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CONDENSATEUR ET INDUCTANCE SOUS TENSION RECTANGULAIRE 

A. OBJECTIFS 

 Étude de la charge et de la décharge du condensateur sous tension rectangulaire 

 Étude de la charge et de la décharge de l'inductance sous tension rectangulaire 

B. LABORATOIRE 

1. Charge et décharge du condensateur sous tension rectangulaire 

Le schéma de principe est le suivant : 

u(t)

R

C uC(t)

iC(t)

 

La tension ( )u t  fournie par le générateur de fonctions est un signal rectangulaire de fréquence 

f  et d'amplitude U : 

u(t)

T 2T0

t
0

U

D D
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Pendant la demi-période positive, le condensateur et la résistance sont soumis à une tension 

continue ( )u t U . 

Le condensateur stocke de l'énergie électrostatique. Des charges provenant du générateur 

circulent à travers la résistance R pour être stockées dans le condensateur C jusqu'à la tension 

( )Cu t  à ses bornes soit égale à la tension ( )u t U  de la source. Le courant ( )Ci t  cesse dès 

lors de circuler. 

La rapidité avec laquelle le condensateur se charge dépend de sa capacité C et du courant 

( )Ci t  qui circule et donc de R. On peut donc en déduire raisonnablement que la charge sera 

d'autant plus rapide que R est petite (le courant sera plus grand) et C plus petite aussi (moins 

de charges à accumuler pour "remplir" le condensateur). 

Un autre facteur limitant de la charge est la durée pendant laquelle la tension d'alimentation 

est positive, c'est à dire la durée du créneau positif. La charge complète ou incomplète du 

condensateur dépend donc aussi de la fréquence  f  du signal d'excitation. 

Pendant la demi-période suivante, le condensateur est soumis à une tension ( ) 0u t  . 

Le condensateur se décharge à travers la résistance R et un courant ( )Ci t  circule jusqu'à la 

tension à ses bornes soit égale à la tension ( ) 0u t   de la source. Le courant ( )Ci t  cesse dès 

lors de circuler. 

1.1. Équations et Constante de temps du circuit 

Les équations qui décrivent le comportement de la tension ( )Cu t  aux bornes du condensateur 

C  et du courant ( )Ci t  qui le traverse, sont données par (voir annexes A.1 et A.2) 

Charge : ( ) (1 e ) (1 e )
t t

RC
Cu t U U

 
     ( ) e e

t t

RC
C

U U
i t

R R

 
   

Décharge : ( ) e e
t t

RC
Cu t U U

 
   ( ) e e

t t

RC
C

U U
i t

R R

 
     

Il s'agit d'exponentielles dont l'évolution est caractérisée par la constante de temps   : 

RC    (en secondes) 
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La figure suivante illustre le comportement de la tension ( )Cu t  et du courant ( )Ci t  

 

Le rapport 

( )
100 (1 e ) 100

t

Cu t

U


     

Permet de calculer, en fonction du temps t et avec la constante de temps   comme paramètre, 

la valeur en pourcent (%) de la charge du condensateur par rapport à la tension U. 

Calculer les valeurs suivantes (sans les valeurs décimales) : 

t [s] 
( )

100 (1 e ) 100
t

Cu t

U


     [%] 

0  

   

2   

3   

4   

5   

10   

( )u t

( )Cu t

U

0 t



T

( )Ci t

U

R
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1.2. Application numérique 

Les valeurs numériques sont les suivantes : 

1
500 Hz

10 k

10 nF

f
T

R

C

 

 



 

Calculer la valeur de la constante de temps   : 

   .............................................................................................................................  

Calculer la valeur en secondes de la demi-période de la tension ( )u t  : 

2

T
  ............................................................................................................................  

Exprimer cette valeur par rapport à la constante de temps   : 

2

T
  ............................................................................................................................  

En fonction des valeurs ci-dessus et du tableau de la page 3, peut-on affirmer que la période 

de la tension ( )u t  permet de charger et décharger complètement le condensateur C  ? 

