
Automating the Assessment of Problem-solving Practices
Using Log Data and Data Mining Techniques

Karen D. Wang
Graduate School of Education

Stanford University
kdwang@stanford.edu

Shima Salehi
Graduate School of Education

Stanford University
salehi@stanford.edu

Max Arseneault
Stanford University

marsenea@stanford.edu

Krishnan Nair
Stanford University

aknair@stanford.edu

Carl Wieman
Department of Physics

Graduate School of Education
Stanford University

cwieman@stanford.edu

ABSTRACT
Interactive simulations provide an exciting opportunity to as-
sess and teach students the practices used by scientists and
engineers to solve real-world problems. This study examines
how the logged interaction data from a simulation-based task
could be used to automate the assessment of complex problem-
solving practices. A total of 73 college students worked on
an interactive circuit puzzle embedded in a science simula-
tion in an interview setting. Their problem-solving processes
were videotaped and logged in the backend of the simula-
tion. We extracted different sets of features from the log data
and evaluated their effectiveness as predictors of students’
problem-solving success and evidence for specific problem-
solving practices. Our results indicate that the application
of data mining techniques guided by knowledge gained from
qualitative observation was instrumental in the discovery of
semantically meaningful features from the raw log data. These
knowledge-grounded features were significant predictors of
students’ overall problem-solving success and provided ev-
idence on how well they adopted specific problem-solving
practices, including decomposition, data collection, and data
recording. The results point to promising directions for how
scaffolding/feedback could be provided in educational simula-
tions to enhance student learning in problem-solving skills.
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CCS Concepts
•Applied computing→ Interactive learning environments;
•Information systems→ Data mining;

INTRODUCTION
Advances in artificial intelligence are reshaping the landscape
of the human workforce. Routine tasks in manufacturing,
transportation, and information processing have been increas-
ingly replaced with technology, while the ability to solve
unstructured, novel problems remains a uniquely human en-
deavor with growing demand [14]. An engineer needs to
troubleshoot a faulty robotic arm. A doctor needs to diag-
nose a patient with complex clinical presentations. Preparing
students to solve such novel problems in workplaces and every-
day lives is an important goal of education. Accordingly, there
is increasing recognition that problem-solving skills should
be explicitly taught and measured in our schools [19]. The
National Research Council (NRC) puts practices related to
problem solving at the core of the Next Generation Science
Standards [22]. The Accreditation Board for Engineering and
Technology (ABET) lists "an ability to identify, formulate, and
solve complex engineering problems" as a primary student
outcome to consider when accrediting engineering programs
[7]. In contrast to this clear vision, there is less consensus
around how to measure and teach these practices. Interac-
tive simulations provide an exciting opportunity to capture
how well students learn the problem-solving practices using
the wealth of logged interaction data. This study explores
how data mining techniques could be applied to such data
sets in order to evaluate student problem-solving practices as
well as identify opportunities for adaptive support/feedback.
Specifically, two research questions are addressed here:

• What features can be derived from the logged interaction
data of students’ problem-solving process?

• How useful are these features in predicting problem-solving
success/failure and evaluating specific problem-solving
practices?
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RELATED WORK
Educational technology allows for assessment of learning be-
yond what is possible with traditional paper-and-pencil tests
[5, 6, 20, 25]. One key affordance is the large amounts of
data generated in computerized learning environments [24].
These data may consist of thousands of learners’ responses
in a large-scale computerized adaptive test, or a few students’
detailed interaction log data captured in an interactive learning
task. Researchers in the learning analytics and educational
data mining communities have begun to capitalize on large
data sets and advanced statistical models to assess students’
knowledge state and predict their performance [4, 11, 16, 18].
While deep learning models have reached high accuracy in
predicting student performance in multiple-choice test items
[18], the same promise is yet to be fully realized for the assess-
ments of complex skills such as problem-solving and scientific
inquiry. How to parse the large volumes of unstructured inter-
action data to reveal meaningful evidence of student learning
behaviors remains a challenge [6, 9]. Our research takes a step
in addressing this challenge by exploring how data mining
techniques could be used to process the log data of college
students working through an interactive problem and yield
insights about the practices adopted to solve the problem.

