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ABSTRACT 
Adaptive instruction for online education can increase learn-
ing gains and decrease the work required of learners, instruc-
tors, and course designers. Reinforcement Learning (RL) is 
a promising tool for developing instructional policies, as RL 
models can learn complex relationships between course activ-
ities, learner actions, and educational outcomes. This paper 
demonstrates the first RL model to schedule educational ac-
tivities in real time for a large online course through active 
learning. Our model learns to assign a sequence of course 
activities while maximizing learning gains and minimizing 
the number of items assigned. Using a controlled experiment 
with over 1,000 learners, we investigate how this scheduling 
policy affects learning gains, dropout rates, and qualitative 
learner feedback. We show that our model produces better 
learning gains using fewer educational activities than a linear 
assignment condition, and produces similar learning gains to a 
self-directed condition using fewer educational activities and 
with lower dropout rates. 
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INTRODUCTION 
Designing and improving online courses is a daunting task. 
Today, instructors usually organize course materials through 
some combination of best practice and intuition. But how 
do we choose which materials are really best? And in what 
order should we present them? These questions almost never 
have clear answers. For example, consider an online course 
on functional programming. We could begin the course with 
either lambda calculus or the basic concept of functions. We 
could present the concepts with a written explanation or a short 
video. It is not obvious which combination is better. Even 
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Figure 1. Reinforcement Scheduling uses an RL agent to assign activities 
in an online course. Over time, this method learns latent relationships 
between actions (assignments), states (learner traces) and rewards (out-
comes) in order to schedule better and fewer activities to these learners. 
When a learner completes a pre-test or educational activity, their trace 
is updated in the form of a state vector with pre-test scores (em), assign-
ment completions (cn), and assignment scores (gn). 

more challenging, learners may perform better with different 
routes depending on their background and knowledge. 

We refine these questions to focus on a specific goal for course 
design: given a set of course materials, how can we assign 
each learner the smallest number of activities that maximize 
their learning gains? Assigning fewer materials can help us 
identify which materials work best, both globally and for sub-
populations of learners. By assigning personalized materials, 
we can provide those best tuned to a learner’s trace and knowl-
edge state. And by maximizing learning gains for each learner, 
we ensure that a course is effective. However, evaluating the 
efficacy of individual educational activities is challenging for 
a model, and using such a model to assign activities is even 
more so [17]. No prior work we know of has demonstrated 
that an adaptive assignment policy can be applied at scale in 
an online course, optimized in real time against learning gains. 

To achieve this goal we introduce reinforcement scheduling 
(RS): a novel RL algorithm for assigning course materials 
based on a learner’s starting knowledge state and history of 
interaction with course materials. Our model can learn to 
make assignment decisions in real time given feedback about 
how these decisions impact downstream post-test scores. Con-
cretely, our model represents a learner’s a priori knowledge 
through a pre-test score, and their interactions with the course 
that encodes completed problems and whether they were an-
swered correctly. From this feature space, the model assigns 
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the next activity to a learner. Using proximal policy optimiza-
tion (PPO) [33], the model learns over time by optimizing a 
function that rewards for post-test based learning gains and 
penalizes for the number of materials assigned (Figure 1). 

We evaluate RS by integrating it into an online linear algebra 
course taken by over 1000 learners. Existing open source 
platforms do not support the adaptive scheduling of educa-
tional activities, so we created a new online learning platform 
in order to deploy the course. We evaluated the impact of 
our model through a randomized controlled trial that divided 
learners between reinforcement scheduling and two control 
conditions. Through this experiment, we aimed to answer four 
research questions: 

R1: How does reinforcement scheduling affect learning gains, 
the number of activities completed, and dropout? 

R2: Do early participants suffer from a worse assignment 
policy under reinforcement scheduling? 

R3: What can instructors and course designers learn from 
reinforcement scheduling? 

R4: What are the qualitative experiences of learners under 
reinforcement scheduling? 

In our investigation of these questions we find that RS largely 
succeeds in meeting our design goals while inspiring positive 
learner feedback. In particular, we found that learners who 
completed the course under RS demonstrated larger learning 
gains than the linear control condition (p < .05) and were also 
assigned fewer activities (p < .01). Further, RS led to lower 
dropout rates than the self-directed control condition (p < .05), 
with no significant difference to the linear condition. Finally, 
learners generally perceived the RS condition as adaptive and 
expressed satisfaction with the course. 

In summary, this paper presents the first RL model to schedule 
educational activities in real time for a large online course 
through active learning. We show that when considering learn-
ing gains, the number of assignments, and learner dropout 
as a whole, our model performed favorably against two base-
line assignment strategies. More broadly, our work gestures 
towards a future where online courses continuously improve 
themselves with reduced time and attention from instructors. 

RELATED WORK 
Reinforcement scheduling learns how to assign sequences of 
educational activities to online learners without skill labels or 
existing course data. We begin this section with some back-
ground information on skill labels and their use for course 
development. We then describe how our model builds upon 
prior work for adaptively assigning course materials. Finally, 
we discuss other methods for automating instructional prac-
tices and improving learning outcomes in online courses. 

Skill Labels and Course Design 
Skill labels are required inputs to many learner models and 
automated assignment algorithms, and they often play a key 
role in course design [18]. In this context, skills equate 
to the smallest units of actionable human knowledge [29]. 
Many course designers use skill labels to tag and organize 

their course materials. This helps them make sure the course 
materials cover all the desired skills, and don’t require skills 
outside the scope of the course. 

