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𝐶 = 100 μF

𝑖(𝑡)

𝑅 = 2 kΩ

𝑢𝑐(𝑡)

1

2

𝑈𝑆 = 12 V

𝑡 = 1.4 s

On considère le condensateur initialement déchargé et 

l’interrupteur est en position 1.

A 𝑡 = 1.4 s, on bascule l’interrupteur en position 2.

Calculons 𝑢𝑐(𝑡) et 𝑖(𝑡)
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Circuit RC – exemple 

𝑡

𝑢𝑐(𝑡)

𝑡

𝑖(𝑡)

0

0

6 mA

−6 mA

1.4 s

1.4 s

0.2 s

0.2 s

12 V
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Circuit RC – exemple 

𝑡

𝑢𝑐(𝑡)

𝑡

𝑖(𝑡)

0

0

1.4 s

1.4 s

12 V

6 mA

−6 mA



▪ Dans un circuit RC, le condensateur peut se charger ou se décharger 
avec une constante de temps donnée par:

𝜏 = 𝑅𝐶

▪ La solution transitoire d’un circuit RC est de type exponentielle. 

▪ Une condition initiale est nécessaire pour définir la solution du 
problème.

▪ Dans un circuit RC série, le cycle de charge d’un condensateur 
initialement déchargé est de la forme:

𝑢𝑐 𝑡 = 𝑈𝑠 1 − 𝑒− Τ𝑡 𝜏
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▪ On modélise un circuit dépendant du temps 𝑡:

Circuit RL
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𝐿𝑈𝑆

𝑖(𝑡) 𝑅

𝑢𝐿(𝑡)



▪ On modélise un circuit dépendant du temps 𝑡:
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𝐿𝑈𝑆

𝑖(𝑡) 𝑅

𝑢𝐿(𝑡)

Loi des mailles:

𝑈𝑆 = 𝑅𝑖 𝑡 + 𝑢𝐿(𝑡)

Relation caractéristique de 

l’inductance

𝑢𝐿(𝑡) = 𝐿
𝑑𝑖

𝑑𝑡
(𝑡)

Donc on obtient:

𝑈𝑆 = 𝐿
𝑑𝑖

𝑑𝑡
(𝑡) + 𝑅𝑖(𝑡)

𝑑𝑖

𝑑𝑡
𝑡 +

𝑅

𝐿
𝑖(𝑡) =

1

𝐿
𝑈𝑆



Que vaut la constante de temps (en µs)?
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Rank Responses

1

𝑑𝑖

𝑑𝑡
𝑡 +

𝑅

𝐿
𝑖(𝑡) =

1

𝐿
𝑈𝑆

𝑅 = 9 Ω
𝐿 = 360 μH
𝑈𝑠 = 0.5 V



▪ On modélise un circuit dépendant du temps 𝑡:
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𝑑𝑖

𝑑𝑡
𝑡 +

𝑅

𝐿
𝑖(𝑡) =

1

𝐿
𝑈𝑆
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𝑑𝑖

𝑑𝑡
𝑡 +

𝑅

𝐿
𝑖(𝑡) =

1

𝐿
𝑈𝑆
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𝑖 𝑡 = 𝐼𝑠 1 − 𝑒− Τ𝑡 𝜏

𝑡𝜏

𝑖(𝑡)

𝐼𝑆

0

Circuit RL
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𝑡𝜏

𝑖(𝑡)

𝐼𝑆

0.63 ⋅ 𝐼𝑆

0

𝑖 𝑡 = 𝐼𝑠 1 − 𝑒− Τ𝑡 𝜏
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𝑡

𝑖(𝑡)

𝐼𝑆

3𝜏

0.95 ⋅ 𝐼𝑆

0

𝑖 𝑡 = 𝐼𝑠 1 − 𝑒− Τ𝑡 𝜏
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𝑡

𝑖(𝑡)

𝐼𝑆

5𝜏

0.99 ⋅ 𝐼

0

𝑖 𝑡 = 𝐼𝑠 1 − 𝑒− Τ𝑡 𝜏



▪ Dans un circuit RL, les grandeurs électriques de l’inductance évoluent 
avec une constante de temps donnée par:

𝜏 =
𝐿

𝑅

▪ La solution transitoire d’un circuit RL est de type exponentielle. 

▪ Une condition initiale est nécessaire pour définir la solution du 
problème.

▪ Dans un circuit RL série, le régime transitoire du courant est de la 
forme:

𝑖𝐿 𝑡 = 𝐼𝑠 1 − 𝑒− Τ𝑡 𝜏
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Régime sinusoïdal permanent

E
E

-1
0
6

C
. 