 Oui 

 Non 

1.3. Observation des tensions ( )u t  et ( )
C
u t  

Schéma de montage : 

u(t)

R

C uC(t)

 

( ) : u t Générateur de fonctions HMF2525  

10 k

10 nF

R

C

 


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La tension ( )u t  fournie par le générateur de fonctions HMF2525 est un signal rectangulaire 

de fréquence 500 Hzf   et d'amplitude 1 VU   : 

u(t)

T 2T0

t
0

U

D D

 

1
500 Hz

1 V

f
T

U

 



 

Pour obtenir la tension ( )u t  ci-dessus, le générateur de fonctions HMF2525 va effectuer la 

somme des deux signaux suivants : 

 un signal rectangulaire qui varie autour de la valeur 0 V 

 une tension continue (OFFSET) 

Utiliser les paramètres ci-dessous pour configurer le générateur de fonctions HMF2525. 

Attention au choix de la fonction ! 

Fonction  

Frequency 500 Hz 

En tenant compte des caractéristiques du générateur de fonctions HMF2525, quelles valeurs 

doit-on choisir avec les menus  AMPLITUDE  et  OFFSET  ? 

AMPLITUDE =  ...........................................................................................................   

OFFSET  =  ...........................................................................................................  

Quelles touches faut-il activer pour délivrer correctement le signal (plusieurs réponses 

possibles) ? 

  OFFSET  

  INVERT  

  OUTPUT  

 Aucune 
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Visualiser les tensions ( )u t  et ( )Cu t  à l'oscilloscope. 

Utiliser la configuration suivante pour l'oscilloscope : 

Canal 1 (CH1) ( )u t  

Canal 2 (CH2) ( )Cu t  

Base de temps 200 s  

Trigger SOURCE : ( )u t   (Canal 1) LEVEL : 500 mV SLOPE : Flanc Montant 

Quel couplage faut-t-il utiliser pour les deux canaux afin de visualiser les deux courbes 

correctement ? 

 AC 

 DC 

 AC ou DC 

Superposer le GND des deux courbes. 

Choisir la position des deux courbes et leurs calibres en tension afin d'utiliser au 

maximum la taille de l'écran de l'oscilloscope et augmenter la précision des calculs. 

Reproduire les signaux observés sur le graphique ci-dessous. 
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1.4. Vérification de la constante de temps   

Calculer la valeur de la tension ( )Cu t  pour t    et 1 VU   : 

( ) (1 e )
t

Cu t U

   ..........................................................................................  (1) 

Configuration pour vérifier à l'oscilloscope la valeur de la constante de temps   : 

 Choisir 50 s  pour le calibre de la base de temps 

 Décaler les courbes observées vers la gauche.  

À l'écran de l'oscilloscope on visualise  T : 250 s 

  Le marquer du trigger doit être toujours visible pour ( )u t   (Canal 1) 

Reproduire les signaux observés sur le graphique ci-dessous. 

 

Effectuer les mesures à l'aide de l'outil CURSOR MEASURE de l'oscilloscope : 

 L'outil permet d'utiliser deux points de mesure identifiés par deux lignes verticales 

 On sélectionne le point de mesure (1, 2 ou les deux) en cliquant sur le bouton rotatif 

 On déplace le point de mesure sélectionné en tournant le bouton rotatif 

 Le type de mesure est choisi à l'aide du menu CURSEUR (CURSOR) 
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Mesures 

1. Configurer le menu CURSEUR (CURSOR) : 

TYPE MESURE (MEASURE TYPE) Temps (Time) 

SOURCE CH2 

2. Sélectionner le point de mesure  1  et le déplacer pour obtenir à l'écran de l'oscilloscope 

t1 :  0 s 

3. Configurer le menu CURSEUR (CURSOR) : 

TYPE MESURE (MEASURE TYPE) Marquer–V (V–Marker) 

SOURCE CH2 

4. Sélectionner le point de mesure  2  et le déplacer pour obtenir à l'écran de l'oscilloscope 

V2 :  ( la valeur de la tension ( )
C
u t )  donnée par l'équation (1). 

5. La mesure de t    à l'oscilloscope est donnée par la valeur de t 

Indiquer la valeur de t    mesurée à l'oscilloscope : 

t     ........................................................................................................................  

