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Circuits	
  en	
  régime	
  sinusoïdal	
  2	
  

•  Phaseurs	
  et	
  nombres	
  complexes	
  
•  Nombres	
  complexes	
  

–  NoHons	
  d’algèbre	
  complexe	
  
–  Formule	
  d’Euler	
  
–  DérivaHon	
  et	
  intégraHon	
  

•  Phaseurs	
  
–  DéfiniHon	
  
–  OpéraHons	
  élémentaires	
  

•  Impédance	
  et	
  admiOance	
  

 



Phaseurs	
  et	
  nombres	
  complexes	
  

•  Phaseur:	
  moyen	
  simple	
  de	
  représenter	
  des	
  tensions	
  
et	
  courants	
  sinusoïdaux.	
  CeOe	
  méthode	
  a	
  été	
  
proposée	
  par	
  C.P.	
  Steinmetz	
  et	
  est	
  basée	
  sur	
  la	
  
relaHon	
  d’Euler.	
  	
  

Charles	
  Proteus	
  Steinmetz	
  (1865-­‐1923),	
  
ingénieur	
  électricien	
  américain	
  d’origine	
  

allemande.	
  Il	
  développa	
  la	
  méthode	
  
symbolique	
  pour	
  les	
  calculs	
  en	
  courant	
  

alternaHf.	
  
	
  



Nombres	
  complexes:	
  définition	
  

•  On	
  appelle	
  nombre	
  complexe	
  z	
  toute	
  expression	
  de	
  la	
  forme	
  

Carl	
  Friedrich	
  Gauss	
  (1777-­‐1855),	
  astronome,	
  
mathémaHcien	
  et	
  physicien	
  allemand.	
  Il	
  
introduisit	
  le	
  calcul	
  complexe	
  en	
  1801.	
  

	
  

baz j+=

où 1j −= 1j2 −=

jj3 −= 1j4 =et Etc. 



Notions	
  d’algèbre	
  complexe	
  

•  Égalité	
  de	
  deux	
  nombres	
  complexes	
  
 

212121 et bbaazz ==⇔=

111 jbaz += 222 jbaz +=

baz j+=

baz j* −=

azz 2* =+

•  Conjugué	
  complexe	
  de	
  
 



Notions	
  d’algèbre	
  complexe	
  

•  MulHplicaHon	
  

)j()( 2121212121 baabbbaazz ⋅+⋅+⋅−⋅=⋅

)j()( 212121 bbaazz +++=+

)j()( 212121 bbaazz −+−=−

22* bazz +=⋅

•  AddiHon	
  et	
  soustracHon	
  



Notions	
  d’algèbre	
  complexe	
  

•  Conjugué	
  complexe	
  des	
  opéraHons	
  élémentaires	
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•  Division	
  



Nombres	
  complexes:	
  	
  
représentation	
  géométrique	
  

•  On	
  appelle	
  a	
  la	
  parHe	
  réelle,	
  et	
  b	
  la	
  parHe	
  imaginaire	
  du	
  
nombre	
  complexe	
  z.	
  

	
  
•  ReprésentaHon	
  dans	
  le	
  plan	
  complexe:	
  

baz j+=

Axe des réels 

Axe des 
imaginaires 

)Re(za = )Im(zb =

θ= cosra

θ= sinrb

r

θ

z



Nombres	
  complexes:	
  	
  
représentation	
  géométrique	
  

Axe des réels 

Axe des 
imaginaires 

θ= cosra

θ= sinrb

r

θ

22 bazr +== :module	
  du	
  nombre	
  complexe	
  

a
bz arctan)arg( ==θ :argument	
  du	
  nombre	
  complexe	
  

z



Nombres	
  complexes:	
  	
  
D’autres	
  propriétés	
  

2121 zzzz ⋅=

2121 zzzz +≤+

2121 zzzz −≥−

Distance	
  entre	
  deux	
  nombres	
  complexes:	
  

2
12

2
1212 )()( bbaazz −+−=−



Nombres	
  complexes:	
  	
  
Formule	
  d’Euler	
  

θ+θ=θ sincos je j

)(
2
1sin

)(
2
1cos

θ−θ

θ−θ

−=θ

+=θ

jj

jj

ee
j

ee

Leonhard	
  Euler	
  (1707-­‐1783),	
  
mathémaHcien	
  suisse	
  mort	
  à	
  

Saint-­‐Pétersbourg.	
  	