There has been an increasing number of research efforts that
use log data to analyze student performance on problem-
solving/scientific inquiry tasks [1, 2, 3, 10, 9, 12, 16, 23].
Techniques employed to process log data include text replay
tagging [9], event sequencing [12, 16], and cluster analysis
[1]. Gobert et al. (2013) [9] utilized human-labeled log data to
train a detector for assessing the skill of designing controlled
experiments in two simulation-based inquiry tasks. Kinnebrew
et al. (2013) [12] employed the sequence mining technique to
identify differentially frequent action patterns between high-
and low-performing students in a computerized learning en-
vironment featuring a teachable agent. Teig et al. (2020)
[23] incorporated metrics from the log data into latent class
analyses to identify three distinct profiles of students’ inquiry
performance in PISA science assessment items. It is important
to note that previous studies have largely focused on log data
features related to the frequencies and durations of individual
actions, while few studies explored whether more semantically
meaningful features could be extracted from the log data by
leveraging knowledge gained from qualitative observations
of student performance. Meanwhile, the application of ma-
chine learning models in educational data mining to assess
complex skills and practices also comes with challenges. First,
obtaining a sufficiently large data set of students working
on an open-ended task to train deep neural networks that ex-
tract features from raw data automatically is difficult. Zhai
et al. (2020) [29] conducted a systematic review of machine
learning-based science assessment and found that the largest
training sample included 2978 students. This is in stark con-
trast to the massive amounts of data readily available in fields
such as computer vision. Second, for machine learning models
to serve as the basis for improving student learning outcomes,
the interpretability of the model is as important as its predic-
tive accuracy to be able to identify when and how to intervene
to improve student learning [8]. Taking the above challenges

Figure 1. The black box problem user interface with the terminal labels
added ©PhET Interactive Simulations

into account, our goal in this study is to explore how to extract
semantically meaningful features from the log data and use
them in simple, robust regression models to measure problem
solving.

The Black Box Problem
The black box problem embedded in the Circuit Construc-
tion Kit (CCK) of PhET Interactive Simulations (https://phet.
colorado.edu/) was used to study how college students solve
problems in science and engineering domains [17]. The sim-
ulation provides an accurate model based on Ohm’s law for
every circuit constructed. The goal is to infer the circuit hidden
behind a black box by connecting electrical components (wire,
battery, resistor, lightbulb) and measurement tools (ammeter
and voltmeter) to the wires ("terminals") protruding from the
black box and interpreting the data obtained (Figure 1). Solv-
ing the hidden circuit requires basic knowledge of electric
circuits and Ohm’s law, yet the problem is significantly dif-
ferent from typical problems used to assess students on this
topic. Typical end-of-chapter textbook problems provide all
the quantities needed to solve the problem in the question and
are conducive to the “plug and chug” approach [13], where
students could simply plug the numbers in a formula to arrive
at the correct solution. In contrast, the black box problem
requires students to make decisions regarding what data to
collect, how to collect the data, and how to interpret the data
to reach a solution. Therefore, we can collect a much richer
data set of practices that are relevant to solving a wide variety
of real-world problems.

In a previous study from our lab, we employed qualitative
methods to analyze video recordings of experts and novices
solving the black box problem and identified two groups of
practices that are key to effective problem solving: execution
practices and reflection practices [21]. Execution practices en-
compass the actions taken by problem solvers when working
toward a solution, including how they define the problem, de-
compose the problem, collect, record and interpret data in the
task environment. Reflection practices describe how people
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reflect on their solution process, including how they reflect on
problem definition and assumptions, reflect on domain knowl-
edge, reflect on strategies used to solve the problem, and reflect
on a proposed solution. Many of these practices have been
discussed under different labels (e.g., understand the prob-
lem, seek evidence, check and look back) by previous works
examining problem solving in mathematics, science and engi-
neering domains [15, 19, 26, 27]. Our earlier work includes a
coding scheme that was iteratively developed to evaluate par-
ticipants’ effectiveness in using each of these practices based
on video recordings of their problem-solving processes. We
found that participants’ problem-solving practice scores could
significantly predict the probability of them correctly solving
the problem [21].