L
a

ff
o

rg
u

e
 

28



▪ Ce que nous savons faire pour l’instant:

• Source constante

• Régime transitoire d’un condensateur ou d’une inductance

• Régime stationnaire

▪ Ce qu’il faut savoir faire aussi:

• Signaux alternatifs périodiques

Signaux alternatifs
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Réseau électrique: 50 Hz Telecomm: ∼ 5 GHz

Son: ∼ 1 kHz



▪ On modélise un circuit dépendant du temps 𝑡:
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𝐿𝑈𝑆 ⋅ cos(𝜔𝑡)

𝑖(𝑡) 𝑅

𝑢𝐿(𝑡)

(𝜔 = 2𝜋𝑓)

𝑑𝑖

𝑑𝑡
𝑡 +

𝑅

𝐿
𝑖(𝑡) =

1

𝐿
𝑈𝑆 ⋅ cos(𝜔𝑡)



▪ On modélise un circuit dépendant du temps 𝑡:
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𝐿𝑈𝑆 ⋅ cos(𝜔𝑡)

𝑖(𝑡) 𝑅

𝑢𝐿(𝑡)

(𝜔 = 2𝜋𝑓)

𝑑𝑖

𝑑𝑡
𝑡 +

𝑅

𝐿
𝑖(𝑡) =

1

𝐿
𝑈𝑆 ⋅ cos(𝜔𝑡)



▪ On modélise un circuit dépendant du temps 𝑡:
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𝐿𝑈𝑆 ⋅ cos(𝜔𝑡)

𝑖(𝑡) 𝑅

𝑢𝐿(𝑡)

(𝜔 = 2𝜋𝑓)

𝑑𝑖

𝑑𝑡
𝑡 +

𝑅

𝐿
𝑖(𝑡) =

1

𝐿
𝑈𝑆 ⋅ cos(𝜔𝑡)

Solution particulière sous la forme:

𝑖𝑝 𝑡 = 𝐼𝑝cos(𝜔𝑡 + 𝜑)

𝐼𝑝 =
𝑈𝑠

𝑅 1 + 𝜔𝜏 2

𝜑 = −arctan(𝜔𝜏)



▪ On modélise un circuit dépendant du temps 𝑡:
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𝐿𝑈𝑆 ⋅ cos(𝜔𝑡)

𝑖(𝑡) 𝑅

𝑢𝐿(𝑡)

(𝜔 = 2𝜋𝑓)

𝑑𝑖

𝑑𝑡
𝑡 +

𝑅

𝐿
𝑖(𝑡) =

1

𝐿
𝑈𝑆 ⋅ cos(𝜔𝑡)

La résolution peut être compliquée.

La solution dépend de la fréquence.



▪ On modélise un circuit dépendant du temps 𝑡:
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𝐿1𝑈𝑆 ⋅ cos(𝜔𝑡)

𝑖(𝑡) 𝑅1

𝑢𝐿1(𝑡)

(𝜔 = 2𝜋𝑓)

𝑢𝑅2(𝑡)𝑅2

𝑢𝐶(𝑡)

𝐿2
𝐶

𝑢𝐿2(𝑡)



▪ Il existe une méthode pour modéliser les circuits en régime sinusoïdal 
permanent très simplement

▪ Avant, il faut bien comprendre les signaux sinusoïdaux

𝑠 𝑡 = መ𝐴 ⋅ cos(𝜔𝑡 + 𝜑)

Signaux alternatifs
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Amplitude (crête)

Pulsation (= 2𝜋𝑓)

Phase 



▪ Définition: On appelle régime permanent sinusoïdal un régime dans 
lequel courants et tensions évoluent périodiquement sous forme de 
signaux sinusoïdaux une fois le régime transitoire passé.

• Par exemple, dans les circuits vus précédemment, le régime transitoire est 
passé lorsque 𝑡 > 5𝜏

Signaux alternatifs
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𝑠 𝑡 = መ𝐴 ⋅ cos(𝜔𝑡 + 𝜑)
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Amplitude (crête)

Pulsation (= 2𝜋𝑓)

Phase 

መ𝐴

መ𝐴 ⋅ cos(𝜑)

𝑇

𝑠(𝑡)

𝑡
0



▪ L’amplitude:

• Aussi appelée valeur crête

• Correspond à la valeur maximale 
du signal

▪ Autre paramètre lié: la valeur 
efficace

𝐴 =
1

𝑇
න

0

𝑇

𝑠 𝑡 2𝑑𝑡

Signaux alternatifs
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𝑠(𝑡)

𝑡0

෡𝑨
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▪ L’amplitude:

• Aussi appelée valeur crête

• Correspond à la valeur maximale 
du signal

▪ Autre paramètre lié: la valeur 
efficace

𝐴 =
1

𝑇
න

0

𝑇

𝑠 𝑡 2𝑑𝑡 =
መ𝐴

2

Signaux alternatifs
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𝑠(𝑡)

𝑡0

෡𝑨

𝑨



▪ Pourquoi définit-on la valeur efficace?