  
 



Nombres	
  complexes:	
  	
  
Formule	
  d’Euler	
  

θ+θ==+= θ sincos jrrrejbaz j

Axe des réels 

Axe des 
imaginaires 

θ= cosra

θ= sinrb

r

θ

z

2/π= jejCas	
  parHculier:	
  	
  



Nombres	
  complexes:	
  	
  
Dérivation	
  par	
  rapport	
  à	
  l’argument	
  

θ= jrez

)2/(2/ π+θθπθ ===
θ

jjjj reererje
d
dz

Re 

Im 

θ

z
2/π

θd
dz

)2/(2/ π+θθπ = jjj eee



Nombres	
  complexes:	
  	
  
Intégration	
  par	
  rapport	
  à	
  l’argument	
  

θ= jrez
)2/(1 π−θθ−θ ==∫ θ=∫ θ jjj reerjdrezd

Re 

Im 

θ

z

2/π−

∫ θzd



Nombres	
  complexes:	
  	
  
Puissances	
  et	
  racines	
  

θ=+= jrejbaz
θ= jnnn erz

ψρ== jn ezw
n r=ρ

π+=ψ θ 2n
k

n

Puissance:	
  

Racine:	
  



Représentation	
  complexe	
  d’une	
  
grandeur	
  sinusoïdale	
  

θ+θ=θ sincos je j
Rappel:	
  Formule	
  d’Euler	
  

)cos(2)( θ+ω= tXtx

Soit	
  une	
  foncHon	
  sinusoïdale	
  

{ })(2Re)( θ+ω= tjXetx

:valeur	
  instantanée	
  complexe	
  )(2 θ+ω= tjXex
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Représentation	
  complexe	
  d’une	
  
grandeur	
  sinusoïdale	
  

Animation 



Le	
  phaseur	
  

)cos(2)( θ+ω= tXtx )(2 θ+ω= tjXex

tjjtj eXeXex ωθθ+ω == 22 )(

Dans	
  un	
  circuit	
  électrique	
  linéaire	
  en	
  régime	
  sinusoïdal	
  permanent,	
  
tous	
  les	
  courants	
  et	
  les	
  tensions	
  ont	
  la	
  même	
  pulsaHon	
  ω.	
  Le	
  terme	
  	
  
exp(jωt)	
  est	
  donc	
  commun	
  à	
  toutes	
  les	
  grandeurs	
  (courants	
  et	
  tensions)	
  
du	
  circuit.	
  Toute	
  grandeur	
  peut	
  être	
  caractérisé	
  uniquement	
  par	
  son	
  
amplitude	
  (valeur	
  efficace)	
  X	
  et	
  sa	
  phase	
  θ.	
  

Le	
  phaseur	
  associé	
  à	
  x(t):	
  	
   θ= jXeX



Le	
  phaseur	
  

)cos(2)( θ+ω= tXtx )(2 θ+ω= tjXex

tjjtj eXeXex ωθθ+ω == 22 )(

Dans	
  un	
  circuit	
  électrique	
  linéaire	
  en	
  régime	
  sinusoïdal	
  permanent,	
  
tous	
  les	
  courants	
  et	
  les	
  tensions	
  ont	
  la	
  même	
  pulsaHon	
  w.	
  Le	
  terme	
  	
  
exp(jωt)	
  est	
  donc	
  commun	
  à	
  toutes	
  les	
  grandeurs	
  (courants	
  et	
  tensions)	
  
du	
  circuit.	
  Toute	
  grandeur	
  peut	
  être	
  caractérisé	
  uniquement	
  par	
  son	
  
amplitude	
  (valeur	
  efficace)	
  X	
  et	
  sa	
  phase	
  θ.	
  