In the current study, we first used the coding scheme to score
a subset of the practices (problem definition, decomposition,
data collection, data recording, and reflection on solution) us-
ing the video recordings and notes taken by students during
the problem-solving process. Problem definition refers to the
practice of defining a problem in one’s own words to ensure
that the goal of the problem and its underlying assumptions
are well-understood. Decomposition is defined as the practice
of breaking a complex problem into simpler sub-problems that
are easier to solve. Data collection refers to the practice of
systematically and effectively collecting the information/data
needed to solve the problem. Data recording refers to the prac-
tice of keeping track of the data collected during the problem-
solving process. Reflection on solution refers to the practice
of checking one’s solution in different ways to verify its ac-
curacy. The human-rated scores of these practices provide
an important benchmark for evaluating whether an automated
scoring approach using the log data could effectively measure
problem solving as a multidimensional construct.

METHODS

Participants
73 undergraduate students in the US participated in the study
in a one-on-one interview setting with one of the co-authors
of the paper. Participants worked on a computer throughout
the interview and were provided with a calculator, pen and
paper for calculations and notetaking. After informed con-
sent, the researcher gave a brief tutorial to help participants
navigate different features of the simulation and refresh their
knowledge about Ohm’s law (V = I*R) by instructing them
to build a series circuit using different electrical components
and take measurements using the ammeter and voltmeter. Par-
ticipants were then given 15 minutes to solve the first black
box problem and instructed to think out loud while solving
it. The researchers interfered minimally during participants’
problem-solving process, doing so only to remind them to
think aloud or that they were running out of time. Participants
drew a diagram of what they thought was hidden behind the
black box on paper when they reached a solution or at the end
of the 15 minutes. The full study involved an intervention
followed by additional problem-solving tasks but we will be
focusing on participants’ baseline performance in solving the
first black box problem in this paper. All study sessions were
video- and audio-recorded. Additionally, participants’ actions

were logged in the backend of the simulation platform in the
Javascript Object Notation (JSON) file format.

Measurements
Students’ problem-solving outcomes were measured by a
score assigned to their solutions. The score evaluates a stu-
dent’s proposed circuit in three dimensions: whether it con-
tains 1) the correct electrical components (e.g., two resistors),
2) the correct values of the components (e.g., 20 ohms), and
3) the correct structure, or how the components were con-
nected. Each dimension receives a score of zero for incorrect,
one for partially correct and two for correct. The total solu-
tion score thus ranges from zero to six. Students’ problem-
solving practices were scored based on the video recordings
and notes taken by students during the problem-solving pro-
cess. Five practices, including problem definition, decomposi-
tion, data collection, data recording, and reflection on solution,
were scored using a previously developed coding scheme [21].
Scores for each of these practices range from zero to three,
reflecting four levels of increasing effectiveness in students’
adoption of the practice. Two researchers coded 25% of the
videos independently and reached an inter-rater reliability of
80%, and all discrepancies in scoring were resolved through
discussion. These scores required approximately 45 minutes
to an hour of human coding for each recorded problem-solving
session and provided the key benchmark for comparison with
the log data analysis of problem-solving practices.

Log Data Processing
The log files contain a vast amount of interaction data as
students work to solve the problem, including user-initiated
actions (e.g., adding a battery to the black box) and states
of the simulation (e.g., how the components are connected),
along with the respective timestamps in milliseconds. We
wrote a Python script to parse the log data into discrete actions
taken by problem solvers and counted the frequency of electric
components added and measurement tools usage as the first
set of features (Table 1). These action-based features could
be obtained without any prior knowledge about the nature of
the problem-solving task or the practices that we attempt to
measure.

Feature Description
Wire How many times did a student add a wire?
Lightbulb How many times did a student add a lightbulb?
Resistor How many times did a student add a resistor?
Battery How many times did a student add a battery?
Voltmeter How many times did a student use Voltmeter?
Ammeter How many times did a student use Ammeter?

Table 1. Action-based features extracted from the log data

Through qualitative observation of students’ problem-solving
process, we noted that the type of circuits built by students
were closely related to the practices used to solve the problem.
This knowledge led us to extract a second set of knowledge-
grounded features by parsing the log data into distinct episodes
in which a problem solver engages in one of the following be-
havioral patterns: constructing circuits, taking measurements,
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Figure 2. Examples of the two types of circuits built by students. Sim-
ple circuits connect two terminals of the black box at a time, complex
circuits connect more than two terminals.

or pausing as indicated by inactivity (Table 2). These episodes
may potentially reveal key evidence of the problem-solving
practices adopted by students as they attempted to collect
data, make sense of the data collected and/or reflect on their
problem-solving process. All but two students built some
types of circuits when solving the problem. Furthermore, most
of the circuits built by problem solvers fell into two categories:
simple circuits that connect two terminals of the black box,
and complex circuits that connect more than two terminals at
a time (Figure 2).