Unfortunately, determining the skills in a course and tagging 
course materials with skill labels is largely a manual and 
instructor-centric process. Cognitive task analysis (CTA) is 
the traditional mechanism for identifying skills, where individ-
uals with a broad range of expertise in the field are asked to 
talk through their thought processes while they solve relevant 
problems. Each unique step applied within these problem 
solving processes is considered a separate skill [29]. Once a 
skill-labeled course has been launched, Learning Curve Anal-
ysis (LCA) can be used to detect missing and mislabeled skills 
from learner trace data [26, 5]; this technique requires an 
instructor to visualize learners’ responses to single-skill prob-
lems over time, investigate any instances where performance 
does not increase monotonically. 

Several techniques have emerged to automate the collection 
of these skill labels. For example, Q-matrices can learn to 
differentiate between different skills without skill labels [35]. 
Unfortunately, Q-matrices still require human determination 
of skill granularity, and cannot be used to directly label edu-
cational activities. Even the best skill mappings will always 
fall short of capturing the full complexity of human learning, 
which operates largely by analogical reasoning [9]. 

As we discuss in the following section, most learner models 
and automated assignment algorithms require skill labels and 
so lead to a potentially time consuming and expensive setup 
process. In contrast, our work aims for course materials to 
be organized at a higher level, such that course designers do 
not need to manually curate detailed skill labels to automate 
scheduling policies. By working from a model that learns to 
make effective assignments of materials without information 
about skill labels, we can make these tools accessible to the 
majority of instructors who do not use these precise labels 
when designing their curricula. 

Adaptive Scheduling of Educational Activities 
There is a long history of models that adaptively prescribe edu-
cational materials to online learners. Many intelligent tutoring 
systems have used scheduling models that improved learning 
outcomes and reduced the work of instructors [36, 12, 28]. 
However, historical learner data and model-training expertise 
are typically required to deploy these models. New courses 
must rely on conservative models, under-trained models, or 
self-directed learner navigation as a temporary scheduling 
strategy. The scheduling models for long-running courses 
need to be periodically retrained, especially in cases where the 
learner population changes over time. 

The most common scheduling models require skill maps and 
combine these maps with learner knowledge models to make 
assignment decisions. Bayesian Knowledge Tracing (BKT) 
trains a Hidden Markov Model to predict a learner’s binary 
knowledge state for each skill [5]; when answering problems, 
learners have some fixed probability of guessing when they 
don’t know the required skills or slipping when they do. Simi-
larly, IRT-Integrated Knowledge Tracing (IIKT) reformulates 
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the BKT model so that learner ability exists on a spectrum 
between 0 and 1 and adds a parameter for the difficulty of 
each item [15]. These models require careful curation of skill 
labels, since they are sensitive to incorrect labels [18]; even 
so, they tend to perform worse in scenarios with multiple skills 
per educational activity [27]. In contrast to these methods, re-
inforcement scheduling does not require skill maps or assume 
that all activities covering a skill are equally effective. 

Other scheduling models can be trained without explicit skill 
labels. For example, Deep Knowledge Tracing (DKT) uses 
an LSTM trained on binary learner traces to predict future 
responses [27]; though DKT can be used to schedule assign-
ments, it cannot be used to actively optimize for the efficacy of 
assignments. Similarly, other methods have explored a set of 
parameterized instructional policies but cannot easily be used 
to evaluate individual educational activities [21, 22]. Con-
textual Bandits have been used to decide which instructional 
action is best for a given situation, but are unable to reason 
about delayed effects such as a post-test score [34]. 

RL has seen surprisingly little use in online education. RL 
models trained on historical data have been used to evaluate 
competing instructional policies for online education, demon-
strating how ineffective educational activities can be elimi-
nated, entirely [24]. However, just as with knowledge tracing, 
such evaluation requires historical data to train on. Even with 
hundreds of thousands of learner traces, RL will have diffi-
culty learning long sequences of actions [7]. Q-Learning has 
been used to decide what feedback is given to learners for 
individual problems in an online course, but this model was 
limited to two simple binary decisions [14]; as we discuss 
later, Q-learning appears too sample inefficient to use for an 
activity-centered scheduling policy. 

One big challenge when it comes to scheduling educational 
activities is the absence of platforms that support model-driven 
adaptive navigation. Several platforms support a fixed form 
of instructional model [36, 12, 28], but we could not identify 
any platforms that allowed for a new model to be plugged 
in and direct the scheduling of educational activities. This 
motivated us to create a new platform that would support 
adaptive scheduling through an API. Our platform works not 
just for our implementation of reinforcement scheduling, but 
for any model that conforms to the platform’s specifications. 

Other Methods for Automating Instruction 
A broad class of prior work has proposed solutions for other 
instructional processes. For example, methods have been intro-
duced to automate experimentation over instructional policies 
[21, 41, 12, 23]. Other work has explored how mindset inter-
ventions and automated dropout interventions improve learner 
outcomes [8, 39]. As a very different form of automation, 
learnersourcing has been used to manage hard-to-scale in-
structor tasks such as grading [19], providing feedback [20], 
giving explanations [40] and hints [10], and even creating 
new educational materials [25]. 

REINFORCEMENT SCHEDULING 
Reinforcement scheduling is a novel method for adaptive ac-
tivity assignment that leverages reinforcement learning and 

requires no pre-existing course data or skill labels. In this 
section, we describe the details underlying our method and 
the many considerations we brought to its design. We further 
discuss the learning platform we built to support reinforcement 
scheduling, and the course we created for its deployment. 