Le	
  phaseur	
  associé	
  à	
  x(t):	
  	
   θ= jXeX

	


	



Un	
  phaseur	
  ne	
  dépend	
  pas	
  du	
  
temps	
  

	


	
  



Diagramme	
  des	
  phaseurs	
  

)cos(2)( α+ω= tUtu α= jUeU
)cos(2)( β+ω= tIti β= jIeI



Opérations	
  élémentaires	
  sur	
  les	
  
phaseurs	
  

•  AddiHon  

Re 

Im 

1α

1U

2U

2α

21 UUU +=

α

)cos(2 2121
2
2

2
1 α−α++= UUUUU

2211
2211

coscos
sinsinarctan

α+α
α+α=α

UU
UU



Opérations	
  élémentaires	
  sur	
  les	
  
phaseurs	
  

•  SoustracHon	
  

Re 

Im 

1α

1U

2U

2α

21 UUU −=
α

)cos(2 2121
2
2

2
1 α−α−+= UUUUU

2211
2211

coscos
sinsinarctan

α−α
α−α=α

UU
UU

2U−



Opérations	
  élémentaires	
  sur	
  les	
  
phaseurs	
  

•  MulHplicaHon	
  

α= jXeX β= jYeY

ϕβα ==⋅= jjj ZeYeXeYXZ

XYZ =avec et β+α=ϕ



Opérations	
  élémentaires	
  sur	
  les	
  
phaseurs	
  

•  QuoHent	
  

α= jXeX β= jYeY

ϕ
β

α
=== j

j

j
Ze

Ye
Xe

Y
XZ

Y
XZ =avec	
   et β−α=ϕ



Dérivation	
  d’une	
  grandeur	
  sinusoïdale	
  

)cos(2)( θ+ω= tXtx

θ= jXeX

tjj eXex ωθ=

Grandeur	
  sinusoïdale	
  

Valeur	
  instantanée	
  complexe	
  

Phaseur	
  

xjejXe
dt
xdy tjj ω=ω== ωθ XjY ω=

DérivaHon	
  par	
  rapport	
  au	
  temps:	
  

Equivaut	
  à	
  une	
  mulHplicaHon	
  par	
  jω	
  !	
  

dt
dxy =



Dérivation	
  d’une	
  grandeur	
  sinusoïdale	
  

xjejXe
dt
xdy tjj ω=ω== ωθ XjY ω=

Généralisation: 

xj
dt
xdz n
n

n
)( ω== XjZ n)( ω=



Intégration	
  d’une	
  grandeur	
  sinusoïdale	
  

x
j

ee
j
XdteXedtxy tjjtjj

ω
=

ω
=∫=∫= ωθωθ 1

X
j

Y
ω

= 1

IntégraHon	
  par	
  rapport	
  au	
  temps:	
  

Equivaut	
  à	
  une	
  division	
  par	
  jω	
  !	
  

∫= dttxy )(



Dérivation	
  et	
  intégration	
  d’une	
  
grandeur	
  sinusoïdale	
  

•  L’uHlisaHon	
  d’une	
  représentaHon	
  complexe	
  
des	
  grandeurs	
  sinusoïdales	
  permet	
  de	
  
remplacer	
  les	
  opéraHons	
  de	
  dérivaHon	
  et	
  
d’intégraHon	
  par	
  une	
  mulHplicaHon	
  ou	
  une	
  
division	
  par	
  jω.	
  

•  Ainsi	
  une	
  équaHon	
  intégro-­‐différenHelle	
  se	
  
transforme	
  en	
  une	
  équaHon	
  algébrique!	
  



