CHI 2020 Paper

CHI 2020, April 25-30, 2020, Honolulu, HI, USA

Reinforcement Learning for the
Adaptive Scheduling of Educational Activities

Jonathan Bassen', Bharathan Balaji’, Michael Schaarschmidt®, Candace Thille?,
Jay Painter?, Dawn Zimmaro?, Alex Games?, Ethan Fast', John C Mitchell!
Stanford University!, Amazon?, University of Cambridge?
jbassen @stanford.edu, bhabalaj@amazon.com

ABSTRACT

Adaptive instruction for online education can increase learn-
ing gains and decrease the work required of learners, instruc-
tors, and course designers. Reinforcement Learning (RL) is
a promising tool for developing instructional policies, as RL
models can learn complex relationships between course activ-
ities, learner actions, and educational outcomes. This paper
demonstrates the first RL. model to schedule educational ac-
tivities in real time for a large online course through active
learning. Our model learns to assign a sequence of course
activities while maximizing learning gains and minimizing
the number of items assigned. Using a controlled experiment
with over 1,000 learners, we investigate how this scheduling
policy affects learning gains, dropout rates, and qualitative
learner feedback. We show that our model produces better
learning gains using fewer educational activities than a linear
assignment condition, and produces similar learning gains to a
self-directed condition using fewer educational activities and
with lower dropout rates.

Author Keywords
Online education; adaptive learning; reinforcement learning.

CCS Concepts
*Applied computing — Computer-assisted instruction;

INTRODUCTION

Designing and improving online courses is a daunting task.
Today, instructors usually organize course materials through
some combination of best practice and intuition. But how
do we choose which materials are really best? And in what
order should we present them? These questions almost never
have clear answers. For example, consider an online course
on functional programming. We could begin the course with
either lambda calculus or the basic concept of functions. We
could present the concepts with a written explanation or a short
video. It is not obvious which combination is better. Even

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CHI 20, April 25-30, 2020, Honolulu, HI, USA.

© 2020 Copyright is held by the owner/author(s).

ACM ISBN 978-1-4503-6708-0/20/04.

http://dx.doi.org/10.1145/3313831.3376518

Paper 391

Critic Actor ACTION

Critj
N (assign activity or test) >
alue loss)

Learner
(responds)

STATE

[e1, aeey €M, C1y ury CN, O1y -avy gN]

REWARD

(1 or 1 + reward from test)

Figure 1. Reinforcement Scheduling uses an RL agent to assign activities
in an online course. Over time, this method learns latent relationships
between actions (assignments), states (learner traces) and rewards (out-
comes) in order to schedule better and fewer activities to these learners.
When a learner completes a pre-test or educational activity, their trace
is updated in the form of a state vector with pre-test scores (¢,,), assign-
ment completions (c,), and assignment scores (g;,).

more challenging, learners may perform better with different
routes depending on their background and knowledge.

We refine these questions to focus on a specific goal for course
design: given a set of course materials, how can we assign
each learner the smallest number of activities that maximize
their learning gains? Assigning fewer materials can help us
identify which materials work best, both globally and for sub-
populations of learners. By assigning personalized materials,
we can provide those best tuned to a learner’s trace and knowl-
edge state. And by maximizing learning gains for each learner,
we ensure that a course is effective. However, evaluating the
efficacy of individual educational activities is challenging for
a model, and using such a model to assign activities is even
more so [17]. No prior work we know of has demonstrated
that an adaptive assignment policy can be applied at scale in
an online course, optimized in real time against learning gains.

To achieve this goal we introduce reinforcement scheduling
(RS): a novel RL algorithm for assigning course materials
based on a learner’s starting knowledge state and history of
interaction with course materials. Our model can learn to
make assignment decisions in real time given feedback about
how these decisions impact downstream post-test scores. Con-
cretely, our model represents a learner’s a priori knowledge
through a pre-test score, and their interactions with the course
that encodes completed problems and whether they were an-
swered correctly. From this feature space, the model assigns

Page 1


http://dx.doi.org/10.1145/3313831.3376518
mailto:bhabalaj@amazon.com
mailto:jbassen@stanford.edu

CHI 2020 Paper

the next activity to a learner. Using proximal policy optimiza-
tion (PPO) [33], the model learns over time by optimizing a
function that rewards for post-test based learning gains and
penalizes for the number of materials assigned (Figure 1).

We evaluate RS by integrating it into an online linear algebra
course taken by over 1000 learners. Existing open source
platforms do not support the adaptive scheduling of educa-
tional activities, so we created a new online learning platform
in order to deploy the course. We evaluated the impact of
our model through a randomized controlled trial that divided
learners between reinforcement scheduling and two control
conditions. Through this experiment, we aimed to answer four
research questions:

R1: How does reinforcement scheduling affect learning gains,
the number of activities completed, and dropout?

R2: Do early participants suffer from a worse assignment
policy under reinforcement scheduling?

R3: What can instructors and course designers learn from
reinforcement scheduling?

R4: What are the qualitative experiences of learners under
reinforcement scheduling?

In our investigation of these questions we find that RS largely
succeeds in meeting our design goals while inspiring positive
learner feedback. In particular, we found that learners who
completed the course under RS demonstrated larger learning
gains than the linear control condition (p < .05) and were also
assigned fewer activities (p < .01). Further, RS led to lower
dropout rates than the self-directed control condition (p < .05),
with no significant difference to the linear condition. Finally,
learners generally perceived the RS condition as adaptive and
expressed satisfaction with the course.

In summary, this paper presents the first RL model to schedule
educational activities in real time for a large online course
through active learning. We show that when considering learn-
ing gains, the number of assignments, and learner dropout
as a whole, our model performed favorably against two base-
line assignment strategies. More broadly, our work gestures
towards a future where online courses continuously improve
themselves with reduced time and attention from instructors.

RELATED WORK

Reinforcement scheduling learns how to assign sequences of
educational activities to online learners without skill labels or
existing course data. We begin this section with some back-
ground information on skill labels and their use for course
development. We then describe how our model builds upon
prior work for adaptively assigning course materials. Finally,
we discuss other methods for automating instructional prac-
tices and improving learning outcomes in online courses.

Skill Labels and Course Design

Skill labels are required inputs to many learner models and
automated assignment algorithms, and they often play a key
role in course design [18]. In this context, skills equate
to the smallest units of actionable human knowledge [29].
Many course designers use skill labels to tag and organize

Paper 391

CHI 2020, April 25-30, 2020, Honolulu, HI, USA

their course materials. This helps them make sure the course
materials cover all the desired skills, and don’t require skills
outside the scope of the course.

Unfortunately, determining the skills in a course and tagging
course materials with skill labels is largely a manual and
instructor-centric process. Cognitive task analysis (CTA) is
the traditional mechanism for identifying skills, where individ-
uals with a broad range of expertise in the field are asked to
talk through their thought processes while they solve relevant
problems. Each unique step applied within these problem
solving processes is considered a separate skill [29]. Once a
skill-labeled course has been launched, Learning Curve Anal-
ysis (LCA) can be used to detect missing and mislabeled skills
from learner trace data [26, 5]; this technique requires an
instructor to visualize learners’ responses to single-skill prob-
lems over time, investigate any instances where performance
does not increase monotonically.