Model Development 
Our primary objective for reinforcement scheduling was to 
maximize learning gains while reducing the time spent on 
educational activities. We also adopted three design principles 
that encourage generalizability: 1) the model should support 
courses with different educational activities and topics, 2) the 
features should be meaningful, consistent, and non-redundant, 
and 3) there should be no requirement for human labels. To 
achieve these goals, we adopted a RL-based model: a good 
choice to make decisions and learn from their outcomes con-
tinuously and in real time. 

As is standard practice when developing RL models, we are 
principally concerned with the choice of optimization strategy, 
action space, state space and reward function. The action 
space provides the set of possible decisions that can be taken 
by the RL agent at a given point in time. The state space 
defines the "state of the world" that is visible to an RL agent; 
in our case, this is a compact representation of a learner’s trace. 
The reward function assigns value to the steps and outcomes 
that the RL agent arrives at. Finally, the optimization strategy 
determines the gradient chasing method that is used to improve 
the RL agent’s decisions over time. What follows is a detailed 
explanation of our scheduling model, and the design process 
that led to its formation. 

Action space 
Under our navigational strategy, the only action that the RL 
agent takes is to prescribe the next educational activity or the 
post-test. Because the post-test is always the final thing to 
be scheduled in the course, its assignment leads to a terminal 
state. The action space is defined by a single binary vector 
with a position for each of the N activities and the post-test (at 
position N + 1). 

Ai = [a1, ..., aN ,aN+1] 

We put two limitations on the actions taken by the RL agent. 
First, we prevented repeat assignments of the same educational 
activity to the same learner; repeats seemed unnecessary in a 
course with only 12 educational activities, and we wanted to 
ensure that the course length was no longer than 12 activities. 
Second, we prevented the RL agent from assigning the post-
test to a learner until it had already given them at least one 
educational activity; this guarded against exploration of a 
useless trajectory, and the learner frustration that was likely to 
accompany it. To suppress a set of actions, we sampled from 
a regularized distribution of the remaining allowable action 
probabilities. 

State space 
Since test scores and educational activity scores help the RL 
agent make inferences about learning gains, this data formed 
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the core of our state space. Pre-test problems are always com-
pleted in the same order before the learner moves on to any 
educational activities, so the pre-test scores can be concisely 
represented by a binary vector of length M. Educational ac-
tivities can be delivered in any order, so the state space needs 
to communicate both the set of activities that a learner has 
completed and the associated scores. 

We evaluated different state space designs using learner simu-
lators. To encapsulate a learner’s current record of scores and 
activity completions, we explored vectorized state spaces to 
feed to the RL agent. Inspired by DKT [27], we considered 
using concatenated one-hot encoding for each combination of 
educational activity and score within a learner trace; however, 
our simulations revealed that this large state space made RL 
training too sample inefficient for active learning. Instead, we 
found that a compact state space, which ignores the ordering 
of previous activities, was much faster and still able to make 
effective decisions. This learner state space (S) at step i is a 
concatenation of the M pre-test scores (E), a vector indicating 
which of the N educational activities have been completed so 
far (C), and a vector that holds the grade for each of the N 
activities once they have been attempted (G). 

Si = [e1, ...,eM,c1, ...,cN ,g1, ...,gN ] 

Several additional features were evaluated, but ultimately elim-
inated for lack of utility. The post-test scores were left out 
of the state space because the optimization strategy we chose 
does not differentiate between terminal states; in courses with 
a fixed post-test, the post-test scores are the only part of the 
environmental state that change between the penultimate step 
and the end of an episode. The time spent by a learner on 
each activity was also left out, since the time spent on a page 
has proved to be a poor proxy for time spent on task [16]. 
Because all the educational activities were designed to take 
the same amount of time, we decided that the count of these 
activities would be a sufficient approximation. 

Reward function 
In line with our high-level design goals, we constructed a 
step-wise reward function that prioritized learner test perfor-
mance improvements and penalized the inclusion of extra 
activities. The total reward (R) for a learner "episode" (a com-
plete trajectory through the course) comes from the sum of 
these individual steps. It sums up individual improvements 
between the pre-test scores (E) and the post-test scores (O), 
and imposes a penalty (ψ) in proportion to the number of 
educational activities in the episode (H). 

Ri = 1 [after educational activity is assigned] 
M h i 

= 1 + ∑ max(0, op − ep) − (1 + ψ) ∗ H 
p=1 

[after post-test is assigned] 

We chose R based on the speed and consistency with which 
our RL agent learned a good policy on simulated learners. 

We found that adding a small immediate reward for each 
educational activity assignment—and delaying the penalty for 
all educational activities—encouraged exploration of longer 
and more diverse course paths. This is counterbalanced by the 
penalty ψ . Similarly, we found that adding 1 to the post-test 
assignment reward prevented the RL agent from assigning 
activities too preferentially. The pair-wise increases between 
the pre-test and post-test scores allowed the agent to ignore 
cases where a learner guessed how to solve a problem correctly 
on the initial test or slipped up on a problem on the post-test; 
this improved both the speed and consistency of the RL agent’s 
learning. 

The educational activity assignment penalty (ψ) is a proxy for 
the minimum marginal test improvement that must be expected 
from an activity to justify its scheduling. ψ typically takes 
a value between 0 and 1. Course designers can think of this 
parameter as the proportion of learners that should see a one 
point increase from the pre-test to the post-test if you include 
this problem, to make it worth including. 

The number and difficulty of test problems inform the magni-
tude of ψ . A course with half the test problems would halve 
the potential improvement going from the pre-test to the post-
test; tests with easier problems should generally increase the 
value of ψ as a one-point increase becomes less meaningful. If 
this value is too low, learners are likely to waste more time on 
activities that don’t support much learning. Conversely, if this 
value is too large, some useful activities will not be assigned 
to learners who would benefit from them. After experimenting 
with many parameter values for our short course with 6 test 
problems and 12 educational activities, we settled on a value 
of 0.2 for ψ ; under most simulated conditions, this allowed for 
substantial reductions in the number of items assigned without 
sacrificing test improvement. 