The action-based and knowledge-grounded features from the
log data were used as two sets of input variables in multiple
linear regression models to predict both the solution scores and
the scores of specific problem-solving practices of individual
students. An additional input variable used in both models
was problem solvers’ most advanced physics course taken
as a proxy for their physics background knowledge (“Back-
ground”), which had three levels: high school introductory,
high school Advanced Placement (AP), and college physics.
Best subset selection was performed to identify the best-fitting
models for solution score prediction. Comparison of model
performance using these two sets of features allows us to
assess the value of knowledge-grounded features.

RESULTS
The results are reported in the following order. First, we
provide a brief summary of the descriptive statistics for the
features from log data, students’ solution scores, and scores
of specific problem-solving practices. Next, we present the
results of multiple linear regression models and logistic re-
gression models using action-based and knowledge-grounded
features to predict students’ problem-solving outcomes as mea-
sured by the solution scores. Lastly, we present the results of
multiple linear regression models using knowledge-grounded
features to predict the scores of problem-solving practices as
coded by human researchers.

Table 3 presents the descriptive statistics. The black box was
a challenging problem for college students in our sample.
Students’ solution scores ranged from 0 to 6, with a mean
of 2.59 and a standard deviation of 1.85. There was also
considerable variance in students’ scores of specific problem-
solving practices. Overall, students were more effective at
decomposition and less effective at reflecting on their solutions
and verifying its accuracy.

Finding 1. Knowledge-grounded features are better pre-
dictors of solution scores than action-based features.
Table 4 & 5 present the results of the best-fitting linear re-
gression models using action-based and knowledge-grounded
features to predict solution scores. All variables except for
the physics background were scaled to have zero mean and
unit variance. There is a considerable difference in the model
performance depending on which set of features is used. The
model using knowledge-grounded features has an adj. R-
squared of 0.60 (F(5, 67) = 22.22, p < 0.001), while the model
using action-based features has an adj. R-squared of 0.16
(F(3, 69) = 5.60, p = 0.002). Furthermore, in the model using
action-based features, none of the action-based features is a
significant predictor of the solution score, and the only signifi-
cant predictor is students’ physics background. In contrast, in
the model using knowledge-grounded features, a subset of the
features are significant or marginally significant predictors of
the solution score. Addition of students’ physics background
to this set of predictors does not improve the model fit (adj.
R-squared without background = 0.60, adj. R-squared with
background = 0.61, F(2, 65) = 2.21, p = 0.12). All these results
demonstrate that the knowledge-grounded features are much
better predictors of students’ problem-solving outcomes than
the action-based ones.

The knowledge-based features also have more pedagogical
value, in that they can provide useful feedback to both students
and teachers on what to do to improve problem-solving perfor-
mance. A subset of the circuit-based features are significantly
or marginally significantly associated with solution scores as
indicated by the p-values of individual predictors (Table 5).
Building simple circuits to connect pairs of terminals, obtain-
ing non-zero ammeter readings, and pausing after using the
ammeter are all associated with an increase in solution scores.
On the other hand, building complex circuits and obtaining
a reading of zero on the ammeter are both associated with
a decrease in solution scores. Solving for the hidden circuit
requires collecting relevant and interpretable data from the
simulation, which can be best achieved through the construc-
tion of simple, rather than complex, circuits connecting pairs
of terminals from the black box at a time. Proper use of the
ammeter to measure currents in these circuits would result in
non-zero readings, while most of the "zero" readings are re-
sults of using the ammeter on incomplete circuits and provide
no useful information. Moreover, the collected data must be
noted and recorded for effective interpretation, which requires
pausing after taking measurements.