Several techniques have emerged to automate the collection
of these skill labels. For example, Q-matrices can learn to
differentiate between different skills without skill labels [35].
Unfortunately, Q-matrices still require human determination
of skill granularity, and cannot be used to directly label edu-
cational activities. Even the best skill mappings will always
fall short of capturing the full complexity of human learning,
which operates largely by analogical reasoning [9].

As we discuss in the following section, most learner models
and automated assignment algorithms require skill labels and
so lead to a potentially time consuming and expensive setup
process. In contrast, our work aims for course materials to
be organized at a higher level, such that course designers do
not need to manually curate detailed skill labels to automate
scheduling policies. By working from a model that learns to
make effective assignments of materials without information
about skill labels, we can make these tools accessible to the
majority of instructors who do not use these precise labels
when designing their curricula.

Adaptive Scheduling of Educational Activities

There is a long history of models that adaptively prescribe edu-
cational materials to online learners. Many intelligent tutoring
systems have used scheduling models that improved learning
outcomes and reduced the work of instructors [36, 12, 28].
However, historical learner data and model-training expertise
are typically required to deploy these models. New courses
must rely on conservative models, under-trained models, or
self-directed learner navigation as a temporary scheduling
strategy. The scheduling models for long-running courses
need to be periodically retrained, especially in cases where the
learner population changes over time.

The most common scheduling models require skill maps and
combine these maps with learner knowledge models to make
assignment decisions. Bayesian Knowledge Tracing (BKT)
trains a Hidden Markov Model to predict a learner’s binary
knowledge state for each skill [5]; when answering problems,
learners have some fixed probability of guessing when they
don’t know the required skills or slipping when they do. Simi-
larly, IRT-Integrated Knowledge Tracing (IIKT) reformulates

Page 2



CHI 2020 Paper

the BKT model so that learner ability exists on a spectrum
between 0 and 1 and adds a parameter for the difficulty of
each item [15]. These models require careful curation of skill
labels, since they are sensitive to incorrect labels [18]; even
so, they tend to perform worse in scenarios with multiple skills
per educational activity [27]. In contrast to these methods, re-
inforcement scheduling does not require skill maps or assume
that all activities covering a skill are equally effective.

Other scheduling models can be trained without explicit skill
labels. For example, Deep Knowledge Tracing (DKT) uses
an LSTM trained on binary learner traces to predict future
responses [27]; though DKT can be used to schedule assign-
ments, it cannot be used to actively optimize for the efficacy of
assignments. Similarly, other methods have explored a set of
parameterized instructional policies but cannot easily be used
to evaluate individual educational activities [21, 22]. Con-
textual Bandits have been used to decide which instructional
action is best for a given situation, but are unable to reason
about delayed effects such as a post-test score [34].

RL has seen surprisingly little use in online education. RL
models trained on historical data have been used to evaluate
competing instructional policies for online education, demon-
strating how ineffective educational activities can be elimi-
nated, entirely [24]. However, just as with knowledge tracing,
such evaluation requires historical data to train on. Even with
hundreds of thousands of learner traces, RL will have diffi-
culty learning long sequences of actions [7]. Q-Learning has
been used to decide what feedback is given to learners for
individual problems in an online course, but this model was
limited to two simple binary decisions [14]; as we discuss
later, Q-learning appears too sample inefficient to use for an
activity-centered scheduling policy.

One big challenge when it comes to scheduling educational
activities is the absence of platforms that support model-driven
adaptive navigation. Several platforms support a fixed form
of instructional model [36, 12, 28], but we could not identify
any platforms that allowed for a new model to be plugged
in and direct the scheduling of educational activities. This
motivated us to create a new platform that would support
adaptive scheduling through an API. Our platform works not
just for our implementation of reinforcement scheduling, but
for any model that conforms to the platform’s specifications.

Other Methods for Automating Instruction

A broad class of prior work has proposed solutions for other
instructional processes. For example, methods have been intro-
duced to automate experimentation over instructional policies
[21, 41, 12, 23]. Other work has explored how mindset inter-
ventions and automated dropout interventions improve learner
outcomes [8, 39]. As a very different form of automation,
learnersourcing has been used to manage hard-to-scale in-
structor tasks such as grading [19], providing feedback [20],
giving explanations [40] and hints [10], and even creating
new educational materials [25].

REINFORCEMENT SCHEDULING
Reinforcement scheduling is a novel method for adaptive ac-
tivity assignment that leverages reinforcement learning and

Paper 391

CHI 2020, April 25-30, 2020, Honolulu, HI, USA

requires no pre-existing course data or skill labels. In this
section, we describe the details underlying our method and
the many considerations we brought to its design. We further
discuss the learning platform we built to support reinforcement
scheduling, and the course we created for its deployment.

Model Development

Our primary objective for reinforcement scheduling was to
maximize learning gains while reducing the time spent on
educational activities. We also adopted three design principles
that encourage generalizability: 1) the model should support
courses with different educational activities and topics, 2) the
features should be meaningful, consistent, and non-redundant,
and 3) there should be no requirement for human labels. To
achieve these goals, we adopted a RL-based model: a good
choice to make decisions and learn from their outcomes con-
tinuously and in real time.

As is standard practice when developing RL models, we are
principally concerned with the choice of optimization strategy,
action space, state space and reward function. The action
space provides the set of possible decisions that can be taken
by the RL agent at a given point in time. The state space
defines the "state of the world" that is visible to an RL agent;
in our case, this is a compact representation of a learner’s trace.
The reward function assigns value to the steps and outcomes
that the RL agent arrives at. Finally, the optimization strategy
determines the gradient chasing method that is used to improve
the RL agent’s decisions over time. What follows is a detailed
explanation of our scheduling model, and the design process
that led to its formation.

Action space

Under our navigational strategy, the only action that the RL
agent takes is to prescribe the next educational activity or the
post-test. Because the post-test is always the final thing to
be scheduled in the course, its assignment leads to a terminal
state. The action space is defined by a single binary vector
with a position for each of the N activities and the post-test (at
position N + 1).

Ai = [alv"'aanaN+1]

We put two limitations on the actions taken by the RL agent.
First, we prevented repeat assignments of the same educational
activity to the same learner; repeats seemed unnecessary in a
course with only 12 educational activities, and we wanted to
ensure that the course length was no longer than 12 activities.
Second, we prevented the RL agent from assigning the post-
test to a learner until it had already given them at least one
educational activity; this guarded against exploration of a
useless trajectory, and the learner frustration that was likely to
accompany it. To suppress a set of actions, we sampled from
a regularized distribution of the remaining allowable action
probabilities.

State space
Since test scores and educational activity scores help the RL
agent make inferences about learning gains, this data formed

Page 3



CHI 2020 Paper

the core of our state space. Pre-test problems are always com-
pleted in the same order before the learner moves on to any
educational activities, so the pre-test scores can be concisely
represented by a binary vector of length M. Educational ac-
tivities can be delivered in any order, so the state space needs
to communicate both the set of activities that a learner has
completed and the associated scores.

We evaluated different state space designs using learner simu-
lators. To encapsulate a learner’s current record of scores and
activity completions, we explored vectorized state spaces to
feed to the RL agent. Inspired by DKT [27], we considered
using concatenated one-hot encoding for each combination of
educational activity and score within a learner trace; however,
our simulations revealed that this large state space made RL
training too sample inefficient for active learning. Instead, we
found that a compact state space, which ignores the ordering
of previous activities, was much faster and still able to make
effective decisions. This learner state space (S) at step i is a
concatenation of the M pre-test scores (E), a vector indicating
which of the N educational activities have been completed so
far (C), and a vector that holds the grade for each of the N
activities once they have been attempted (G).