Policy Optimization 
Actively-learned RL learns to make decisions in real time 
based on interactions with an environment, but this presents 
challenges for its use in online education. RL algorithms tend 
to have poor sample efficiency, often requiring hundreds of 
episodes to learn simple policies, or hundreds of thousands of 
episodes to learn more complicated ones [37]. Such models 
take too long to learn in courses with only hundreds or thou-
sands of learners. We overcome this challenge for RS by using 
proximal policy optimization (PPO), a policy gradient method 
that leverages deep neural networks to more efficiently learn a 
scheduling policy [33]. Use of neural networks reduces the 
dimensionality of the state/action space and so also reduces 
number of samples an algorithm needs to converge. 

PPO is an actor-critic algorithm, where the actor decides which 
action to take based on the environment state and the critic 
estimates how much reward we are expected to accrue from 
the given state. The actor and critic are represented by a neural 
network each, and use stochastic gradient descent (SGD) opti-
mization [2] to converge to a good policy. An RL agent has the 
choice of selecting the best action given the past information 
or trying a different action that might yield higher rewards. 
This is referred to as the exploration-exploitation trade-off. 
In PPO, the actor network outputs the probability of taking 
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each action and samples the recommended action from this 
distribution. As training proceeds, the actor will increase the 
probabilities for actions that give higher rewards. 

The actor network maximizes the following loss function: 

Jθ = Et [min(ρ(θ )A(s, a),clip(ρ(θ), 1 − ε,1+ ε)A(s,a))] 
πθ (a|s)

ρ(θ) = 
πθold (a|s) 

A(st , at) = R(st ,at)+ γVφ (st+1) −Vφ (st) 

Jθ maximizes the probability of the actions that maximize 
expected cumulative discounted reward, where the expectation 
Et is taken over the data collected. γ is used to discount future 
rewards to encourage the agent to accumulate rewards quickly, 
e.g., a game won in 5 steps is better than winning it in 10 steps. 

πθ is the probability of taking action a given state s and is 
given by the actor network with weights θ . The actor that 
chooses the action lags slightly behind the network updates, 
hence an importance sampling correction is applied with πθold . 
This correction reduces bias in the data by giving higher im-
portance to actions which were taken with low probability and 
vice-versa. The importance sampling ratio ρ is clipped to be 
within 1 ± ε to avoid large gradient updates that de-stabilize 
training. A(s,a) computes the relative benefit of taking action 
a given state s. A(s, a) is computed using V (s,a), which is 
the predicted cumulative discounted rewards from the current 
state s. V (s,a) is given by the critic network with weights φ . 

The loss function of the critic network uses a recursive for-
mulation, where it minimizes the mean squared error between 
the predicted value and the actual value given by the rewards 
R(s,a) received when interacting with the environment: 

1 � � 2 

Lφ = ∑Vφ (st ) − R(st ,at)+ γVφ (st+1)2 t 

We implemented our PPO agent using RLGraph, a framework 
for developing RL agents using modular computation graphs 
[32]. When we attempted Q-learning for activity scheduling, 
it took our agent tens of thousands of time steps to improve its 
decision making compared to hundreds with PPO [38]. 

Simulated Learners 
Before unleashing any RL model on a course full of online 
learners, we needed to test its performance and reliability and 
validate our choices of hyperparameters. In situations where 
learner trace data is available, researchers have advocated for 
the validation of scheduling models with a “robust evaluation 
matrix” of learner simulators trained on this data [6]; the idea 
is to use a few learning models with different behaviors to 
make sure that your scheduling model isn’t over-fitting for 
any assumed learner behaviors. Because we were launching 
a new course that would use active learning for assignments, 
we couldn’t leverage historical learner data when testing out 
our scheduling model. Instead, we created two classes of 
simulated learners — based on BKT [5] and IIKT [15] — to 
imitate many possible scenarios for online learners engaging 
with our educational activities. 

BKT assumes that learner knowledge state is binary for each of 
the skills in a course, that all problems involving the same skill 
elicit identical response patterns, and that learned skills are not 
forgotten. Learners who possess a skill have a static probability 
of slipping when they answer a problem that requires that 
skill. Learners who don’t possess a skill have a different static 
probability of guessing correctly when they answer a problem 
that requires that skill. For problems that require many skills, 
BKT assumes that all the required skills must be known by 
a learner in order for them to solve a problem. Any time a 
learner encounters a problem with a given skill, there is also 
some probability that they will learn that skill and have their 
knowledge state flip from 0 to 1. 

IRT-integrated knowledge tracing combines the IRT model for 
learner knowledge and performance with the BKT model for 
probabilistic learning gains [30]. The IRT model assumes that 
learner knowledge is skill-based, but that learner ability exists 
on a continuous spectrum. According to this model, learner 
performance increases following a logistic curve that tracks 
the ability to answer problems involving a skill. Unlike with 
BKT, IRT-integrated knowledge tracing can assign different 
difficulty parameters for problems involving the same skills. 
To calculate the probability of answering a problem correctly 
that involves multiple skills, it is also possible to take the 
average of the probabilities for all of these skills. 