Finding 2. Knowledge-grounded features are effective at
identifying low-performing problem solvers.
A robust model for predicting problem-solving outcomes
would lay the foundation for providing timely and personal-
ized feedback to improve student performance. It is especially
important for the model to identify students who are at risk of
failing to solve the problem. To this end, we fitted a multiple
logistic regression model to predict the probability of receiving
a low solution score using the knowledge-grounded features
selected from the linear regression model. Problem solvers
in the low-performing group (48% of all participants) have
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Feature Description
No. of circuits How many circuits were built during the problem-solving process?
Pairs of terminals connected How many pairs of terminals were connected by simple circuits?
Percentage complex What percentage of circuits built were complex circuits?
Voltmeter (zero reading) How many readings of zero were obtained using the Voltmeter?
Voltmeter (non-zero reading) How many non-zero readings were obtained using the Voltmeter?
Ammeter (zero reading) How many readings of zero were obtained using the Ammeter?
Ammeter (non-zero reading) How many non-zero readings were obtained using the Ammeter?
Pause time post circuit construction (pause - circuit) What was the average pause time after a circuit was built?
Pause time post Voltmeter (pause - V) What was the average pause time after the Voltmeter was used?
Pause time post Ammeter (pause - A) What was the average pause time after the Ammeter was used?

Table 2. Knowledge-grounded features extracted from the log data

a solution score of two or below, which indicates that they
had little grasp of effective problem-solving strategies and
made very limited progress in solving the black box. Problem
solvers in the non-low-performing group have a solution score
of three or above.

The performance of the classifier is evaluated by the test accu-
racy rate, Cohen’s kappa, and confusion matrix on the test set
averaged across 20 random 60-40 train-test splits. The model
has a test accuracy rate of 81% (95% CI: 78% - 84%) and a test
Cohen’s kappa of 0.62 (95% CI: 0.55 – 0.68), a value consid-
ered as "substantial" (range: 0.61 - 0.80) for machine-human
scoring agreements in the application of machine learning for
science assessment [28]. Table 6 presents the confusion ma-
trix for the test set as a measure of the model’s class-specific
performance. Of the 13 students who indeed received a low
solution score, the model on average correctly identified 10.35,
or 80% of the group. Of the 16 students who were not in the
low solution score group, the model on average correctly iden-
tified 13.15, or 82% of the group. The results suggest that the
model is effective at differentiating students’ problem-solving
outcomes using knowledge-grounded features derived from
the log data.

Finding 3. Knowledge-grounded features provide impor-
tant evidence for evaluating problem-solving practices.
Our final analysis evaluates how the knowledge-grounded fea-
tures correspond to the adoption of specific problem-solving
practices, including problem definition, decomposition, data
collection, data recording and reflection on solution. A strong
correspondence between features from the log data and scores
of specific problem-solving practices would make it possible to
automate the assessment of these practices. More importantly,
it would help teachers/students understand how to achieve bet-
ter problem-solving performance by focusing their attention
on specific practices that they need to improve the most.

Linear regression models were fitted to the human-rated prac-
tice scores using all knowledge-grounded features from Table
2 as predictor variables. The best subset selection method was
used to identify best-fitting models. The models explained a
large portion of the variances in the decomposition (adjusted
R-squared = 0.77, F(1, 71) = 240, p < 0.001), data collection
(adjusted R-squared = 0.64, F(2, 70) = 64.27, p < 0.001), and
data recording scores (adjusted R-squared = 0.58, F(5, 67) =

21.14, p < 0.001). On the other hand, the models accounted for
a smaller portion of the variances in the scores of problem def-
inition and reflection on solution (adjusted R-squared = 0.30
for both). We conjecture that the 30% of variances explained
in problem definition and reflection on solution are tied to a
general construct of problem-solving effectiveness rather than
constructs that are specific to the respective practices. The lack
of strong associations between knowledge-based features and
the practice of problem definition and reflection on solution
is not surprising, as both of these practices were scored by
human coders based primarily on students’ think-aloud utter-
ances during the problem-solving process, for instance, “what
is this problem asking,” or “does this answer make sense?”

Table 7 presents the best-fitting models for predicting the
scores of three problem-solving practices: decomposition, data
collection, and data recording. Scores of these practices were
associated with different subsets of the knowledge-grounded
features. In the following section, we will discuss what fea-
tures were significantly associated with each of the practices
and how these associations were in line with our qualitative
observation.