S,’ = [6‘1,...,eM,Cl,...,CN,gl,...,gN]

Several additional features were evaluated, but ultimately elim-
inated for lack of utility. The post-test scores were left out
of the state space because the optimization strategy we chose
does not differentiate between terminal states; in courses with
a fixed post-test, the post-test scores are the only part of the
environmental state that change between the penultimate step
and the end of an episode. The time spent by a learner on
each activity was also left out, since the time spent on a page
has proved to be a poor proxy for time spent on task [16].
Because all the educational activities were designed to take
the same amount of time, we decided that the count of these
activities would be a sufficient approximation.

Reward function

In line with our high-level design goals, we constructed a
step-wise reward function that prioritized learner test perfor-
mance improvements and penalized the inclusion of extra
activities. The total reward (R) for a learner "episode” (a com-
plete trajectory through the course) comes from the sum of
these individual steps. It sums up individual improvements
between the pre-test scores (E) and the post-test scores (0),
and imposes a penalty (y) in proportion to the number of
educational activities in the episode (H).

R; = 1 [after educational activity is assigned]

M
=1+) {max(O, 0p —ep)} —(1+vy)xH
p=1
[after post-test is assigned]

We chose R based on the speed and consistency with which
our RL agent learned a good policy on simulated learners.

Paper 391

CHI 2020, April 25-30, 2020, Honolulu, HI, USA

We found that adding a small immediate reward for each
educational activity assignment—and delaying the penalty for
all educational activities—encouraged exploration of longer
and more diverse course paths. This is counterbalanced by the
penalty y. Similarly, we found that adding 1 to the post-test
assignment reward prevented the RL agent from assigning
activities too preferentially. The pair-wise increases between
the pre-test and post-test scores allowed the agent to ignore
cases where a learner guessed how to solve a problem correctly
on the initial test or slipped up on a problem on the post-test;
this improved both the speed and consistency of the RL agent’s
learning.

The educational activity assignment penalty () is a proxy for
the minimum marginal test improvement that must be expected
from an activity to justify its scheduling. y typically takes
a value between 0 and 1. Course designers can think of this
parameter as the proportion of learners that should see a one
point increase from the pre-test to the post-test if you include
this problem, to make it worth including.

The number and difficulty of test problems inform the magni-
tude of y. A course with half the test problems would halve
the potential improvement going from the pre-test to the post-
test; tests with easier problems should generally increase the
value of y as a one-point increase becomes less meaningful. If
this value is too low, learners are likely to waste more time on
activities that don’t support much learning. Conversely, if this
value is too large, some useful activities will not be assigned
to learners who would benefit from them. After experimenting
with many parameter values for our short course with 6 test
problems and 12 educational activities, we settled on a value
of 0.2 for y; under most simulated conditions, this allowed for
substantial reductions in the number of items assigned without
sacrificing test improvement.

Policy Optimization

Actively-learned RL learns to make decisions in real time
based on interactions with an environment, but this presents
challenges for its use in online education. RL algorithms tend
to have poor sample efficiency, often requiring hundreds of
episodes to learn simple policies, or hundreds of thousands of
episodes to learn more complicated ones [37]. Such models
take too long to learn in courses with only hundreds or thou-
sands of learners. We overcome this challenge for RS by using
proximal policy optimization (PPO), a policy gradient method
that leverages deep neural networks to more efficiently learn a
scheduling policy [33]. Use of neural networks reduces the
dimensionality of the state/action space and so also reduces
number of samples an algorithm needs to converge.

PPO is an actor-critic algorithm, where the actor decides which
action to take based on the environment state and the critic
estimates how much reward we are expected to accrue from
the given state. The actor and critic are represented by a neural
network each, and use stochastic gradient descent (SGD) opti-
mization [2] to converge to a good policy. An RL agent has the
choice of selecting the best action given the past information
or trying a different action that might yield higher rewards.
This is referred to as the exploration-exploitation trade-off.
In PPO, the actor network outputs the probability of taking

Page 4



CHI 2020 Paper

each action and samples the recommended action from this
distribution. As training proceeds, the actor will increase the
probabilities for actions that give higher rewards.

The actor network maximizes the following loss function:
Je = Ef [mln (p(G)A(s,a),clzp(p(G), 1-— g, 1 +£)A(S,(,l))]
7o (als)
p(6) = T
”9,,[(/ ((1|S)
A(st,ar) = R(st,ar) + W (s141) — Vo (sr)

Jo maximizes the probability of the actions that maximize
expected cumulative discounted reward, where the expectation
E, is taken over the data collected. ¥ is used to discount future
rewards to encourage the agent to accumulate rewards quickly,
e.g., a game won in 5 steps is better than winning it in 10 steps.

Ty is the probability of taking action a given state s and is
given by the actor network with weights 6. The actor that
chooses the action lags slightly behind the network updates,
hence an importance sampling correction is applied with 7 .
This correction reduces bias in the data by giving higher im-
portance to actions which were taken with low probability and
vice-versa. The importance sampling ratio p is clipped to be
within 1 & € to avoid large gradient updates that de-stabilize
training. A(s,a) computes the relative benefit of taking action
a given state s. A(s,a) is computed using V(s,a), which is
the predicted cumulative discounted rewards from the current
state s. V(s,a) is given by the critic network with weights ¢.

The loss function of the critic network uses a recursive for-
mulation, where it minimizes the mean squared error between
the predicted value and the actual value given by the rewards
R(s,a) received when interacting with the environment:

2

We implemented our PPO agent using RLGraph, a framework
for developing RL agents using modular computation graphs
[32]. When we attempted Q-learning for activity scheduling,
it took our agent tens of thousands of time steps to improve its
decision making compared to hundreds with PPO [38].

Simulated Learners

Before unleashing any RL model on a course full of online
learners, we needed to test its performance and reliability and
validate our choices of hyperparameters. In situations where
learner trace data is available, researchers have advocated for
the validation of scheduling models with a “robust evaluation
matrix” of learner simulators trained on this data [6]; the idea
is to use a few learning models with different behaviors to
make sure that your scheduling model isn’t over-fitting for
any assumed learner behaviors. Because we were launching
a new course that would use active learning for assignments,
we couldn’t leverage historical learner data when testing out
our scheduling model. Instead, we created two classes of
simulated learners — based on BKT [5] and IIKT [15] —to
imitate many possible scenarios for online learners engaging
with our educational activities.

Paper 391

CHI 2020, April 25-30, 2020, Honolulu, HI, USA

BKT assumes that learner knowledge state is binary for each of
the skills in a course, that all problems involving the same skill
elicit identical response patterns, and that learned skills are not
forgotten. Learners who possess a skill have a static probability
of slipping when they answer a problem that requires that
skill. Learners who don’t possess a skill have a different static
probability of guessing correctly when they answer a problem
that requires that skill. For problems that require many skills,
BKT assumes that all the required skills must be known by
a learner in order for them to solve a problem. Any time a
learner encounters a problem with a given skill, there is also
some probability that they will learn that skill and have their
knowledge state flip from O to 1.

IRT-integrated knowledge tracing combines the IRT model for
learner knowledge and performance with the BKT model for
probabilistic learning gains [30]. The IRT model assumes that
learner knowledge is skill-based, but that learner ability exists
on a continuous spectrum. According to this model, learner
performance increases following a logistic curve that tracks
the ability to answer problems involving a skill. Unlike with
BKT, IRT-integrated knowledge tracing can assign different
difficulty parameters for problems involving the same skills.
To calculate the probability of answering a problem correctly
that involves multiple skills, it is also possible to take the
average of the probabilities for all of these skills.