En tenant compte de la précision des appareils de laboratoire, de la tolérance des composants 

et des imperfections de la plaque "Hirshman", vérifier que la mesure de la constante de temps 

  correspond à la valeur calculée. 

1.5. Influence de l'amplitude U de la tension ( )u t  sur la constante de temps   

Pour étudier l'influence de l'amplitude de la tension ( )u t  sur la constante de temps  , on va 

utiliser la séquence suivante pour U : 

1 V 2 V 5 V 10 V 

 

 

Garder le même schéma de montage et la même configuration de l'oscilloscope 
utilisés au paragraphe précédent. 

Vérifier qu'à l'écran de l'oscilloscope on visualise  T : 250 s  et  t1 :  0 s 
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Configurer le menu CURSEUR (CURSOR) : 

TYPE MESURE (MEASURE TYPE) Marquer–V (V–Marker) 

SOURCE CH2 

Pour chaque valeur de U : 

1. À l'aide de l'équation (1), calculer l'amplitude de tension ( )Cu t  pour t   .  

Noter cette valeur dans le tableau du point 6 ci-dessous. 

2. Modifier l'AMPLITUDE et l'OFFSET du générateur de fonctions HMF2525 

3. Choisir les calibres en tension des deux courbes afin d'utiliser au maximum la taille de 

l'écran de l'oscilloscope et augmenter la précision des calculs. 

4. Sélectionner le point de mesure  2  et le déplacer pour obtenir à l'écran de l'oscilloscope 

V2 :   Valeur de la tension ( )
C
u t  calculée au point 1 ci-dessus. 

5. La mesure de t    à l'oscilloscope est donnée par la valeur de t 

6. Remplir le tableau suivant 

U [V] ( ) (1 e )
t

Cu t U

   [V]   [s] mesurée 

1   

2   

5   

10   

L'amplitude U de la tension ( )u t , influence-t-elle la constante de temps   ? 

 Oui 

 Non 
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1.6. Observation des tensions ( )u t  et ( )
R
u t  

Schéma de montage : 

u(t) R uR(t)
C

 

( ) : u t Générateur de fonctions HMF2525  

500 Hz

1 V

10 k

10 nF

f

U

R

C





 



 

Visualiser les tensions ( )u t  et ( )Ru t  à l'oscilloscope. 

Utiliser la configuration suivante pour l'oscilloscope : 

Canal 1 (CH1) ( )u t  Couplage : DC 

Canal 2 (CH2) ( )Ru t  Couplage : DC 

Base de temps 200 s  

Trigger SOURCE : ( )u t   (Canal 1) LEVEL : 500 mV SLOPE : Flanc Montant 

Superposer le GND des deux courbes. 

Choisir la position des deux courbes et leurs calibres en tension afin d'utiliser au 

maximum la taille de l'écran de l'oscilloscope et augmenter la précision des calculs. 

Reproduire les signaux observés sur le graphique ci-dessous. 

 



11 

1.7. Influence de la fréquence du signal d'excitation ( )u t  

La diminution de la période T du signal d'excitation ( )u t  au-delà d'une certaine valeur, rend 

incomplète la charge et la décharge du condensateur. La tension ( )Cu t  traverse un régime 

transitoire avant de se stabiliser à son régime d'équilibre, comme illustré sur la figure suivante 

 

La tension ( )Cu t  est en forme de dent de scie. 

Elle est caractérisée par une ondulation Cu  autour de la valeur moyenne CU . 

Quelle que soit la valeur de la constante de temps   par rapport à la période T, cette moyenne 

vaut toujours 

2
C

U
U   

Travail à effectuer : 

Schéma de montage : 

u(t)

R

C uC(t)

 

( ) : u t Générateur de fonctions HMF2525  

1 V

10 k

10 nF

U

R

C



 



 

( )u t

( )Cu t

U

2
C

U
U 

0 t

Cu


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Visualiser les tensions ( )u t  et ( )Cu t  à l'oscilloscope. 