The percentage of complex circuits is a significant predictor
of decomposition practice scores in the regression model: a
one unit increase in the percentage of complex circuit built is
associated with a 0.88 unit drop in the decomposition score.
In solving the black box problem, how well one adopts decom-
position is closely related to the type of circuits built. Building
simple circuits that connect two terminals at a time would
allow for a section of the hidden circuit to be modularized and
inferred. In contrast, building complex circuits that connect
more than two terminals signals that a problem solver attempts
to solve the whole problem at once without breaking it into
small, manageable parts.

Two knowledge-based features, the number of pairs of termi-
nals connected by simple circuits and the percentage of com-
plex circuits, are associated with the data collection practice
scores. A one unit increase in the pairs of terminals connected
is associated with a 0.52 unit increase in the data collection
score. On the other hand, for each unit increase in complex
circuits built, the data collection score would go down by 0.4
unit. Based on our observation, data collection for solving
the black box includes building circuits followed by using
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Variable Unit Mean SD Min Max
Action-based features
Wire count 9 8 0 43
Lightbulb count 2 2 0 12
Resistor count 1.5 2 0 7
Battery count 2 2 0 10
Voltmeter (V) count 23 26 0 169
Ammeter (A) count 18 19 0 100

Knowledge-grounded features
No. of circuits count 17 11 0 45
Pairs connected count 4 2 0 6
Complex circuits % 27 34 0 92
V - zero count 13 20 0 154
V - non-zero count 10 11 0 39
A - zero count 6.5 8 0 46
A - non-zero count 11 15 0 85
Pause - circuit sec 11 9 0 65
Pause - V sec 10 10 0 55
Pause - A sec 12 10 0 62

Problem-solving Practice Scores
Problem definition 1.17 0.53 0 2.22
Decomposition 2.11 1.06 0 3
Data collection 1.27 0.93 0 3
Data recording 1.43 1.08 0 3
Reflection on solution 0.78 0.90 0 3

Solution score 2.59 1.85 0 6
Table 3. Descriptive statistics for features from the log data and outcome
variables

the voltmeter/ammeter for voltage/current readings, and to a
lesser extent, clicking on a battery to check its voltage. We
have also observed students with limited physics knowledge
relying on the brightness of a lightbulb to gather data. In order
to collect all the data needed to solve the problem, at least six
simple circuits need to be built, one across each pair of the
four terminals. The results indicate that for data collection to
be effective, the type of circuits built is more important than
the usage of voltmeter/ammeter alone.

Scores of the data recording practice are positively related to
the number of pairs of terminals connected by simple circuits,
as the building of simple circuits allows for effective data
collection. Data recording scores were also related to counts
of ammeter readings: additional non-zero ammeter readings

Predictor Estimate SE p value
Intercept -0.61 0.23 0.01
Background - AP 0.50 0.28 0.09
Background - college 1.09 0.29 < 0.001
Voltmeter -0.13 0.11 0.22
Adjusted R-squared 0.16

Table 4. Best-fitting linear regression models predicting solution scores
using action-based features

Predictor Estimate SE p value
Intercept 0 0.07 1
Pairs of terminals connected 0.50 0.09 < 0.001
Percentage complex -0.26 0.09 0.007
Ammeter - zero reading -0.27 0.08 0.001
Ammeter - non-zero reading 0.16 0.08 0.05
Mean pause post Ammeter 0.15 0.08 0.09
Adjusted R-squared 0.60

Table 5. Best-fitting linear regression models predicting solution scores
using knowledge-grounded features

True performance
Predicted Low-performing Non low-performing

Low-performing 10 3
Non low-performing 3 13

Total 13 16
Table 6. Confusion matrix for the test set averaged across 20 train-test
splits (rounded to the nearest integer).

were associated with an increase in data recording scores,
while additional zero ammeter readings were associated with
a decrease. More interestingly, data recording scores were
positively related to the pause time post ammeter and voltmeter
usage. Students were provided a pen and paper to take notes as
needed when solving the black box problem, and we observed
them adopting the practice to varying degrees, from creating
a diagram and recording all data collected in detail to not
taking any notes. Results from the regression model confirm
that effective data recording is preceded by effective data
collection and occurs during the pauses in between on-screen
activities as students recorded and organized the current and
voltage readings on paper.