To develop and test our model, we attempted many different
simulated scenarios, with randomly seeded knowledge states
across the population of simulated learners. We first tested
and optimized our RL model using the a BKT simulator. Once
we were satisfied with its performance on a variety of possi-
ble parameters for this simulator, we began testing with the
IRT-integrated knowledge tracing simulator. Unsurprisingly,
our RL agent performed significantly worse when the answer-
ing pattern looked less distinct between learners with high
knowledge of a skill and low knowledge of a skill; this made it
harder to predict how a learner would perform on the post-test.
As a final test, we adjusted both models so that the probability
of learning varied not just by skill, but by individual item;
we found that the RL model was able to successfully priori-
tize items that produced stronger learning gains. All of these
learner simulators were developed using the OpenAl Gym’s
API for reinforcement learning environments [3].

Course Design

Integrating RL assignments into a course requires careful
thought. To ensure that our course would work with RL, we
recruited a large pool of learners for the model to learn from,
designed appropriate educational activities, and employed a
pre-test and post-test to measure learning gains.

Design Philosophy

Education theory supports competing strategies for sequencing
course materials. Sometimes new material should be intro-
duced using many connected examples [4], but other times
learner knowledge should be built up from foundational skills
[13]. Similarly, sometimes it is better to connect a few edu-
cational activities focused on the same skill before moving
onto a new skill, but other times it is better to mix educational
activities that cover separate skills [31]. With these different

Page 5



CHI 2020 Paper

strategies in mind, we wanted to provide the RL agent with
the flexibility to sequence activities however it saw fit. Each
of our educational activities was self-contained and could be
displayed on a single page without referencing other activities.

Course Overview

To maximize recruitment of online learners, we ran a course
on elementary linear algebra. This topic is recommended as a
prerequisite for many popular courses in software engineering,
machine learning and artificial intelligence, and so was likely
to have a willing population of learners. To lower the time
cost of participation, we designed our course so that it could
be completed in 90 minutes or less. The course was available
to Amazon employees in English-speaking regions, where
participants were recruited through an email campaign over
the course of several months.

Given our goals for course length, we taught three basic skills
from linear algebra. We created a pool of twelve auto-graded
educational activities to match this curriculum — each of
which required a multiple-select response, and was designed
to take five minutes. Four types of educational activities were
created for each skill: video explanations, written descrip-
tions, worked examples and assessment questions. To measure
learning gains from the beginning of the course to the end,
we used a six-problem test covering the three course skills as
an identical pre-test and post-test. In between, the RL agent
would learn to assign different educational activities to learn-
ers, exploring the set of possible trajectories, and exploiting
trajectories that had shown good results for similar learners in
the past.

To provide the RL model with a consistent real-time feature set,
each test problem and educational activity recorded a binary
score of 1 or O after the learner responded to it. Activities that
did not pose a problem for learners to solve, instead asked
them: “Did you understand the content presented above?”
Learners would select whether they “fully understood” or “did
not fully understand”, yielding scores of 1 or 0, respectively.
Assessment questions provided feedback based on learners’
responses. Conversely, since test problems were meant to be
purely evaluative, learners did not see test scores or feedback
until completing the post-test.

Pilot study

To check if our course would be appropriately difficult—
covering things that learners didn’t already know, but that
they could learn in the span of a short course—we recruited
twenty-four learners from our target population to take part in
a pilot study. Rather than use an untrained RL agent to assign
educational activities between the pre-test and post-test, we
had all the participants go through the activities in whatever
order they saw fit. This pilot also allowed us to identify points
of confusion within our course materials and interfaces, which
we were able to fix before the course launch.

Platform Development

To deliver a short course with RL assignments, we needed to
measure learning gains from the beginning to the end of the
course, flexibly assign learners to different course materials,
and observe learners’ responses to the assigned activities. We

Paper 391

CHI 2020, April 25-30, 2020, Honolulu, HI, USA

were unable to find an online learning platform that could con-
nect with a scheduling algorithm to deliver real-time adaptive
assignments to learners. Instead, we constructed a custom
platform built for RL assignments that supported embedded
videos, custom images, multiple-select responses and feedback
messaging for our pool of educational activities.

Our learning platform exposed an API for learner traces and
adaptive assignments, allowing it to interface with an arbitrary
scheduling algorithm that conformed to its specifications. With
each new learner response, their binary score would be added
to their trace, and the scheduling algorithm would use this new
information to instantaneously prescribe the next educational
activity. Inspired by OARS [1], learner traces were composed
of response “events” with: a course ID, activity ID, anonymous
learner ID, response selection, score, and timestamp.

To enforce the constraints of the RL model, our platform pre-
vented users from viewing more than one educational activity
at a time or going back to previous educational activities (when
not self-directing). Learners would complete the pre-test one
problem at a time, get directed through a sequence of educa-
tional activities, and then get assigned to complete the post-test
one item at a time. However, we created another version of the
platform with an activity menu for self-directed learner navi-
gation through the course activities. We used this alternative
platform in one of our experimental control conditions.

EVALUATION

Can reinforcement scheduling assign learners fewer activities
with increased learning gains? In this section, we evaluate
the behavior and usefulness of our method by analyzing its
change in performance over time and comparing it against two
control conditions. We frame our analyses and results through
the lens of our four research questions.

Experimental Design

To better understand the impact of our reinforced scheduling
method on learners, we compared our method against two
baselines in a randomized controlled trial. The first baseline
condition, linear assignment, asked learners to complete all
twelve of the educational activities in an order prescribed by
an independent instructional designer. The second condition,
self-directed assignment, asked users to choose their own path
through the materials. In each condition, learners were first
given a pre-test to evaluate their starting knowledge state and
then a post-test to evaluate their knowledge state having com-
pleted the course. We used the same test for both the pre-test
and post-test. Notably, learners did not receive feedback on
any of their test solutions until the completion of the post-test.
We measured learning gains as the difference in a learner’s
score between post-test and pre-test. We also collected learner
traces throughout the course: how many and which activities
a learner completed, the correctness of those activities, and
whether and when a learner dropped out.

To run the trial, we opened recruitment for our “Introduction
to Linear Algebra” course through an internal email campaign.
We randomly assigned 95% of participants to the reinforce-
ment scheduling condition, 2.5% to the linear assignment con-
dition, and 2.5% to the self-navigation condition. We made

Page 6



CHI 2020 Paper

1.00 Course Completion Rates

0.75
0.50

0.25

0.00

linear self-directed RS

Figure 2. The RS and linear navigation conditions saw significantly
higher completion rates than self-directed navigation (p < .05).

RS Assignments and Learning Gains

12 -6
(0]
10 55
@ ®
c 8 4.
[} %]
£ e
5 © %e
@ o
2 4 —— — 2 T)
c
e
2 ’10

gROO 200 300 400 500 600 700 808
Learner Course Completions

Figure 3. RS learned to assign fewer educational activities, on average
over time, without decreasing the average learning gains.

the conditions as similar as possible to avoid introducing con-
founds. In each condition, learners received short instructions
that explained the course setup they would experience: we
explained the goals of the course, informed learners that they
were part of a learning experiment, and explained how nav-
igation would work for them. Finally, in order to receive a
certificate of completion, all learners were required to com-
plete a post-course survey.