Utiliser la configuration suivante pour l'oscilloscope : 

Canal 1 (CH1) ( )u t  Couplage : DC 

Canal 2 (CH2) ( )Cu t  Couplage : DC 

Trigger SOURCE : ( )u t   (Canal 1) LEVEL : 500 mV SLOPE : Flanc Montant 

 

 

Choisir pour le calibre de la base de temps, des valeurs qui évitent de visualiser 

sur l'écran de l'oscilloscope des impulsions parasites pour la tension ( )Cu t . 

Leur absence permet d’assurer une mesure correcte. 

Faire varier la fréquence f  de la tension ( )u t  et étudier la valeur moyenne CU  et l'ondulation 

Cu  de la tension ( )Cu t  à l'aide du menu AUTO MEASURE de l'oscilloscope. 

Noter la configuration choisie pour la mesure de la valeur moyenne CU  dans le tableau suivant : 

PLACE MESURE  (MEAS. PLACE)  

MESURE 1  (MEASURE 1)  

TYPE  

SOURCE  

Noter la configuration choisie pour la mesure de l'ondulation Cu  dans le tableau suivant : 

PLACE MESURE  (MEAS. PLACE)  

MESURE 2  (MEASURE 2)  

TYPE  

SOURCE  

Utiliser la séquence : 

500 Hz 1 kHz 2 kHz 5 kHz 10 kHz 20 kHz 
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Pour chaque fréquence : 

1. Vérifier l'absence d'impulsions parasites pour la tension ( )Cu t  

2. Mesurer la valeur moyenne CU  à l'aide du menu AUTO MEASURE de l'oscilloscope. 

3. Mesurer l'ondulation 
Cu  à l'aide du menu AUTO MEASURE de l'oscilloscope. 

Reporter les valeurs dans le tableau ci-dessous. 

f  [Hz] 
CU  [V] Cu  [V] 

500   

1 k   

2 k   

5 k   

10 k   

20 k   

Calculer la valeur théorique de la valeur moyenne CU  : 

CU   ..........................................................................................................................  

En tenant compte de la précision des appareils de laboratoire, de la tolérance des composants 

et des imperfections de la plaque "Hirshman", vérifier que les mesures de la valeur moyenne 

CU  correspondent à la valeur calculée. 

Quelle affirmation est-elle correcte ? 

 La période T de ( )u t  n'a aucune influence sur l'ondulation Cu  

 Si la période T de ( )u t  diminue, l'ondulation Cu  augmente 

 Si la période T de ( )u t  diminue, l'ondulation Cu  diminue 
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2. Charge et décharge de l'inductance sous tension rectangulaire 

Le schéma de principe est le suivant : 

u(t)

R

uR(t)

L uL(t)

iL(t)

 

La tension ( )u t  fournie par le générateur de fonctions est un signal rectangulaire de fréquence 

f  et d'amplitude U : 

u(t)

T 2T0

t
0

U

D D

 

Pendant la demi-période positive, l'inductance et la résistance sont soumis à une tension 

continue ( )u t U . 

L'inductance stocke l'énergie sous forme magnétique. Ce phénomène n'est pas instantané et 

l'énergie magnétique augmente en même temps que le courant ( )Li t  qui circule à travers 

l'inductance L et la résistance R. Grâce à la loi d'Ohm, la tension ( )Ru t  aux bornes de la 

résistance R augmente jusqu'elle soit égale à la tension ( )u t U  de la source. En appliquant 

la loi de Kirchhoff pour les mailles, si ( )Ru t  augmente jusque ( )u t U , la tension ( )Lu t  aux 

bornes de l'inductance L diminue jusque ( ) 0Lu t  . 

Pendant la demi-période suivante, le circuit est soumis à une tension ( ) 0u t  . 

En appliquant la loi de Kirchhoff pour les mailles, on obtient ( ) ( )L Ru t u t  . Le courant ( )Li t  

diminue à travers la résistance et l'inductance perd progressivement son énergie magnétique. 

Ce phénomène n'est pas instantané et il se termine quand ( ) 0Li t   et ( ) ( ) 0L Ru t u t   . 
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En toute rigueur, une inductance présente aussi une résistance électrique interne en série qui 

correspond à la résistance du conducteur (bobinage). Sa présence permet d'expliquer des 

éventuelles différences entre les tensions théoriques et les tensions mesurées. 