Interprétation	
  géométrique	
  

Re 

Im 

X

θ
2/π

Xj

)2/(2/ π+θπ == jj XeXeXj



Interprétation	
  géométrique	
  

Re 

Im 

X

θ
2/π−

Xj−

)2/(2/ π−θπ− ==

−=

jj XeXe

Xj
j
X



Impédance	
  et	
  admittance	
  

•  L’impédance	
  complexe	
  d’un	
  bipôle	
  en	
  régime	
  
permanent	
  sinusoïdal:	
  

I
U

i
uZ ==

•  L’admiOance	
  complexe	
  d’un	
  bipôle	
  en	
  
régime	
  permanent	
  sinusoïdal:	
  

ZU
I

u
iY 1===



Impédance	
  et	
  admittance	
  

α= jUeU β= jIeI

ϕ
β

α
=== j

j

j
Ze

Ie
Ue

I
UZ

I
UZ = β−α=ϕ

ϕ−
α

β
=== j

j

j
Ye

Ue
Ie

U
IY

U
IY = β−α=ϕ

Z	
  exprimé	
  en	
  ohm	
   Y	
  exprimé	
  en	
  siemens	
  



Impédance	
  et	
  admittance	
  

jXRZeZ j +== ϕ

jBGYeY j +== ϕ−

R:	
  résistance	
  
X:	
  réactance	
  

ϕ= cosZR
ϕ= sinZX

G:	
  conductance	
  
B:	
  susceptance	
  

ϕ= cosYG
ϕ−= sinYB

22 XRZ +=
)/arctan( RX=ϕ

22 BGY +=
)/arctan( GB−=ϕ



Impédance	
  et	
  admittance	
  

ϕ
β

α
=== j

j

j
Ze

Ie
Ue

I
UZ ϕ−

α

β
=== j

j

j
Ye

Ue
Ie

U
IY

Re 

Im 

Z

ϕ

Y

ϕ− R

X

B

G

jXRZ +=

jBGY +=



Application	
  à	
  la	
  résistance	
  

)cos(2)( α+ω= tUtu α= jUeU

)cos(2)( β+ω= tIti β= jIeI

)()( tRitu =

Valeurs	
  instantanées	
   Phaseurs	
  

IRU =

0,, =ϕ== RRR RZRZ



Application	
  à	
  l’inductance	
  

)cos(2)( α+ω= tUtu α= jUeU

)cos(2)( β+ω= tIti β= jIeI

dt
diLtu =)(

Valeurs	
  instantanées	
   Phaseurs	
  

ILjU ω=

2/,, π=ϕω=ω= LLL LZLjZ

LXR LL ω== ,0



Application	
  à	
  la	
  capacité	
  

)cos(2)( α+ω= tUtu α= jUeU

)cos(2)( β+ω= tIti β= jIeI

dt
duCti =)(

Valeurs	
  instantanées	
   Phaseurs	
  

UCjI ω=

2/,/1,/1 π−=ϕω=ω= CCC CZCjZ
CXR CC ω−== /1,0



Exemple	
  

•  Evaluer	
  la	
  valeur	
  efficace,	
  la	
  fréquence	
  et	
  la	
  période	
  de	
  la	
  
tension	
  appliquée	
  u(t)	
  

•  Déterminer	
  analyHquement	
  le	
  courant	
  dans	
  chacun	
  des	
  
éléments	
  et	
  celui	
  fourni	
  par	
  la	
  source	
  

•  Tracer	
  chacun	
  de	
  ces	
  courants	
  

)6/1.157cos(170)( π+= ttu

HL
FC

R

722.0
8.46

170

=
µ=
Ω=



Exemple	
  

•  Evaluer	
  la	
  valeur	
  efficace,	
  la	
  fréquence	
  et	
  la	
  période	
  de	
  la	
  
tension	
  appliquée	
  u(t)	
  

•  Déterminer	
  analyHquement	
  le	
  courant	
  dans	
  chacun	
  des	
  
éléments	
  et	
  celui	
  fourni	
  par	
  la	
  source	
  

•  Tracer	
  chacun	
  de	
  ces	
  courants	
  

)6/1.157cos(170)( π+= ttu

HL
FC

R

722.0
8.46

170

=
µ=
Ω=

	


	



Calcul	
  au	
  tableau!	
  
Mais	
  ce:e	
  fois	
  à	
  l’aide	
  des	
  

phaseurs!	
  
	


	
  