In summary, 1987 people enrolled in the course. Of those
randomly assigned to each condition: 1830 completed enroll-
ment in the reinforced scheduling condition, 91 in the linear
condition, and 66 in the self-navigation condition.

Assignments Scheduled

-
o

Activities
[&)]

0

linear self-directed RS

Figure 4. Learners in the RS condition saw significantly fewer educa-
tional activities than those in the two other conditions (p < .01). As pre-
sented in Figure 3, the number of educational activities assigned by RS
decreased over time; the activities reported here are an average for all
learners.

Paper 391

CHI 2020, April 25-30, 2020, Honolulu, HI, USA

Learning Gains

N

w

Test Score Change
N N

o

linear self-directed RS

Figure 5. The learners in the RL and self-directed navigation conditions
saw significantly better test score improvements than the learners follow-
ing linear navigation (p < .05).

RS Completion Rate and Learning Gains

1.00 )
L 4 3
2075 S g
< (0]
2050 =
@ = Z'E
g— [
£025 o
&) @

e
O
0'0800 400 600 800 1000 1200 1400 160%
Learner Course Starts

Figure 6. Both the learner completion rate and test improvements held
steady under RS. Early participants in the course didn’t fare any worse
than the ones who joined later on.

R1: Comparing RS and Control Conditions

Our first analysis addresses how reinforcement scheduling
affects learning gains, the number of activities learners com-
plete, and course dropout (R1). We answered this question by
comparing our method against two control conditions.

Method

We first analyzed the data produced by our experiment to col-
lect several measures. We computed the number of activities
completed by each learner from traces of learner interactions
with the system. To compute dropout rates, we counted the
number of learners who completed the course pre-test but not
the post-test. We computed learning gains by subtracting each
user’s pre-test score from their post-test score.

We used t-tests to compare the number of activities completed
and learning gains across conditions. To compare course
dropout rates between conditions, we used chi-squared tests.
For each analysis, we corrected for the fact that we performed
multiple comparisons with the Bonferroni method.

Results

We depict comparison in dropout across conditions in Figure 2.
The linear condition and RS condition yielded significantly
higher course completion rates than the self-directed naviga-
tion condition (p < .05 in each case). There was no significant
difference between the dropout rate for learners in the RL and
the linear navigation conditions (p > .05).

Figure 4 shows a comparison of the number of activities com-
pleted on average by learners in each condition. Learners in
the RS condition engaged with significantly fewer educational

Page 7



CHI 2020 Paper

activities than those following linear and self-directed naviga-
tion (p < .01 in each case). As shown in Figure 3, the average
number of educational activities assigned by the RL agent
decreased from a maximum of approximately ten to an aver-
age of about four activities, delivering a greater reduction for
later participants in the RL-managed course. The difference
in activities between the RS condition and the self-directed
navigation condition is even greater, considering that we did
not double-count the return visits to past educational activities
that were taken by the majority of self-directed learners.

Figure 5 shows the learning gains that we observed in each
of our experimental conditions. Learners in the self-directed
and RL conditions saw significantly higher test score increases
than those in the linear navigation condition (p < .05 in each
case). However, there was no significant difference between
learning gains in the self-directed and RS conditions (p > .05).

Discussion

Collectively, these analyses show that learners in the RS condi-
tion completed fewer activities than those assigned to the linear
and self-navigation conditions, demonstrated larger learning
gains than learners in the linear navigation condition, and
completed the course at higher rates than learners in the self-
navigation condition.

We were surprised by the significantly higher dropout rate for
self-directed learners, and it is possible that this condition’s
strong learning gains—equivalent to the RS condition—are at
least partially due to a loss of less-motivated learners. Con-
versely, it is also surprising that learners in the linear condition
demonstrated high completion rates, at the same level as the
RS condition. When investigating further, we found that most
dropout occurred shortly after the pre-test in these conditions,
suggesting that the number of required educational activities
didn’t have a large effect on the dropout rate for our short
course. Further, learner dropout was not strongly correlated
with pre-test score in any of the conditions. This suggests that
learners are more likely to complete a course where they don’t
have to decide what they will do next.

R2: The Cold Start Problem

Our second analysis addresses the concern—known as the
“cold start” problem—that an RL agent might produce lower
learning gains and course completion rates in early learners,
before the model has been exposed to much training.

Method

To compute changes in measures as the course progressed,
we partitioned learner data from the RS condition into groups
of one hundred learners, beginning with the first hundred
that entered the course, then the next hundred, and so on.
(While larger partitions give a smoother curve, we repeated
this method with smaller partition sizes and got similar results).
We computed average completion rates and learning gains for
each group in the partition, then plotted these results over time.

Results

Figure 6 shows that the learning gains and completion rates
remain steady throughout the course. Though early partici-
pants in the RL condition have to complete more educational

Paper 391

CHI 2020, April 25-30, 2020, Honolulu, HI, USA

Distribution of Activities Scheduled by RS

N
®» 0 O

Probability of Usage
© o o o o
N A~

o

a1l a2 a3 a4 ab5 a6 a7 a8 a9 al10 aill ail2
Distribution of Activities Under Self-Directed Navigation

_
» o O

Probability of Usage
N B

© o o o o

o

a1l a2 a3 a4 ab5 a6 a7 a8 a9 al10 a1 a2

Figure 7. Under RS, learners were most likely to see educational activi-
ties 1, 9, 8 and 11. Self-directed learners engaged with every activity in
the course at a similar frequency. RS activity distributions significantly
deviate from a uniform distribution under a chi-squared test (p<.01).

activities than later participants directed by RL, they still spent
time on fewer total educational activities than participants
following linear and self-directed navigation.

Discussion

This result suggests that we can work past a common criticism
of RL for human-in-the-loop applications; that RL agents may
disproportionately harm early users before a fresh model has
a chance to learn a decent policy [24]. Earlier versions of
our model tested with simulated learners were less successful
in this regard, and we eliminated this problem by making
our reward function more conservative. First, we delayed
the penalty for additional educational activities. Second, we
provided a positive immediate reward for assignments, which
biased our RL agent’s early exploration towards longer paths.

R3: RS Scheduling Patterns

Our third analysis focuses on identifying useful patterns in the
scheduling policy that RS learned for our course. We identify
patterns in the assignments RS chose for different kinds of
learners, and explore what instructors and course designers
might infer from how our model learned to assign activities.

Method

We first collected data from the last 200 learners assigned
activities by RS, as later participants were directed by the
longest-trained policy and so are more representative of the
trained model’s decision making. Next, we looked at the
assignment frequency distribution for educational activities
to determine which were assigned most frequently, using a
chi-squared test and odds ratios to determine which (if any)
activities were assigned most frequently. We then investigated
the relationship between pre-test scores and the number of
resulting activity assignments with a linear regression model.

Page 8



CHI 2020 Paper

Results

Figure 7 shows significant differences in how often activities
were assigned for the last 200 learners (p < .01). Learners
in the RS condition were most likely to see activities 1 (1.99
odds), 8 (1.90 odds), 9 (2.82 odds) and 11 (2.019 odds). (These
were "Defining A Vector: Video", "Vector Addition: Assess-
ment Question", "Vector Norm L1: Video" and "Vector Norm
L1: Worked Example".) Learners were least likely to see ac-
tivity 5 ("Vector Addition: Video") with an odds ratio of 0.27.
The four most commonly assigned educational activities in-
cluded all activity types except for a written explanation. They
also covered each of the three course skills, as designated by
the course designer, but with a duplication of the third skill.