2.1. Équations et Constante de temps du circuit 

Les équations qui décrivent le comportement de la tension ( )Lu t  aux bornes de l'inductance 

L  et du courant ( )Li t  sont données par (voir annexes A.3 et A.4) 

Charge : ( ) e e
tR

t
L

Lu t U U

   ( ) (1 e ) (1 e )

tR
t

L
L

U U
i t

R R


     

Décharge : ( ) e e
tR

t
L

Lu t U U

     ( ) e e

tR
t

L
L

U U
i t

R R


   

Il s'agit d'exponentielles dont l'évolution est caractérisée par la constante de temps   : 

L

R
    (en secondes) 

La figure suivante illustre le comportement de la tension ( )Lu t  et du courant ( )Li t  

 

( )u t
U

0 t


T

( )Li t

( )Lu t

U

R
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Le rapport 

( )
100 e 100

t

Lu t

U


    

Permet de calculer, en fonction du temps t et avec la constante de temps   comme paramètre, 

la valeur en pourcent (%) de l'évolution de la tension ( )Lu t  par rapport à la tension U. 

Calculer les valeurs suivantes (sans les valeurs décimales) : 

t [s] 
( )

100 e 100
t

Lu t

U


    [%] 

0  

   

2   

3   

4   

5   

10   

2.2. Application numérique 

Les valeurs numériques sont les suivantes : 

1
5 kHz

1 k

10 mH

f
T

R

L

 

 



 

Calculer la valeur de la constante de temps   : 

   .............................................................................................................................  
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Calculer la valeur en secondes de la demi-période de la tension ( )u t  : 

2

T
  ............................................................................................................................  

Exprimer cette valeur par rapport à la constante de temps   : 

2

T
  ............................................................................................................................  

En fonction des valeurs ci-dessus et du tableau de la page 16, peut-on affirmer que la période 

de la tension ( )u t  permet d'observer intégralement la variation de la tension ( )Lu t  aux 

bornes de l'inductance L  ? 

 Oui 

 Non 

2.3. Observation des tensions ( )u t  et ( )
L
u t  

Schéma de montage : 

u(t)

R

L uL(t)

 

( ) : u t Générateur de fonctions HMF2525  

1 k

10 mH

R

L

 


 

La tension ( )u t  fournie par le générateur de fonctions HMF2525 est un signal rectangulaire 

de fréquence 5 kHzf   et d'amplitude 1 VU   : 

u(t)

T 2T0

t
0

U

D D

 

1
5 kHz

1 V

f
T

U

 


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Utiliser les paramètres ci-dessous pour configurer le générateur de fonctions HMF2525. 

Attention au choix de la fonction !  

Fonction  

Frequency 5 kHz 

Amplitude Voir Paragraphe 1.3 

Offset Voir Paragraphe 1.3 

Visualiser les tensions ( )u t  et ( )Lu t  à l'oscilloscope. 

Utiliser la configuration suivante pour l'oscilloscope : 

Canal 1 (CH1) ( )u t  Couplage : DC 

Canal 2 (CH2) ( )Lu t  Couplage : DC 

Base de temps 20 s  

Trigger SOURCE : ( )u t   (Canal 1) LEVEL : 500 mV SLOPE : Flanc Montant 

Superposer le GND des deux courbes. 

Choisir la position des deux courbes et leurs calibres en tension afin d'utiliser au 

maximum la taille de l'écran de l'oscilloscope et augmenter la précision des calculs. 

Reproduire les signaux observés sur le graphique ci-dessous. 
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2.4. Vérification de la constante de temps   

Calculer la valeur de la tension ( )Lu t  pour t    et 1 VU   : 

( ) e
t

Lu t U

   .................................................................................................  (2) 

Configuration pour vérifier à l'oscilloscope la valeur de la constante de temps   : 

 Choisir 5 s  pour le calibre de la base de temps 

 Décaler les courbes observées vers la gauche.  

