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Source avec impédance interne

• Généralisation	de	la	notion	de	résistance	
interne:	impédance	interne iii jXRZ +=

IZUU io -=



Source avec impédance interne

• Représentation	équivalente	en	terme	de	
source	de	courant
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Equivalence sources de 
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Mise en série d’impédances 
(d’admittances)
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Mise en parallèle d’impédances 
(d’admittances)
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Bipôles composites élémentaires
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Circuit Impédance Admittance



Bipôles composites élémentaires 
(suite)
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Diagramme d’impédance
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Diagramme d’impédance

Re

Im
Circuit	RLC	série
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Diagramme d’impédance
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Circuit	RLC	série

Ljw C
j

w
-

Z

C
L

w
>w
1

j



Diagramme de phaseur

Re

Im

Circuit	RLC	série

I

Donnée:	le	courant	I
Problème:	calculer	U
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Diagramme de phaseur: circuit série-
parallèle

Im

Donnée:	le	courant	I1
Problème:	calculer	U=	U1+U3
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Question

• On	a	deux impédances en	série Z1et	Z2. Le	
module	de	l’impédance équivalente est la	
somme des	modules.

A:	Vrai

B:	faux



Tripôles équivalents
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Diviseurs de tension et de courant
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Théorème de Thévenin en régime 
sinusoïdal
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Théorème de Norton en régime 
sinusoïdal
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Exemple 1: Circuit RL série
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Exemple 2: Circuit RC série
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Exemple 3: Circuit RLC
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Exemple 4: Théorème de Thévenin

C

Déterminer	la	tension	U

1U

R

L

U1R 2R

2U

C



Question

• Avantages du	calcul complexe?



Question

• La	résistance	de	l’impédance
du	circuit	suivant est

A:

B:	

C:	

  
Rω 2 L2
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R2 +ω 2L2
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• Une	inductance	réelle	comporte	des	pertes	qui	peuvent	être	
introduites	dans	le	modèle	par	une	résistance	en	série	avec	
l’inductance.

• On	définit	alors	le	facteur	de	qualité	Q	de	l’inductance	comme	
le	rapport	

Inductance avec pertes
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• On	peut	aussi	utiliser	une	représentation	équivalente	avec	un	
schéma	en	parallèle:

Inductance avec pertes
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Pour	que	les	deux	modèles	soient	équivalents,	il	faut	avoir

Inductance avec pertes
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Inductance avec pertes
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Inductance avec pertes
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Inductance avec pertes
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Inductance avec pertes

On	peut	aussi	exprimer	(a)	et	(b)	en	fonction	de	Q:
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Inductance avec pertes
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Capacité avec pertes
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De	la	même	manière,	on	peut	définir	le	facteur	de	qualité	Q:
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Capacité avec pertes
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Circuit résonant série
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Circuit résonant série
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Circuit résonant série
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Pour																												,

Le	circuit	se	comporte	comme	
une	pure	résistance	et	le	courant	
passe	par	une	valeur	maximale:	
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Circuit résonant série
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Le	facteur	de	qualité	Qo du	circuit	complet	est	défini	par:
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où																							 et	QL et	QC sont	respectivement	les	
facteurs	de	qualité	de	l’inductance	et	de	la	capacité	à	la	
fréquence	de	résonnance.	
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Défini	à	la	fréquence	de	résonance!



Circuit résonant série
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Circuit résonant série

On	peut	facilement	démontrer	que:
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Importance du facteur de qualité

• Cette relation montre qu’un circuit avec un grand facteur de
qualité a une petite bande passante et vice-versa.

• La sélectivité en fréquence et les propriétés d’amplification de
circuits résonants jouent un grand rôle dans les équipements
de télécommunication. Nous avons vu que ces propriétés
peuvent se décrire à l’aide du facteur de qualité.

• Par exemple, lorsqu’un circuit résonant est utilisé dans un
récepteur radio pour sélectionner une station parmi d’autres, il
est important d’utiliser un circuit avec un grand facteur de
qualité pour éviter de recevoir les signaux d’une station
adjacente. Cette situation est illustrée à la figure suivante.
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Importance du facteur de qualité
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Importance du facteur de qualité

• Il est aussi important de réaliser qu’un facteur de qualité
trop grand (courbe bleue en pointillé) n’est pas non plus
désirable car les composantes fréquentielles du signal
sélectionné seront atténuées.

• Il faut aussi mentionner que la situation illustrée par la
figure précédente est hautement simplifiée; en pratique,
plusieurs circuits résonants sont utilisés dans un
récepteur, chacun accordé à une fréquence légèrement
différente pour atteindre la réponse désirée.



Exemple

• Une bobine d’inductance et une capacité variable sont
connectées à une source de tension pour former un circuit
résonant série. La bobine a une inductance de 0.2 mH et un
facteur de qualité de 150. La capacité a une résistance
interne série de 0.502 Ω. Le générateur est réglé sur une
fréquence de 1 MHz, une tension à vide de 2 V et sa
résistance interne est de 2 Ω. Calculer (a) la valeur de la
capacité pour accorder le circuit, (b) la résistance totale et
le facteur de qualité total du circuit, (c) le courant complexe
à la fréquence de résonnance et à 10 kHz au-dessus de la
fréquence de résonnance.



Le	lieu	complexe	relatif	à	une	grandeur	complexe	est	le	lieu	décrit
par	l’extrémité	du	vecteur	représentant	cette	grandeur	lorsqu’on	fait
varier	un	paramètre,	généralement	la	pulsation	ω.

Lieu complexe

Exemple:	circuit	résonnant	RLC	série
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Dans	le	plan	complexe,	l’inverse	d’une	droite	(demi-droite)	est	un	
cercle	(demi-cercle).

Lieu complexe
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Dans	le	plan	complexe,	l’inverse	d’une	droite	(demi-droite)	est	un	
cercle	(demi-cercle).

Lieu complexe
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A	la	fréquence	de	résonance	(												),	l’impédance
du	circuit…

A. est	maximal

B. est	minimal

C. est	nulle

D. est	infinie

Question

1/ LC



Comment	se	comporte	le	circuit	à		la	fréquence	de	résonance	
(												),	lorsque	R	tend	vers	l’infini?	

A. Court-circuit

B. Circuit	ouvert

C. Une	pure	inductance

D. Eune	pure	capacité

Question

1/ LC