Figure 8 shows that as pre-test score increases, the number
of educational activities assigned by RS decreases. Linear
regression showed a 0.60 decline in the number of activities
assigned for each one-point increase in pre-test score.

Discussion

Put together, these analyses show that RS adapted to different
learner states. Learners in the RS condition completed fewer
activities than those assigned to the linear and self-navigation
conditions, demonstrated larger learning gains than learners in
the linear navigation condition, and completed the course at
higher rates than learners in the self-navigation condition.

Figure 7 illustrates that learners in the RL condition didn’t
just engage with fewer educational activities than self-directed
learners — the RL learners were most likely to see activities 1,
8,9 and 11. From this observation, an instructional designer
might infer one of three things: 1) These four activities have
the largest impact on test score improvements for learners in
the course. 2) The scores from these activities are the most
informative for the RL agent’s future scheduling decisions. 3)
Both explanations are simultaneously true. A logistic regres-
sion of the decisions made by the RL agent based on learner
scores supports the first hypothesis. Learner scores did influ-
ence future assignments, but the influence of scores from these
four activities wasn’t stronger than the influence of the scores
from the less-assigned educational activities.

If we accept that these four educational activities were best
at increasing post-test scores, instructors and instructional de-
signers might try to develop more activities that resembled
these successful ones. Since no written explanation was in-
cluded among the most useful activities, it is possible that
this type of activity may be less useful; but more data would
be required to make this judgement. Although this lack of
certainty might be discouraging for a course designer trying
to optimize the activities available, it lends support to the use
of RL to evaluate individual activities — independent of their

types.

Course developers might also consider whether the available
educational activities were sufficient to produce strong learn-
ing outcomes. Comparing the linear condition to the RL con-
dition, it’s clear that the total number of assignments were not
the only factor influencing test improvements. However, the
order of the educational activities appear to have played a role
on the size of those improvements. Following this experiment,

Paper 391

CHI 2020, April 25-30, 2020, Honolulu, HI, USA

RS Assighnments by Pre-Test Score

Activities
N ESN [e)]

o

1 2 3 4 5
Pre-Test Score

Figure 8. This bar chart shows the number of activities assigned to the
last 200 RS learners, based on their pre-test scores. As learners per-
formed better on the pre-test, RS assigned fewer activities.

it remains unclear whether repetition of the available activi-
ties or self-directed navigation through activities may have an
effect on learning outcomes.

R4: Qualitative Feedback From Learners

Method

We conducted an exit survey at the end of the course. The
survey consisted of questions related to demographics, course
quality, and textual feedback. We surveyed course quality
across several measures using a Likert scale and analyzed
learner textual feedback for broader themes.

Results

The mean score for overall experience was 5.53/7, with 32%
of the users extremely satisfied and 49% moderately satisfied.
Learners scored the effectiveness of the number of activities as
3.34/5, the effectiveness of ordering of activities as 3.38/5 and
the effectiveness of the selection of activities as 3.46/5. 62%
of the learners said the number of activities were “Just Right”,
while 24% said it was “Too Few” and 16% said it was “Too
Many”. If we only consider the last 200 learners, the “Too
Many” activities category dropped to 7%.

Discussion

One clear theme that emerged from learner feedback is that
learners generally liked the course and were intrigued by the
possibility of using RL for adaptive assignment. For example:
“T'loved this” and “[I liked] the option to let me make mistakes,
then teach me and they evaluate me again” and “[being as-
signed] lessons that seemed tailored to the specific subjects I
was unsure about was quite interesting.”

In general, many learners noticed and appreciated how the
course adapted to their knowledge state. For example: “I
was exposed to only those lessons which I needed” and “The
lessons selected are very relevant to the questions that you
answered wrongly.” There were cases, however, in which the
learners did not experience the course as adaptive. One learner
said: “I LIKE the idea of [adaptivity]. But given that [I think
that] I got all the pre-test questions right, it didn’t seem to
adapt at all.” Such cases are to be expected in a RL algorithm
which must occasionally explore new paths.

One implication of using an adaptive agent is that learners
who know most of the material will not be assigned many
activities. For example, one learner said: “Nice to not have to
sit through everything (some of which I already know) and end
up tuning out, missing the parts that I don’t know/need review.”

Page 9



CHI 2020 Paper

However, such a small number of activity assignments was
not always perceived as helpful. Other learners said: “were
there only two short videos?” and “T got bored because there
was only one little thing I had to learn.” This feedback became
more prevalent as the course progressed.

We noticed that some learners expected to have one activity
per skill, especially when they answered the relevant questions
correctly on the pre-test. When the agent scheduled multiple
activities per skill, some learners said: “some lessons/concepts
appears twice” and “The order of lessons seemed a little hap-
hazard, as some material that was presented earlier was re-
peated later.” This sort of feedback declined over time and
was absent in the last 200 learners.

Finally, we observed a high demand for similar courses. “Uh,
please, PLEASE, do more of these. Sign me up.” One learner
told us. Another said: “Keep up with the good work, this can
disrupt online education.”

LIMITATIONS AND FUTURE WORK
In this section we discuss the limitations of our method and
studies, many of which we aim to address in future work.

Generalizability

A key concern in designing our method was that it generalize
to other courses and course materials. RS can be configured
to schedule educational content for courses that use tests to
evaluate learning gains and activities that can stand alone
without cross-reference. And unlike most existing techniques,
RS does not require carefully chosen skill labels to learn its
policy. But, our method does not support courses where the
educational activities involve complex or qualitative evaluation
metrics, or where these activities are used to assess learners
along the way. RS is not a good fit for courses that do not have
many hundreds of learners, as the algorithm requires sufficient
data to converge to a reasonable scheduling policy. The data
requirements grow with the number of skills and activities in
the course. Finally, we did not develop our method within the
framework of mastery learning—where learners demonstrate
consistent ability to apply a set of skill before they are able to
move onto additional skills.

There are, however, solutions to some of these limitations.
We can reduce the data required by mixing self-navigation
and historical data. Use of improved algorithms like soft
actor critic [11] will reduce the sample complexity further
and generalize better to new learners and courses. Mastery
learning can be emulated by including enough problems on the
pre-test and post-test where the RL agent will be incentivized
to increase their mastery, or by requiring learners to repeat the
course until they have demonstrated sufficient mastery.

Scale of Data

While we integrated reinforcement scheduling into a large on-
line course—the model interacted tens of thousands of times
with nearly two thousand learners—bringing an order of mag-
nitude more learners to the platform would present many new
opportunities for analysis. In particular, it is not apparent that
RS has converged on a final policy, and so it might continue to
improve on its adaptive assignments. One possible outcome

Paper 391

CHI 2020, April 25-30, 2020, Honolulu, HI, USA

would be the elimination of entirely useless educational ac-
tivities. With many thousands of learners, we would have the
opportunity to optimize a policy over a wider range of skills
and content, and we might observe more interesting ordering
effects. If RS were run over a longer period of time for a
course with changing learner behaviors, it would be interest-
ing to see how well it adapts to these changes. Since there
were not enough learners in the control conditions to compare
activity assignments for specific pre-test responses and pre-
test scores, across conditions, we would like to run an even
larger randomized controlled experiment on RS with enough
learners to compare the paths taken by these subpopulations.