À l'écran de l'oscilloscope on visualise  T : 25 s : 

  Le marquer du trigger doit être toujours visible pour ( )u t   (Canal 1) 

Reproduire les signaux observés sur le graphique ci-dessous. 

 

Effectuer les mesures à l'aide de l'outil CURSOR MEASURE de l'oscilloscope : 

Mesures 

1. Configurer le menu CURSEUR (CURSOR) : 

TYPE MESURE (MEASURE TYPE) Temps (Time) 

SOURCE CH2 
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2. Sélectionner le point de mesure  1  et le déplacer pour obtenir à l'écran de l'oscilloscope 

t1 :  0 s 

3. Configurer le menu CURSEUR (CURSOR) : 

TYPE MESURE (MEASURE TYPE) Marquer–V (V–Marker) 

SOURCE CH2 

4. Sélectionner le point de mesure  2  et le déplacer pour obtenir à l'écran de l'oscilloscope 

V2 :  ( la valeur de la tension ( )
C
u t )  donnée par l'équation (2). 

5. La mesure de t    à l'oscilloscope est donnée par la valeur de t 

Indiquer la valeur de t    mesurée à l'oscilloscope : 

t     ........................................................................................................................  

En tenant compte de la précision des appareils de laboratoire, de la tolérance des composants 

et des imperfections de la plaque "Hirshman", vérifier que la mesure de la constante de temps 

  correspond à la valeur calculée. 
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ANNEXE 

A.1 Charge du condensateur 

u(t)

R

uR(t)

C uC(t)

iC(t)

 

Tension ( )u t  : 

u(t)

t0

U

0  

Conditions initiales au temps 0 (0) 0Ct u :  

Équations des éléments simples 

( ) ( )

( )
( )

R C

C
C

u t Ri t

du t
i t C

dt




 (1) 

Équation de Kirchhoff pour les mailles 

( )
( ) ( ) ( ) ( ) ( ) ( )C

R C C C C

du t
u t u t u t Ri t u t RC u t

dt
       (2) 

Pour 0t  , on a ( )u t U . L'équation (2) devient 

( )
( )C

C

du t
U RC u t

dt
   (3) 

Qu'on peut mettre sous la forme 

( ) 1
( )C

C

du t U
u t

dt RC RC
   (4) 

C'est une équation différentielle de la forme 

( )
( )

dx t
ax t A

dt
   (5) 

La solution de cette équation différentielle est donnée par 

1. Un terme permanent sans aucune variation pour t    

( )
0 ; ( ) ; ( )

dx t A
ax t A x t

dt a
    (6) 
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2. Un terme transitoire avec 0A   qui tend vers 0 pour t    

( ) ( )
( ) 0 ; ( ) ; ( ) e atdx t dx t

ax t ax t x t k
dt dt

      (7) 

avec k : constante d'intégration qui dépend des conditions initiales. 

La solution de l'équation différentielle (5) est alors donnée par 

( ) e atA
x t k

a

   (8) 

Dans notre cas, on a : 

1
;

( ) e e
t t

RC
C

U
A a

RC RC

u t U k U k
 



 

   

 (9) 

Il s'agit d'une exponentielle dont l'évolution est caractérisée par la constante de temps   : 

RC   (en secondes) (10) 

Calcul de la constante d'intégration k à l'aide des conditions initiales au temps 0: (0) 0Ct u   

0

(0) 0 e ;RC
Cu U k U k k U



        (11) 

On a enfin 

( ) e e (1 e )
t t t

Cu t U k U U U
  
         (12) 

Le courant ( )Ci t  est donné par 

( )
( ) ( (1 e )) e e e

t t t t

C
C

du t d CU CU U
i t C C U

dt dt RC R

   
        


 (13) 

A.2 Décharge du condensateur 

u(t)

R

uR(t)

C uC(t)

iC(t)

 

Tension ( )u t  : 

u(t)

t0

U

0  
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Conditions initiales au temps 0 (0)Ct u U :  

Pour 0t  , on a ( ) 0u t  . L'équation (2) devient 

( )
0 ( )C

C

du t
RC u t

dt
   (14) 

Qu'on peut mettre sous la forme 

( ) 1
( ) 0C

C

du t
u t

dt RC
   (15) 