DISCUSSION & CONCLUSION
In this study, we explored how to automate the measurement of
problem solving through log data generated in an open-ended
task embedded in a science simulation. We first parsed the
log files into user interface-level actions taken by individual
students (action-based features), an approach commonly used
in other studies. We then extracted a second set of features
by segmenting sequences of actions into semantically mean-
ingful episodes related to circuit-building. These features are
grounded in our knowledge gained through qualitative obser-
vation of the problem-solving process; that the type of circuits
built by students were closely related to the practices used to
solve the problem. While none of the action-based features
was a significant predictor of problem-solving outcomes, the
knowledge-grounded features were significantly associated
with students’ solution scores. The substantial improvement
in model performance when using knowledge-grounded vs.
action-based features to predict student solution scores illus-
trates the value of using knowledge gained from qualitative
analysis to define the type and unit of features to be extracted
from the log data. Though the features identified in this study
are specific to the circuit simulation, the workflow of using
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Decomposition Data Collection Data Recording
Coefficient estimate (SE)

Pairs of terminals connected 0.52(0.08) *** 0.59(0.08) ***
Percentage complex -0.88(0.06) *** -0.40(0.08) ***
Ammeter - zero reading -0.15(0.08) .
Ammeter - non-zero reading 0.26(0.08) **
Mean pause time post Voltmeter 0.16(0.08) .
Mean pause time post Ammeter 0.17(0.09) .
Adjusted R-squared 0.77 0.64 0.58
*** p<0.001; ** p<0.01; * p<0.05; . p<0.1

Table 7. Best-fitting linear regression models predicting decomposition, data collection and data recording practice scores (range: 0-3) using knowledge-
grounded features

human knowledge to define the optimal level of feature granu-
larity (discrete actions vs. meaningful episodes) can be gen-
eralized to other interactive learning environments aimed at
assessing complex constructs such as problem solving using
students’ interaction traces.

In the context of the black box problem, we found that students’
interaction patterns related to circuit building and ammeter
usage could reliably predict their problem-solving outcomes.
The building of complex circuits that connect more than two
terminals of the black box at a time and obtaining readings of
zero using the ammeter significantly decrease the probability
of a student solving the problem. In contrast, the building of
simple circuits that connect two terminals at a time, obtaining
non-zero ammeter readings and longer pause times after using
the ammeter increase the probability of solving the problem.

We also found that knowledge-grounded features derived from
the log data correspond closely to the human-rated scores mea-
suring students’ effectiveness in adopting specific problem-
solving practices. In particular, the practice of decomposition
was measured by the percentage of circuits built that were com-
plex. A higher percentage of complex circuits corresponds
to a student being less effective at decomposing the problem.
The practice of data collection was closely related to the pairs
of terminals connected by simple circuits. Building simple cir-
cuits across all six pairs of terminals corresponds to a student
being highly effective at collecting the data needed to solve
the problem. Less expected was the association between the
practice of data recording and features from the log data, as
the practice was evaluated by human coders primarily based
on the quality of notes taken by students on paper. Nonethe-
less, the quality of data recording could be inferred by how
effective a student was at building simple circuits and using
the Ammeter to collect data, as well as the duration of the
pauses after voltmeter and ammeter usages. Longer pauses
are associated with more effective data recording practices.
Findings from this study will serve as the basis for real-time
interventions aimed at improving students’ problem-solving
practices in future studies. For example, the task environment
could release a prompt about decomposition when the log data
shows that a student has repeatedly built complex circuits, and
the absence of substantial pauses after measurement events
(voltmeter and ammeter) would trigger the system to release a
prompt about keeping track of the data collected.

We note that there are several limitations with this work. First,
as the black box problem is only one instance of tasks designed
to mimic authentic problems in science and engineering fields,
the generalizability of the problem-solving practices identified
in this task needs to be further established. Second, the perfor-
mance of the classifier to predict students’ problem-solving
outcomes is limited by our small sample size to train and test
the model. In future work, we plan to adopt the workflow of
knowledge-grounded feature extraction to similar authentic
problem-solving tasks in different domains. We are partic-
ularly interested in the extent to which the trials set up by
students to collect data and the pause times correspond to stu-
dents’ effectiveness in problem solving. We also intend to run
a larger scale study using the black box problem to refine and
extract more features from the log data to measure problem
solving and provide real-time interventions for students. The
ultimate goal is to increase the pedagogical value of interac-
tive simulations in assessing and teaching problem-solving
practices useful for solving real-world challenges.
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