To develop and test our model, we attempted many different 
simulated scenarios, with randomly seeded knowledge states 
across the population of simulated learners. We first tested 
and optimized our RL model using the a BKT simulator. Once 
we were satisfied with its performance on a variety of possi-
ble parameters for this simulator, we began testing with the 
IRT-integrated knowledge tracing simulator. Unsurprisingly, 
our RL agent performed significantly worse when the answer-
ing pattern looked less distinct between learners with high 
knowledge of a skill and low knowledge of a skill; this made it 
harder to predict how a learner would perform on the post-test. 
As a final test, we adjusted both models so that the probability 
of learning varied not just by skill, but by individual item; 
we found that the RL model was able to successfully priori-
tize items that produced stronger learning gains. All of these 
learner simulators were developed using the OpenAI Gym’s 
API for reinforcement learning environments [3]. 

Course Design 
Integrating RL assignments into a course requires careful 
thought. To ensure that our course would work with RL, we 
recruited a large pool of learners for the model to learn from, 
designed appropriate educational activities, and employed a 
pre-test and post-test to measure learning gains. 

Design Philosophy 
Education theory supports competing strategies for sequencing 
course materials. Sometimes new material should be intro-
duced using many connected examples [4], but other times 
learner knowledge should be built up from foundational skills 
[13]. Similarly, sometimes it is better to connect a few edu-
cational activities focused on the same skill before moving 
onto a new skill, but other times it is better to mix educational 
activities that cover separate skills [31]. With these different 
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strategies in mind, we wanted to provide the RL agent with 
the flexibility to sequence activities however it saw fit. Each 
of our educational activities was self-contained and could be 
displayed on a single page without referencing other activities. 

Course Overview 
To maximize recruitment of online learners, we ran a course 
on elementary linear algebra. This topic is recommended as a 
prerequisite for many popular courses in software engineering, 
machine learning and artificial intelligence, and so was likely 
to have a willing population of learners. To lower the time 
cost of participation, we designed our course so that it could 
be completed in 90 minutes or less. The course was available 
to Amazon employees in English-speaking regions, where 
participants were recruited through an email campaign over 
the course of several months. 

Given our goals for course length, we taught three basic skills 
from linear algebra. We created a pool of twelve auto-graded 
educational activities to match this curriculum — each of 
which required a multiple-select response, and was designed 
to take five minutes. Four types of educational activities were 
created for each skill: video explanations, written descrip-
tions, worked examples and assessment questions. To measure 
learning gains from the beginning of the course to the end, 
we used a six-problem test covering the three course skills as 
an identical pre-test and post-test. In between, the RL agent 
would learn to assign different educational activities to learn-
ers, exploring the set of possible trajectories, and exploiting 
trajectories that had shown good results for similar learners in 
the past. 

To provide the RL model with a consistent real-time feature set, 
each test problem and educational activity recorded a binary 
score of 1 or 0 after the learner responded to it. Activities that 
did not pose a problem for learners to solve, instead asked 
them: “Did you understand the content presented above?” 
Learners would select whether they “fully understood” or “did 
not fully understand”, yielding scores of 1 or 0, respectively. 
Assessment questions provided feedback based on learners’ 
responses. Conversely, since test problems were meant to be 
purely evaluative, learners did not see test scores or feedback 
until completing the post-test. 

Pilot study 
To check if our course would be appropriately difficult— 
covering things that learners didn’t already know, but that 
they could learn in the span of a short course—we recruited 
twenty-four learners from our target population to take part in 
a pilot study. Rather than use an untrained RL agent to assign 
educational activities between the pre-test and post-test, we 
had all the participants go through the activities in whatever 
order they saw fit. This pilot also allowed us to identify points 
of confusion within our course materials and interfaces, which 
we were able to fix before the course launch. 

Platform Development 
To deliver a short course with RL assignments, we needed to 
measure learning gains from the beginning to the end of the 
course, flexibly assign learners to different course materials, 
and observe learners’ responses to the assigned activities. We 

were unable to find an online learning platform that could con-
nect with a scheduling algorithm to deliver real-time adaptive 
assignments to learners. Instead, we constructed a custom 
platform built for RL assignments that supported embedded 
videos, custom images, multiple-select responses and feedback 
messaging for our pool of educational activities. 

Our learning platform exposed an API for learner traces and 
adaptive assignments, allowing it to interface with an arbitrary 
scheduling algorithm that conformed to its specifications. With 
each new learner response, their binary score would be added 
to their trace, and the scheduling algorithm would use this new 
information to instantaneously prescribe the next educational 
activity. Inspired by OARS [1], learner traces were composed 
of response “events” with: a course ID, activity ID, anonymous 
learner ID, response selection, score, and timestamp. 

To enforce the constraints of the RL model, our platform pre-
vented users from viewing more than one educational activity 
at a time or going back to previous educational activities (when 
not self-directing). Learners would complete the pre-test one 
problem at a time, get directed through a sequence of educa-
tional activities, and then get assigned to complete the post-test 
one item at a time. However, we created another version of the 
platform with an activity menu for self-directed learner navi-
gation through the course activities. We used this alternative 
platform in one of our experimental control conditions. 

EVALUATION 
Can reinforcement scheduling assign learners fewer activities 
with increased learning gains? In this section, we evaluate 
the behavior and usefulness of our method by analyzing its 
change in performance over time and comparing it against two 
control conditions. We frame our analyses and results through 
the lens of our four research questions. 