C'est une équation différentielle de la forme 

( )
( )

dx t
ax t A

dt
   (16) 

La solution est alors donnée par 

( ) e atA
x t k

a

   (17) 

Dans notre cas, on a : 

1
0 ;

( ) e e
t t

RC
C

A a
RC

u t k k
 



 

 

 (18) 

Il s'agit d'une exponentielle dont l'évolution est caractérisée par la constante de temps   : 

RC   (en secondes) (19) 

Calcul de la constante d'intégration k à l'aide des conditions initiales au temps 0 (0)Ct u U :  

0

(0) e ;RC
Cu U k k k U



     (20) 

On a enfin 

( ) e e
t t

Cu t k U
 
    (21) 

Le courant ( )Ci t  est donné par 

( )
( ) ( e ) e e e

t t t t

C
C

du t d CU CU U
i t C C U

dt dt RC R

   
          


 (22) 
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A.3 Charge de l'inductance 

u(t)

R

uR(t)

L uL(t)

iL(t)

 

Tension ( )u t  : 

u(t)

t0

U

0  

Conditions initiales au temps 0 (0) 0Lt i :  

Équations des éléments simples 

( ) ( )

( )
( )

R L

L
L

u t Ri t

di t
u t L

dt




 (23) 

Équation de Kirchhoff pour les mailles 

( )
( ) ( ) ( ) ( ) L

R L L

di t
u t u t u t Ri t L

dt
     (24) 

Pour 0t  , on a ( )u t U . L'équation (24) devient 

( )
( ) L

L

di t
U Ri t L

dt
   (25) 

Qu'on peut mettre sous la forme 

( )
( )L

L

di t R U
i t

dt L L
   (26) 

C'est une équation différentielle de la forme 

( )
( )

dx t
ax t A

dt
   (27) 

La solution est alors donnée par 

( ) e atA
x t k

a

   (28) 
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Dans notre cas, on a : 

;

( ) e e
tR

t
L

L

U R
A a

L L

U U
i t k k

R R




 

   

 (29) 

Il s'agit d'une exponentielle dont l'évolution est caractérisée par la constante de temps   : 

L

R
   (en secondes) (30) 

Calcul de la constante d'intégration k à l'aide des conditions initiales au temps 0 (0) 0Lt i :  

0

(0) 0 e ;
R

L
L

U U U
i k k k

R R R



        (31) 

On a enfin 

( ) e e (1 e )
t t t

L

U U U U
i t k

R R R R

  
         (32) 

La tension ( )Lu t  est donnée par 

( )
( ) ( (1 e )) e e

t t t

L
L

di t d U UL
u t L L U

dt dt R R

  
      


 (33) 

A.4 Décharge de l'inductance 

u(t)

R

uR(t)

L uL(t)

iL(t)

 

Tension ( )u t  : 

u(t)

t0

U

0  

Conditions initiales au temps 0 (0)L

U
t i

R
 :  

Pour 0t  , on a ( ) 0u t  . L'équation ci-dessus devient 

( )
0 ( ) L

L

di t
Ri t L

dt
   (34) 
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Qu'on peut mettre sous la forme 

( )
( ) 0L

L

di t R
i t

dt L
   (35) 

C'est une équation différentielle de la forme 

( )
( )

dx t
ax t A

dt
   (36) 

La solution est alors donnée par 

( ) e atA
x t k

a

   (37) 

Dans notre cas, on a : 

0 ;

( ) e e
tR

t
L

L

R
A a

L

i t k k



 

 

 (38) 

Il s'agit d'une exponentielle dont l'évolution est caractérisée par la constante de temps   : 

L

R
   (en secondes) (39) 

Calcul de la constante d'intégration k à l'aide des conditions initiales au temps 0 (0)L

U
t i

R
 :  

0

(0) e ;
R

L
L

U U
i k k k

R R



     (40) 

On a enfin 

( ) e e
t t

L

U
i t k

R

 
    (41) 

La tension ( )Lu t  est donnée par 

( )
( ) ( e ) e e

t t t

L
L

di t d U UL
u t L L U

dt dt R R

  
       


 (42) 