Future Modifications of RS

There are three main adjustments to RS that we would con-
sider for a re-run of our course. First, we would like to try
eliminating the penalty for additional educational activity as-
signments from our reward function. The linear condition
from our experiment shows that completing more activities
does not always cause more learning, and RS might learn to
reduce the number of assignments without an explicit penalty.
If over-practice is actually a problem, its negative effects on
test scores might be sufficient to prevent unnecessary activities
from getting assigned. Next, it would be interesting to see how
the RL model behaves differently if we cap the number of as-
signments, but allow the RL agent to make repeat assignments.
This would require a larger state space for our model and make
the RL agent less sample efficient, but learners might benefit
from these repeats in ways we hadn’t expected. Finally, we
might add a term to our reward function that penalizes the loss
of learners — to see if the RL agent can keep learners engaged
for longer and prevent some instances of dropout.

CONCLUSION

This paper presents the first adaptive scheduling model to as-
sign educational activities at scale in an online course through
active learning. When balancing learning gains, the number
of assigned items and learner dropout, our model performs fa-
vorably against two baseline assignment strategies: assigning
all activities in an linear order defined by a course designer,
and self-directed learner navigation. More broadly, our work
gestures towards a future where online courses continuously
improve themselves without the dedicated time and attention
of instructors.

ACKNOWLEDGEMENTS

This work was supported by NSF grant 1176927-100-QCADX
and Amazon. We thank our colleagues at Amazon’s Machine
Learning University for their generous support with recruit-
ment, instruction, learning materials, and use of classroom
space. We also thank our reviewers for their helpful feedback.

REFERENCES
[1] Jonathan Bassen, Iris Howley, Ethan Fast, John Mitchell,
and Candace Thille. 2018. OARS: exploring instructor
analytics for online learning. In Proceedings of the Fifth
Annual ACM Conference on Learning at Scale. ACM,
55.

Page 10



CHI 2020 Paper

[2] Léon Bottou. 2010. Large-scale machine learning with
stochastic gradient descent. In Proceedings of
COMPSTAT’2010. Springer, 177-186.

[3] Greg Brockman, Vicki Cheung, Ludwig Pettersson,
Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. 2016. Openai gym. arXiv preprint
arXiv:1606.01540 (2016).

Catherine C Chase, Jonathan T Shemwell, and Daniel L
Schwartz. 2010. Explaining across contrasting cases for
deep understanding in science: An example using
interactive simulations. In Proceedings of the 9th
International Conference of the Learning
Sciences-Volume 1. International Society of the Learning
Sciences, 153-160.

[5] Albert T. Corbett and John R. Anderson. 1994.
Knowledge tracing: Modeling the acquisition of
procedural knowledge. User Modeling and
User-Adapted Interaction 4, 4 (01 Dec 1994), 253-278.
DOI:http://dx.doi.org/10.1007/BF91099821

[4

[}

[6] Shayan Doroudi, Vincent Aleven, and Emma Brunskill.
2017. Robust Evaluation Matrix: Towards a More
Principled Offline Exploration of Instructional Policies.
In Proceedings of the Fourth (2017) ACM Conference on
Learning @ Scale (L@S ’17). ACM, New York, NY,
USA, 3-12.DOI:
http://dx.doi.org/10.1145/3051457.3051463

[7] Miroslav Dudik, John Langford, and Lihong Li. 2011.
Doubly robust policy evaluation and learning. arXiv
preprint arXiv:1103.4601 (2011).

[8] Andrew J Elliot and Carol S Dweck. 2013. Handbook of
competence and motivation. Guilford Publications.

[9] Dedre Gentner. 1983. Structure-Mapping: A Theoretical
Framework for Analogy. Cognitive science 7, 2 (1983),
155-170.

[10] Elena L. Glassman, Aaron Lin, Carrie J. Cai, and
Robert C. Miller. 2016. Learnersourcing Personalized
Hints. In Proceedings of the 19th ACM Conference on
Computer-Supported Cooperative Work & Social
Computing (CSCW ’16). ACM, New York, NY, USA,
1626-1636. DOI:
http://dx.doi.org/10.1145/2818048.2820011

[11] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and
Sergey Levine. 2018. Soft Actor-Critic: Off-Policy
Maximum Entropy Deep Reinforcement Learning with a
Stochastic Actor. In Proceedings of the 35th
International Conference on Machine Learning
(Proceedings of Machine Learning Research), Jennifer
Dy and Andreas Krause (Eds.), Vol. 80. PMLR,
StockholmsmAd’ssan, Stockholm Sweden, 1861-1870.
http://proceedings.mlr.press/v80/haarnojal8b.html

[12

—_—

Neil T Heffernan and Cristina Lindquist Heffernan.
2014. The ASSISTments Ecosystem: Building a
platform that brings scientists and teachers together for

minimally invasive research on human learning and
teaching. International Journal of Artificial Intelligence

in Education 24, 4 (2014), 470-497.

Paper 391

—_—

—_

—

—

—_—

—

[t}

—

—

CHI 2020, April 25-30, 2020, Honolulu, HI, USA

[13] Neil T Heffernan and Kenneth R Koedinger. 1998. A

developmental model for algebra symbolization: The
results of a difficulty factors assessment. In Proceedings
of the twentieth annual conference of the cognitive
science society. Hillsdale, NJ, 484—-489.

Ana Iglesias, Paloma Martinez, Ricardo Aler, and
Fernando Fernandez. 2009. Reinforcement learning of
pedagogical policies in adaptive and intelligent
educational systems. Knowledge-Based Systems 22, 4
(2009), 266-270.

Mohammad Khajah, Yun Huang, José P.
Gonzalez-Brenes, Michael C. Mozer, and Peter
Brusilovsky. 2014. Integrating Knowledge Tracing and
Item Response Theory: A Tale of Two Frameworks. In
UMAP Workshops.

Juho Kim, Philip J. Guo, Daniel T. Seaton, Piotr Mitros,
Krzysztof Z. Gajos, and Robert C. Miller. 2014.
Understanding In-video Dropouts and Interaction Peaks
Inonline Lecture Videos. In Proceedings of the First
ACM Conference on Learning @ Scale Conference
(L@S ’14). ACM, New York, NY, USA, 31-40. DOI:
http://dx.doi.org/10.1145/2556325.2566237

Kenneth Koedinger, Philip I Pavlik Jr, John Stamper,
Tristan Nixon, and Steven Ritter. 2010. Avoiding
problem selection thrashing with conjunctive knowledge
tracing. In Educational data mining 2011.

Kenneth R Koedinger, Albert T Corbett, and Charles
Perfetti. 2012. The Knowledge-Learning-Instruction
framework: Bridging the science-practice chasm to
enhance robust student learning. Cognitive science 36, 5
(2012), 757-798.

Chinmay Kulkarni, Koh Pang Wei, Huy Le, Daniel Chia,
Kathryn Papadopoulos, Justin Cheng, Daphne Koller,
and Scott R. Klemmer. 2013. Peer and Self Assessment
in Massive Online Classes. ACM Trans. Comput.-Hum.
Interact. 20, 6, Article 33 (Dec. 2013), 31 pages. DOI:
http://dx.doi.org/10.1145/2505057

Chinmay E Kulkarni, Michael S Bernstein, and Scott R
Klemmer. 2015. PeerStudio: rapid peer feedback
emphasizes revision and improves performance. In
Proceedings of the second (2015) ACM conference on
learning @ scale. ACM, 75-84.