• Exemple: puissance absorbée par une 
résistance

• 𝑝 𝑡 = 𝑅𝑖 𝑡 2

• 𝑖 𝑡 = መ𝐼 cos 𝜔𝑡 + 𝜑

• 𝑃 =
1

𝑇
0׬
𝑇
𝑝 𝑡 𝑑𝑡 (puissance moyenne)
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▪ La pulsation:

• Liée à la périodicité du signal

𝜔 = 2𝜋𝑓 =
2𝜋

𝑇

• 𝑇 s’exprime en seconde (s)

• 𝑓 s’exprime en hertz (Hz)

• 𝜔 s’exprime en radian par 
seconde (rad/s, ou s−1)

Signaux alternatifs
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𝑠(𝑡)

𝑡0

𝑻



▪ La phase:

• Traduit le retard d’un signal

• 𝜑 s’exprime en radian (rad)

Signaux alternatifs
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𝑠(𝑡)

𝑡0

𝚫𝒕 = 𝝋/𝝎



Signaux alternatifs – la résistance
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𝑈𝑆cos(𝜔𝑡)

𝑖(𝑡)

𝑅 𝑢𝑅(𝑡)

Loi des mailles:

𝑢𝑟 𝑡 = 𝑈𝑠cos(𝜔𝑡)

Loi d’Ohm:

𝑢𝑅 𝑡 = 𝑅𝑖(𝑡)

Donc: 

𝑖 𝑡 =
𝑈𝑠
𝑅
cos 𝜔𝑡

𝜑 = 0 rad: courant et 

tension sont en phase

𝑡0

𝑢𝑅(𝑡) 𝑖(𝑡)



Signaux alternatifs – le condensateur
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𝑈𝑆cos(𝜔𝑡)

𝑖(𝑡)

𝐶 𝑢𝑐(𝑡)

Loi des mailles:

𝑢𝑐 𝑡 = 𝑈𝑠cos(𝜔𝑡)

Condensateur:

𝑖 𝑡 = 𝐶
𝑑𝑢𝑐
𝑑𝑡

Donc: 

𝑖 𝑡 = −𝐶𝜔𝑈𝑠sin(𝜔𝑡)

𝑖 𝑡 = 𝐶𝜔𝑈𝑠 cos 𝜔𝑡 +
𝜋

2

𝜑 =
𝜋

2
rad: le courant est en

avance de phase sur la 

tension

𝑡0

𝑢𝑐(𝑡) 𝑖(𝑡)



Signaux alternatifs – l’inductance
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𝑈𝑆cos(𝜔𝑡)

𝑖(𝑡)

𝐿 𝑢𝐿(𝑡)

Loi des mailles:

𝑢𝐿 𝑡 = 𝑈𝑠cos(𝜔𝑡)

Inductance:

𝑢𝐿(𝑡) = 𝐿
𝑑𝑖

𝑑𝑡

Donc: 

𝑖 𝑡 =
𝑈𝑠
𝐿𝜔

sin(𝜔𝑡)

𝑖 𝑡 =
𝑈𝑠
𝐿𝜔

cos 𝜔𝑡 −
𝜋

2

𝜑 = −
𝜋

2
rad: le courant est

en retard de phase sur la 

tension

𝑡0

𝑢𝐿(𝑡) 𝑖(𝑡)
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Composant Loi ෠𝑰/෡𝑼 𝝋𝑰 −𝝋𝑼

Résistance

𝑢 𝑡 = 𝑅𝑖(𝑡)
1

𝑅
0

Condensateur

𝑖 𝑡 = 𝐶
𝑑𝑢

𝑑𝑡
(𝑡) 𝐶𝜔

𝜋

2

Inductance

𝑢 𝑡 = 𝐿
𝑑𝑖

𝑑𝑡
(𝑡)

1

𝐿𝜔
−
𝜋

2

𝑅

𝐶

𝐿
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▪ Que remarque-t-on?