Experimental Design 
To better understand the impact of our reinforced scheduling 
method on learners, we compared our method against two 
baselines in a randomized controlled trial. The first baseline 
condition, linear assignment, asked learners to complete all 
twelve of the educational activities in an order prescribed by 
an independent instructional designer. The second condition, 
self-directed assignment, asked users to choose their own path 
through the materials. In each condition, learners were first 
given a pre-test to evaluate their starting knowledge state and 
then a post-test to evaluate their knowledge state having com-
pleted the course. We used the same test for both the pre-test 
and post-test. Notably, learners did not receive feedback on 
any of their test solutions until the completion of the post-test. 
We measured learning gains as the difference in a learner’s 
score between post-test and pre-test. We also collected learner 
traces throughout the course: how many and which activities 
a learner completed, the correctness of those activities, and 
whether and when a learner dropped out. 

To run the trial, we opened recruitment for our “Introduction 
to Linear Algebra” course through an internal email campaign. 
We randomly assigned 95% of participants to the reinforce-
ment scheduling condition, 2.5% to the linear assignment con-
dition, and 2.5% to the self-navigation condition. We made 
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the conditions as similar as possible to avoid introducing con-
founds. In each condition, learners received short instructions 
that explained the course setup they would experience: we 
explained the goals of the course, informed learners that they 
were part of a learning experiment, and explained how nav-
igation would work for them. Finally, in order to receive a 
certificate of completion, all learners were required to com-
plete a post-course survey. 

In summary, 1987 people enrolled in the course. Of those 
randomly assigned to each condition: 1830 completed enroll-
ment in the reinforced scheduling condition, 91 in the linear 
condition, and 66 in the self-navigation condition. 

Figure 2. The RS and linear navigation conditions saw significantly 
higher completion rates than self-directed navigation (p < .05). 

Figure 3. RS learned to assign fewer educational activities, on average 
over time, without decreasing the average learning gains. 

Figure 4. Learners in the RS condition saw significantly fewer educa-
tional activities than those in the two other conditions (p < .01). As pre-
sented in Figure 3, the number of educational activities assigned by RS 
decreased over time; the activities reported here are an average for all 
learners. 

Figure 5. The learners in the RL and self-directed navigation conditions 
saw significantly better test score improvements than the learners follow-
ing linear navigation (p < .05). 

Figure 6. Both the learner completion rate and test improvements held 
steady under RS. Early participants in the course didn’t fare any worse 
than the ones who joined later on. 

R1: Comparing RS and Control Conditions 
Our first analysis addresses how reinforcement scheduling 
affects learning gains, the number of activities learners com-
plete, and course dropout (R1). We answered this question by 
comparing our method against two control conditions. 

Method 
We first analyzed the data produced by our experiment to col-
lect several measures. We computed the number of activities 
completed by each learner from traces of learner interactions 
with the system. To compute dropout rates, we counted the 
number of learners who completed the course pre-test but not 
the post-test. We computed learning gains by subtracting each 
user’s pre-test score from their post-test score. 

We used t-tests to compare the number of activities completed 
and learning gains across conditions. To compare course 
dropout rates between conditions, we used chi-squared tests. 
For each analysis, we corrected for the fact that we performed 
multiple comparisons with the Bonferroni method. 

Results 
We depict comparison in dropout across conditions in Figure 2. 
The linear condition and RS condition yielded significantly 
higher course completion rates than the self-directed naviga-
tion condition (p < .05 in each case). There was no significant 
difference between the dropout rate for learners in the RL and 
the linear navigation conditions (p > .05). 

Figure 4 shows a comparison of the number of activities com-
pleted on average by learners in each condition. Learners in 
the RS condition engaged with significantly fewer educational 

Paper 391 Page 7



 CHI 2020 Paper

activities than those following linear and self-directed naviga-
tion (p < .01 in each case). As shown in Figure 3, the average 
number of educational activities assigned by the RL agent 
decreased from a maximum of approximately ten to an aver-
age of about four activities, delivering a greater reduction for 
later participants in the RL-managed course. The difference 
in activities between the RS condition and the self-directed 
navigation condition is even greater, considering that we did 
not double-count the return visits to past educational activities 
that were taken by the majority of self-directed learners. 

Figure 5 shows the learning gains that we observed in each 
of our experimental conditions. Learners in the self-directed 
and RL conditions saw significantly higher test score increases 
than those in the linear navigation condition (p < .05 in each 
case). However, there was no significant difference between 
learning gains in the self-directed and RS conditions (p > .05). 

Discussion 
Collectively, these analyses show that learners in the RS condi-
tion completed fewer activities than those assigned to the linear 
and self-navigation conditions, demonstrated larger learning 
gains than learners in the linear navigation condition, and 
completed the course at higher rates than learners in the self-
navigation condition. 

We were surprised by the significantly higher dropout rate for 
self-directed learners, and it is possible that this condition’s 
strong learning gains—equivalent to the RS condition—are at 
least partially due to a loss of less-motivated learners. Con-
versely, it is also surprising that learners in the linear condition 
demonstrated high completion rates, at the same level as the 
RS condition. When investigating further, we found that most 
dropout occurred shortly after the pre-test in these conditions, 
suggesting that the number of required educational activities 
didn’t have a large effect on the dropout rate for our short 
course. Further, learner dropout was not strongly correlated 
with pre-test score in any of the conditions. This suggests that 
learners are more likely to complete a course where they don’t 
have to decide what they will do next. 

R2: The Cold Start Problem 
Our second analysis addresses the concern—known as the 
“cold start” problem—that an RL agent might produce lower 
learning gains and course completion rates in early learners, 
before the model has been exposed to much training. 

Method 
To compute changes in measures as the course progressed, 
we partitioned learner data from the RS condition into groups 
of one hundred learners, beginning with the first hundred 
that entered the course, then the next hundred, and so on. 
(While larger partitions give a smoother curve, we repeated 
this method with smaller partition sizes and got similar results). 
We computed average completion rates and learning gains for 
each group in the partition, then plotted these results over time. 