Robert V Lindsey, Michael C Mozer, William J Huggins,
and Harold Pashler. 2013. Optimizing Instructional
Policies. In Advances in Neural Information Processing
Systems 26, C. J. C. Burges, L. Bottou, M. Welling,

Z. Ghahramani, and K. Q. Weinberger (Eds.). Curran
Associates, Inc., 2778—2786. http: //papers.nips.cc/
paper/4887-optimizing-instructional-policies.pdf

Yun-En Liu, Travis Mandel, Emma Brunskill, and Zoran
Popovié. 2014a. Towards Automatic Experimentation of
Educational Knowledge. In Proceedings of the 32Nd
Annual ACM Conference on Human Factors in
Computing Systems (CHI "14). ACM, New York, NY,
USA, 3349-3358. DOI:
http://dx.doi.org/10.1145/2556288.2557392

Page 11


http://dx.doi.org/10.1007/BF01099821
http://dx.doi.org/10.1145/3051457.3051463
http://dx.doi.org/10.1145/2818048.2820011
http://proceedings.mlr.press/v80/haarnoja18b.html
http://dx.doi.org/10.1145/2556325.2566237
http://dx.doi.org/10.1145/2505057
http://papers.nips.cc/paper/4887-optimizing-instructional-policies.pdf
http://papers.nips.cc/paper/4887-optimizing-instructional-policies.pdf
http://dx.doi.org/10.1145/2556288.2557392

CHI 2020 Paper

(23]

[24]

(25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

Yun-En Liu, Travis Mandel, Emma Brunskill, and Zoran
Popovic. 2014b. Trading Off Scientific Knowledge and
User Learning with Multi-Armed Bandits.. In EDM.
161-168.

Travis Mandel, Yun-En Liu, Sergey Levine, Emma
Brunskill, and Zoran Popovic. 2014. Offline policy
evaluation across representations with applications to
educational games. In Proceedings of the 2014
international conference on Autonomous agents and
multi-agent systems. International Foundation for
Autonomous Agents and Multiagent Systems,
1077-1084.

Piotr Mitros. 2015. Learnersourcing of complex
assessments. In Proceedings of the Second (2015) ACM
Conference on Learning@ Scale. ACM, 317-320.

Allen Newell and Paul S Rosenbloom. 1981.
Mechanisms of skill acquisition and the law of practice.
Cognitive skills and their acquisition 1, 1981 (1981),
1-55.

Chris Piech, Jonathan Bassen, Jonathan Huang, Surya
Ganguli, Mehran Sahami, Leonidas J Guibas, and
Jascha Sohl-Dickstein. 2015. Deep knowledge tracing.
In Advances in neural information processing systems.
505-513.

Martha C Polson and J Jeffrey Richardson. 2013.
Foundations of intelligent tutoring systems. Psychology
Press.

J. vanMarrienboer K. Yates R. Clark, D. Feldon and S.
Early. 2008. Handbook of research on educational
communications and technology (3rd ed.). Chapter
Cognitive task analysis for training, 577-593.

Georg Rasch. 1960. Studies in mathematical
psychology: 1. Probabilistic models for some
intelligence and attainment tests. (1960).

Doug Rohrer. 2009. The effects of spacing and mixing
practice problems. Journal for Research in Mathematics
Education (2009), 4-17.

Michael Schaarschmidt, Sven Mika, Kai Fricke, and
Eiko Yoneki. 2019. RLgraph: Modular Computation
Graphs for Deep Reinforcement Learning. In
Proceedings of the 2nd Conference on Systems and
Machine Learning (SysML).

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec
Radford, and Oleg Klimov. 2017. Proximal policy
optimization algorithms. arXiv preprint
arXiv:1707.06347 (2017).

Paper 391

CHI 2020, April 25-30, 2020, Honolulu, HI, USA

[34] Avi Segal, Yossi Ben David, Joseph Jay Williams, Kobi
Gal, and Yaar Shalom. 2018. Combining Difficulty
Ranking with Multi-Armed Bandits to Sequence
Educational Content. In Artificial Intelligence in
Education, Carolyn Penstein Rosé, Roberto
Martinez-Maldonado, H. Ulrich Hoppe, Rose Luckin,
Manolis Mavrikis, Kaska Porayska-Pomsta, Bruce
McLaren, and Benedict du Boulay (Eds.). Springer
International Publishing, Cham, 317-321.

[35] Kikumi K Tatsuoka. 1995. Architecture of knowledge
structures and cognitive diagnosis: A statistical pattern
recognition and classification approach. Cognitively
diagnostic assessment (1995), 327-359.

[36] J. Sewall V. Aleven, B. McLaren and K. Koedinger.
2006. The cognitive tutor authoring tools (CTAT):
preliminary evaluation of efficiency gains. In Intelligent
Tutoring Systems (ITS '06). 61-70.

[37] Ziyu Wang, Victor Bapst, Nicolas Heess, Volodymyr
Mnih, Remi Munos, Koray Kavukcuoglu, and Nando de
Freitas. 2016. Sample efficient actor-critic with
experience replay. arXiv preprint arXiv:1611.01224
(2016).

[38] Christopher JCH Watkins and Peter Dayan. 1992.
Q-learning. Machine learning 8, 3-4 (1992), 279-292.

[39] Jacob Whitehill, Joseph Williams, Glenn Lopez, Cody
Coleman, and Justin Reich. 2015. Beyond prediction:
First steps toward automatic intervention in MOOC
student stopout. Available at SSRN 2611750 (2015).

Joseph Jay Williams, Juho Kim, Anna Rafferty, Samuel
Maldonado, Krzysztof Z. Gajos, Walter S. Lasecki, and
Neil Heffernan. 2016. AXIS: Generating Explanations at
Scale with Learnersourcing and Machine Learning. In
Proceedings of the Third (2016) ACM Conference on
Learning @ Scale (L@S ’16). ACM, New York, NY,
USA, 379-388. DOI:
http://dx.doi.org/10.1145/2876034.2876042

[40

—_

[41

—

Joseph Jay Williams, Anna N. Rafferty, Dustin Tingley,
Andrew Ang, Walter S. Lasecki, and Juho Kim. 2018.
Enhancing Online Problems Through
Instructor-Centered Tools for Randomized Experiments.
In Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems (CHI "18). ACM, New
York, NY, USA, Article 207, 12 pages. DOI:
http://dx.doi.org/10.1145/3173574.3173781

Page 12


http://dx.doi.org/10.1145/2876034.2876042
http://dx.doi.org/10.1145/3173574.3173781

	Introduction
	Related Work
	Skill Labels and Course Design
	Adaptive Scheduling of Educational Activities
	Other Methods for Automating Instruction

	Reinforcement Scheduling
	Model Development
	Action space
	State space
	Reward function
	Policy Optimization

	Simulated Learners
	Course Design
	Design Philosophy
	Course Overview
	Pilot study

	Platform Development

	Evaluation
	Experimental Design
	R1: Comparing RS and Control Conditions
	Method
	Results
	Discussion

	R2: The Cold Start Problem
	Method
	Results
	Discussion

	R3: RS Scheduling Patterns
	Method
	Results
	Discussion

	R4: Qualitative Feedback From Learners
	Method
	Results
	Discussion


	Limitations and Future Work
	Generalizability
	Scale of Data
	Future Modifications of RS

	Conclusion
	Acknowledgements
	References 