• L’amplitude de la tension est proportionnelle à l’amplitude du courant

• Cela rappelle un peu la loi d’Ohm…

• Mais les signaux ne sont pas proportionnels car il y a un décalage de 
phase

▪ Que pouvons-nous faire?

• Les fonctions trigonométriques ont d’autres propriétés intéressantes…



Signaux alternatifs
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▪ Que remarque-t-on?

• L’amplitude de la tension est proportionnelle à l’amplitude du courant

• Cela rappelle un peu la loi d’Ohm…

• Mais les signaux ne sont pas proportionnels car il y a un décalage de 
phase

▪ Que pouvons-nous faire?

• Les fonctions trigonométriques ont d’autres propriétés intéressantes…

• … liées aux nombres complexes



Comment vous sentez-vous avec les nombres
complexes?

A. Très à-l’aise

B. A peu près à-l’aise

C. Pas à-l’aise
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Session ID: ee106poll

URL: ttpoll.eu



Signaux alternatifs – Formalisme complexe
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▪ Que pouvons-nous faire?

• Les fonctions trigonométriques ont d’autres propriétés intéressantes…

• … liées aux nombres complexes

▪ Nombres complexes:

• On considère 𝑥 ∈ ℂ

• Le cours de maths nous dit que 𝑥 = ෠𝑋 cos 𝜃 + 𝑗 sin 𝜃 = ෠𝑋𝑒𝑗𝜃

• Donc 𝑅𝑒 𝑥 = ෠𝑋 cos 𝜃 = 𝑅𝑒 ෠𝑋𝑒𝑗𝜃

• En appliquant à notre cas: መ𝐴 cos 𝜔𝑡 + 𝜑 = 𝑅𝑒 መ𝐴𝑒𝑗 𝜔𝑡+𝜑



Rappels sur les nombres complexes
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❑ Forme algébrique

𝑧 = 𝑥 + 𝑗𝑦
❑ Forme trigonométrique

𝑧 = 𝜌 cos 𝜃 + 𝑗sin 𝜃
❑ Forme exponentielle

𝑧 = 𝜌𝑒𝑗𝜃

❑ Re 𝑧 = 𝑥 = 𝜌 ⋅ cos(𝜃) ;    Im 𝑧 = 𝑦 = 𝜌 ⋅ sin 𝜃

𝑧 = 𝜌 = 𝑥2 + 𝑦2 ;    arg 𝑧 = 𝜃

❑ cos 𝜃 =
𝑥

𝜌
;    sin 𝜃 =

𝑦

𝜌
;    tan 𝜃 =

𝑦

𝑥

Voire fiche de 

rappel sur Moodle
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Re(𝑧)

Im(𝑧)

0

𝑧

𝜽

𝝆

𝑥

𝑦
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▪ Exemple:

• 𝑢 𝑡 = ෡𝑈 cos 𝜔𝑡 + 𝜑

• On définit une tension complexe assosciée:

𝑢(𝑡) = ෡𝑈𝑒𝑗 𝜔𝑡+𝜑

• On a alors:
𝑢 𝑡 = 𝑅𝑒 𝑢(𝑡)

• On peut alors étudier les circuits avec les grandeurs sous forme complexe, 
et on prend la partie réelle du résultat.



▪ On modélise un circuit dépendant sous forme complexe:

Circuit RL – Formalisme complexe
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𝐿෡𝑈𝑠𝑒
𝑗𝜔𝑡

𝑖(𝑡) 𝑅

𝑢𝐿(𝑡)

𝑖(𝑡) = መ𝐼𝑒𝑗 𝜔𝑡+𝜑



Quelle est la bonne réponse?

A.
𝑑𝑥

𝑑𝑡
𝑡 = 𝑋𝑒𝑘𝑡

B.
𝑑𝑥

𝑑𝑡
𝑡 = 𝑘𝑋𝑒𝑘𝑡

C.
𝑑𝑥

𝑑𝑡
𝑡 =

𝑋

𝑘
𝑒𝑘𝑡
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𝑥 𝑡 = 𝑋𝑒𝑘𝑡
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𝐿෡𝑈𝑠𝑒
𝑗𝜔𝑡

𝑖(𝑡) 𝑅

𝑢𝐿(𝑡)

𝑖(𝑡) = መ𝐼𝑒𝑗 𝜔𝑡+𝜑
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𝐿෡𝑈𝑠𝑒
𝑗𝜔𝑡

𝑖(𝑡) 𝑅

𝑢𝐿(𝑡)

𝑖(𝑡) = መ𝐼𝑒𝑗 𝜔𝑡+𝜑



▪ On modélise un circuit dépendant sous forme complexe:

Circuit RL – Formalisme complexe
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𝐿෡𝑈𝑠𝑒
𝑗𝜔𝑡

𝑖(𝑡) 𝑅

𝑢𝐿(𝑡)

Loi de mailles:
෡𝑈𝑠𝑒

𝑗𝜔𝑡 = 𝑅𝑖(𝑡) + 𝑢𝐿(𝑡)

Inductance:

𝑢𝐿(𝑡) = 𝐿
𝑑𝑖

𝑑𝑡
(𝑡)

𝑖(𝑡) = መ𝐼𝑒𝑗 𝜔𝑡+𝜑

⇒ 𝑢𝐿(𝑡) = 𝐿 𝑗𝜔 መ𝐼𝑒𝑗 𝜔𝑡+𝜑

⇒ 𝑢𝐿(𝑡) = 𝑗𝐿𝜔𝑖(𝑡)

On a alors:
෡𝑈𝑠𝑒

𝑗𝜔𝑡 = 𝑅𝑖(𝑡) + 𝑗𝐿𝜔𝑖(𝑡)

⇒ ෡𝑈𝑠𝑒
𝑗𝜔𝑡 = 𝑅 + 𝑗𝐿𝜔 𝑖 𝑡
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𝐿෡𝑈𝑠𝑒
𝑗𝜔𝑡

𝑖(𝑡) 𝑅

𝑢𝐿(𝑡)

On a alors:
෡𝑈𝑠𝑒

𝑗𝜔𝑡 = 𝑅𝑖(𝑡) + 𝑗𝐿𝜔𝑖(𝑡)

⇒ ෡𝑈𝑠𝑒
𝑗𝜔𝑡 = 𝑅 + 𝑗𝐿𝜔 𝑖 𝑡

⇒ 𝑖 𝑡 =
෡𝑈𝑠𝑒

𝑗𝜔𝑡

𝑅 + 𝑗𝐿𝜔

⇒ መ𝐼𝑒𝑗 𝜔𝑡+𝜑 =
෡𝑈𝑠𝑒

𝑗𝜔𝑡

𝑅 + 𝑗𝐿𝜔

⇒ መ𝐼𝑒𝑗𝜑𝑒𝑗𝜔𝑡 =
෡𝑈𝑠𝑒

𝑗𝜔𝑡

𝑅 + 𝑗𝐿𝜔

⇒ መ𝐼𝑒𝑗𝜑 =
෡𝑈𝑠

𝑅 + 𝑗𝐿𝜔

𝑖(𝑡) = መ𝐼𝑒𝑗 𝜔𝑡+𝜑
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𝐿෡𝑈𝑠𝑒
𝑗𝜔𝑡

𝑖(𝑡) 𝑅

𝑢𝐿(𝑡)

⇒ መ𝐼𝑒𝑗𝜑 =
෡𝑈𝑠

𝑅 + 𝑗𝐿𝜔

መ𝐼 =
෡𝑈𝑠

𝑅 + 𝑗𝐿𝜔
=

෡𝑈𝑠

𝑅2 + 𝐿𝜔 2

መ𝐼 =
෡𝑈𝑠

𝑅 1 +
𝐿
𝑅
𝜔

2
=

෡𝑈𝑠

𝑅 1 + 𝜔𝜏 2

𝜑 = arg
෡𝑈𝑠

𝑅 + 𝑗𝐿𝜔
= −arg 𝑅 + 𝑗𝐿𝜔

𝜑 = −arctan
𝐿𝜔

𝑅
= −arctan 𝜔𝜏𝑖(𝑡) = መ𝐼𝑒𝑗 𝜔𝑡+𝜑



▪ On modélise un circuit dépendant sous forme complexe:

Circuit RL – Formalisme complexe
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𝐿෡𝑈𝑠𝑒
𝑗𝜔𝑡

𝑖(𝑡) 𝑅

𝑢𝐿(𝑡)
On peut trouver la solution sans 

résoudre d’équation 

différentielle! 

𝑖(𝑡) = መ𝐼𝑒𝑗 𝜔𝑡+𝜑
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▪ On voit qu’en régime permanent sinusoïdal il y a deux grandeurs à 
déterminer:

• L’amplitude ෠𝑋

• La phase 𝜑

▪ On définit alors les phaseurs:

• ෠𝑋 = ෠𝑋𝑒𝑗𝜑 (phaseur crête)

• 𝑋 = 𝑋𝑒𝑗𝜑 (phaseur efficace)
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Merci pour votre 
attention