Results 
Figure 6 shows that the learning gains and completion rates 
remain steady throughout the course. Though early partici-
pants in the RL condition have to complete more educational 
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Figure 7. Under RS, learners were most likely to see educational activi-
ties 1, 9, 8 and 11. Self-directed learners engaged with every activity in 
the course at a similar frequency. RS activity distributions significantly 
deviate from a uniform distribution under a chi-squared test (p<.01). 

activities than later participants directed by RL, they still spent 
time on fewer total educational activities than participants 
following linear and self-directed navigation. 

Discussion 
This result suggests that we can work past a common criticism 
of RL for human-in-the-loop applications; that RL agents may 
disproportionately harm early users before a fresh model has 
a chance to learn a decent policy [24]. Earlier versions of 
our model tested with simulated learners were less successful 
in this regard, and we eliminated this problem by making 
our reward function more conservative. First, we delayed 
the penalty for additional educational activities. Second, we 
provided a positive immediate reward for assignments, which 
biased our RL agent’s early exploration towards longer paths. 

R3: RS Scheduling Patterns 
Our third analysis focuses on identifying useful patterns in the 
scheduling policy that RS learned for our course. We identify 
patterns in the assignments RS chose for different kinds of 
learners, and explore what instructors and course designers 
might infer from how our model learned to assign activities. 

Method 
We first collected data from the last 200 learners assigned 
activities by RS, as later participants were directed by the 
longest-trained policy and so are more representative of the 
trained model’s decision making. Next, we looked at the 
assignment frequency distribution for educational activities 
to determine which were assigned most frequently, using a 
chi-squared test and odds ratios to determine which (if any) 
activities were assigned most frequently. We then investigated 
the relationship between pre-test scores and the number of 
resulting activity assignments with a linear regression model. 
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Results 
Figure 7 shows significant differences in how often activities 
were assigned for the last 200 learners (p < .01). Learners 
in the RS condition were most likely to see activities 1 (1.99 
odds), 8 (1.90 odds), 9 (2.82 odds) and 11 (2.019 odds). (These 
were "Defining A Vector: Video", "Vector Addition: Assess-
ment Question", "Vector Norm L1: Video" and "Vector Norm 
L1: Worked Example".) Learners were least likely to see ac-
tivity 5 ("Vector Addition: Video") with an odds ratio of 0.27. 
The four most commonly assigned educational activities in-
cluded all activity types except for a written explanation. They 
also covered each of the three course skills, as designated by 
the course designer, but with a duplication of the third skill. 

Figure 8 shows that as pre-test score increases, the number 
of educational activities assigned by RS decreases. Linear 
regression showed a 0.60 decline in the number of activities 
assigned for each one-point increase in pre-test score. 

Discussion 
Put together, these analyses show that RS adapted to different 
learner states. Learners in the RS condition completed fewer 
activities than those assigned to the linear and self-navigation 
conditions, demonstrated larger learning gains than learners in 
the linear navigation condition, and completed the course at 
higher rates than learners in the self-navigation condition. 

Figure 7 illustrates that learners in the RL condition didn’t 
just engage with fewer educational activities than self-directed 
learners — the RL learners were most likely to see activities 1, 
8, 9 and 11. From this observation, an instructional designer 
might infer one of three things: 1) These four activities have 
the largest impact on test score improvements for learners in 
the course. 2) The scores from these activities are the most 
informative for the RL agent’s future scheduling decisions. 3) 
Both explanations are simultaneously true. A logistic regres-
sion of the decisions made by the RL agent based on learner 
scores supports the first hypothesis. Learner scores did influ-
ence future assignments, but the influence of scores from these 
four activities wasn’t stronger than the influence of the scores 
from the less-assigned educational activities. 

If we accept that these four educational activities were best 
at increasing post-test scores, instructors and instructional de-
signers might try to develop more activities that resembled 
these successful ones. Since no written explanation was in-
cluded among the most useful activities, it is possible that 
this type of activity may be less useful; but more data would 
be required to make this judgement. Although this lack of 
certainty might be discouraging for a course designer trying 
to optimize the activities available, it lends support to the use 
of RL to evaluate individual activities — independent of their 
types. 

Course developers might also consider whether the available 
educational activities were sufficient to produce strong learn-
ing outcomes. Comparing the linear condition to the RL con-
dition, it’s clear that the total number of assignments were not 
the only factor influencing test improvements. However, the 
order of the educational activities appear to have played a role 
on the size of those improvements. Following this experiment, 
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Figure 8. This bar chart shows the number of activities assigned to the 
last 200 RS learners, based on their pre-test scores. As learners per-
formed better on the pre-test, RS assigned fewer activities. 

it remains unclear whether repetition of the available activi-
ties or self-directed navigation through activities may have an 
effect on learning outcomes. 

R4: Qualitative Feedback From Learners 
Method 
We conducted an exit survey at the end of the course. The 
survey consisted of questions related to demographics, course 
quality, and textual feedback. We surveyed course quality 
across several measures using a Likert scale and analyzed 
learner textual feedback for broader themes. 

Results 
The mean score for overall experience was 5.53/7, with 32% 
of the users extremely satisfied and 49% moderately satisfied. 
Learners scored the effectiveness of the number of activities as 
3.34/5, the effectiveness of ordering of activities as 3.38/5 and 
the effectiveness of the selection of activities as 3.46/5. 62% 
of the learners said the number of activities were “Just Right”, 
while 24% said it was “Too Few” and 16% said it was “Too 
Many”. If we only consider the last 200 learners, the “Too 
Many” activities category dropped to 7%. 

