
H(x) = 0.1 9e7/03% — 0.05/2¢/03*

Comme Z?(y, z,t) = x40 cos (3><108t + 0.8y — 0.6z + % - g), on a en posant w =
3x108,
B(y,z,t) = Re { £20V2 (1 — j)e/ (08v-062) gjwrt}
donc
B(y,z) = £20V2 (1 — j)e/ (0:87-062)

Comme g(z, t) = Xsin(fBz) cos (21 x10°nt — z — g), on a en posant w =21 X
10°T,
£(z,t) = Re {—j& sin(Bz) e /Zel®t)
donc
E(y,2) = —jZ sin(Bz) e/~



2. Transformer les phaseurs complexes suivants en leurs champs réels associés. On
notera w la pulsation temporelle.

a) E(y) = 5zeJ4omy

b) B(z) = 0.1%e™/ 272.0.39je ) 2z
) E(x) =0.12(e /8% — 0.5 ¢/ 187)
d) ﬁ(x, z) = )';(e—j 481X 5 j 64-11'2)

Une fois encore, on utilise la définition g(x,y, z,t) = Re {E(x,y, Z)ej“’t}. La partie réelle
peut se calculer de la maniére suivante :Re {E(x, Yy, Z)ej‘“t} = (E(x, y, z)el®t +
E* (x,y, Z)e_j“’t)/Z, ou on note  le conjugué complexe. Les calculs donnent :

a) E(,t) = (52e71 40 eJ®t 4 52¢)40mY g=j0t) /9 = 5% cos(wt — 40my)

b)
R el (a)t—ZnZ)_I_e—j (wt—212) R el (mt—zrl:z)_e—j (wt—272)

c) B(y,zt)=0.1% . + 0.3y 3

donc
ﬁ(y, z,t) = 0.1X cos(wt — 2mz) + 0.3y sin(wt — 21z)

d) g(x, t) — (0.1ZA(€j (wt—18x) +e ) (wt-18%) _ () § pJ (Wt+18%) _ (5 p—J (a)t+18x)))/
2 = 2{0.1cos(wt — 18x) — 0.05 cos(wt + 18x)}

e) }_[)(x, z,t) = 0.5}’/\'(61' (wt—48 mx+641z) 4 o—J (WE—48 TX+64 nz)) = 9 cos(wt — 48 mx +
64 112)



