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CORRIGÉ DE LA SÉRIE XI 

 

EXERCICE XI.1 : CIRCUIT RC EN RÉGIME TRANSITOIRE (1) 

Considérons d’abord l’intervalle de temps 0 ≤ t  10 ms. 

Durant ce laps de temps, u(t)  U1 (= 20 V) 
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Détermination de la constante A, par la condition initiale sur le condensateur : 

 ARUiRUu 11111C )0t()0t(    

 
1

C1

R

uU
A

)0t( 
   mA30

R

uU
)t(i t400)0t(

ee CRt 1/

1

C1
1








 

B1.   Vee t400
)0t( 1520uUU)t(iR)t(u)t(u

CRt 1/

C1111C


 

  

 En particulier : V73.19u )ms10t(C   

Considérons maintenant l’intervalle de temps t > 10 ms. On introduit le changement de variable 

temporelle : t’ = t – 10 ms. Durant ce laps de temps, u(t’)  U2 (= – 30 V) et la condition initiale 

sur le condensateur est : )ms10t()0't( CC uu    
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EXERCICE XI.2 : CIRCUIT RC EN RÉGIME TRANSITOIRE (2) 

 

Considérons d’abord l’intervalle de temps 0 ≤ t  1 ms. 
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Considérons maintenant l’intervalle de temps 1 < t  2 ms. On introduit le changement de 

variable temporelle : t’ = t – 1 ms. 
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B. Les constantes de temps sont données par : 
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On en déduit également : V60)ms1t(uU C1,C   
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EXERCICE XI.3 : CIRCUIT LC EN RÉGIME TRANSITOIRE 

 

Pour t > 0 : 
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Cette équation admet une solution du type :   tsinA)t(i  (4) 

 

Détermination des constantes 

En introduisant (4) dans (3), on trouve : 
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Par ailleurs, à l’instant t = 0, on a : 

 i(t) = 0 (pas de saut de courant dans l’inductance) (6a) 
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Autrement dit : 
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Finalement, pour t > 0, le courant est donné par : 
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Remarque : dans un tel circuit, dépourvu de toute résistance, les oscillations peuvent se maintenir 

indéfiniment. Dans un circuit réel, la présence de résistances (fils, élément inductif) produirait un 

amortissement des oscillations. 