Discussion 
One clear theme that emerged from learner feedback is that 
learners generally liked the course and were intrigued by the 
possibility of using RL for adaptive assignment. For example: 
“I loved this” and “[I liked] the option to let me make mistakes, 
then teach me and they evaluate me again” and “[being as-
signed] lessons that seemed tailored to the specific subjects I 
was unsure about was quite interesting.” 

In general, many learners noticed and appreciated how the 
course adapted to their knowledge state. For example: “I 
was exposed to only those lessons which I needed” and “The 
lessons selected are very relevant to the questions that you 
answered wrongly.” There were cases, however, in which the 
learners did not experience the course as adaptive. One learner 
said: “I LIKE the idea of [adaptivity]. But given that [I think 
that] I got all the pre-test questions right, it didn’t seem to 
adapt at all.” Such cases are to be expected in a RL algorithm 
which must occasionally explore new paths. 

One implication of using an adaptive agent is that learners 
who know most of the material will not be assigned many 
activities. For example, one learner said: “Nice to not have to 
sit through everything (some of which I already know) and end 
up tuning out, missing the parts that I don’t know/need review.” 
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However, such a small number of activity assignments was 
not always perceived as helpful. Other learners said: “were 
there only two short videos?” and “I got bored because there 
was only one little thing I had to learn.” This feedback became 
more prevalent as the course progressed. 

We noticed that some learners expected to have one activity 
per skill, especially when they answered the relevant questions 
correctly on the pre-test. When the agent scheduled multiple 
activities per skill, some learners said: “some lessons/concepts 
appears twice” and “The order of lessons seemed a little hap-
hazard, as some material that was presented earlier was re-
peated later.” This sort of feedback declined over time and 
was absent in the last 200 learners. 

Finally, we observed a high demand for similar courses. “Uh, 
please, PLEASE, do more of these. Sign me up.” One learner 
told us. Another said: “Keep up with the good work, this can 
disrupt online education.” 

LIMITATIONS AND FUTURE WORK 
In this section we discuss the limitations of our method and 
studies, many of which we aim to address in future work. 

Generalizability 
A key concern in designing our method was that it generalize 
to other courses and course materials. RS can be configured 
to schedule educational content for courses that use tests to 
evaluate learning gains and activities that can stand alone 
without cross-reference. And unlike most existing techniques, 
RS does not require carefully chosen skill labels to learn its 
policy. But, our method does not support courses where the 
educational activities involve complex or qualitative evaluation 
metrics, or where these activities are used to assess learners 
along the way. RS is not a good fit for courses that do not have 
many hundreds of learners, as the algorithm requires sufficient 
data to converge to a reasonable scheduling policy. The data 
requirements grow with the number of skills and activities in 
the course. Finally, we did not develop our method within the 
framework of mastery learning—where learners demonstrate 
consistent ability to apply a set of skill before they are able to 
move onto additional skills. 

There are, however, solutions to some of these limitations. 
We can reduce the data required by mixing self-navigation 
and historical data. Use of improved algorithms like soft 
actor critic [11] will reduce the sample complexity further 
and generalize better to new learners and courses. Mastery 
learning can be emulated by including enough problems on the 
pre-test and post-test where the RL agent will be incentivized 
to increase their mastery, or by requiring learners to repeat the 
course until they have demonstrated sufficient mastery. 

Scale of Data 
While we integrated reinforcement scheduling into a large on-
line course—the model interacted tens of thousands of times 
with nearly two thousand learners—bringing an order of mag-
nitude more learners to the platform would present many new 
opportunities for analysis. In particular, it is not apparent that 
RS has converged on a final policy, and so it might continue to 
improve on its adaptive assignments. One possible outcome 

would be the elimination of entirely useless educational ac-
tivities. With many thousands of learners, we would have the 
opportunity to optimize a policy over a wider range of skills 
and content, and we might observe more interesting ordering 
effects. If RS were run over a longer period of time for a 
course with changing learner behaviors, it would be interest-
ing to see how well it adapts to these changes. Since there 
were not enough learners in the control conditions to compare 
activity assignments for specific pre-test responses and pre-
test scores, across conditions, we would like to run an even 
larger randomized controlled experiment on RS with enough 
learners to compare the paths taken by these subpopulations. 

Future Modifications of RS 
There are three main adjustments to RS that we would con-
sider for a re-run of our course. First, we would like to try 
eliminating the penalty for additional educational activity as-
signments from our reward function. The linear condition 
from our experiment shows that completing more activities 
does not always cause more learning, and RS might learn to 
reduce the number of assignments without an explicit penalty. 
If over-practice is actually a problem, its negative effects on 
test scores might be sufficient to prevent unnecessary activities 
from getting assigned. Next, it would be interesting to see how 
the RL model behaves differently if we cap the number of as-
signments, but allow the RL agent to make repeat assignments. 
This would require a larger state space for our model and make 
the RL agent less sample efficient, but learners might benefit 
from these repeats in ways we hadn’t expected. Finally, we 
might add a term to our reward function that penalizes the loss 
of learners — to see if the RL agent can keep learners engaged 
for longer and prevent some instances of dropout. 

CONCLUSION 
This paper presents the first adaptive scheduling model to as-
sign educational activities at scale in an online course through 
active learning. When balancing learning gains, the number 
of assigned items and learner dropout, our model performs fa-
vorably against two baseline assignment strategies: assigning 
all activities in an linear order defined by a course designer, 
and self-directed learner navigation. More broadly, our work 
gestures towards a future where online courses continuously 
improve themselves without the dedicated time and attention 
of instructors. 
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