Lecture 8

The Quantum PCP conjecture

Scribe: Victor Braun
Reviewer: Pengxiang Wang

In the last lecture, we stated two variants of the ”Classical PCP theorem”. Furthermore, we also proved
a weaker version to give an intuition on the stronger result. After introducing the quantum analog of different
classical complexity theory notions, it is natural to wonder if there is a quantum equivalent to the mentioned
PCP theorem.

In this and the following lectures, we will thus define the QPCP conjecture and explain the different
challenges that proving such conjecture induce. For completeness, we will also introduce some positive and
negative results that were found while trying to solve this problem in recent years.

8.1 Constraint Satisfaction Problem (CSP) variant

Let us first recall that given a 3-local Hamiltonian H = % 71 H;, 0 < H; < I, separating the cases when
Amin(H) < a or Apin(H) > b is QMA-hard whenevera = 2" and b = Q<;117)

It appears that the result whenever a — b > -y with <y being a fixed constant, is not known to be true or
not, and is equivalent to the QPCP conjecture. Before formally stating the conjecture, let us introduce (we
could do it earlier) a more general definition of a local Hamiltonian.

Definition 8.1. Letm,q,d : N — IN, we say that H is [m, q]s-local if H = L Y | H;, where each H; acts
non-trivially on at most ¢ qudits (quantum objects lying in C9.

Remark 8.2. If not specified, we usually set m(n) = poly(n), q(n) = O(1) and d = 2.

We are now ready to formally define our first variant of the QPCP conjecture:

Conjecture 8.3. (QPCP conjecture, CSP variant)
There exists a constant 4 € IN, v > 0, a,b : N — [0,1] with a(n) — b(n) > v for all n such that given
any q-LH H on n qubits, it is QMA-hard to distinguish between Amin(H) < a and Ain(H) > b.

This variant can be also seen as the “hardness of approximation” variant, because proving it would
imply that, unless BQP = QMA, there is no quantum polynomial-time algorithm that can approximate
Amin(H).
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Figure 8.1: Non-adaptive QPCP verifier
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Figure 8.2: Adaptive QPCP verifier

8.2 Proof Checking variant

Analogously to the classical case, the QPCP conjecture comes more naturally with the definition of what is
a QPCP verifier itself. This machine doesn’t need any explicit randomness parameter 7, as this behavior is
automatically inherited from the probabilistic quantum behavior of the verifier.

Furthermore, it is allowed, in the same way as its classical analog, to read a predefined number of qubits.
We now define more formally how such a machine works:

Definition 8.4. (QPCP)
L € QPCP.4[p, q] if there exists a poly-time computable function V : x +— V., where Vy is a quantum
circuit on m(|x|) ancilla bits (it’s implicit that m(n) = O(poly(n))) and on p(|x|) proof qubits such that
Vi queries less than g(|x|) proof qubits and:

o Ifx € L = 3|¢) € (C?)®P, Pr(Vy accepts [0™)[&)) > c.

o Ifx ¢ L = V|¢) € (C?)®P, Pr(Vy accepts [0™)[&)) < s.

It’s a nice exercise to see how we can “query” qubits in a quantum circuit. For intuition, we give two
ways (one non-adaptive and one adaptive) of seeing this process.

In both cases, the idea is that we first perform some measurement whose outcome will specify the proof
qubit(s) we want to read. We can then imagine that by some process, the corresponding quantum objects
(say, particles) are given to our quantum computer and placed in one or more “empty” slots of the g circuit
qubits. The “new” qubits are then used as regular circuit qubits and the computation continues normally.
Visually, the processes are shown in (8.1) and (8.2).

With this definition in mind, we are ready to state the second variant of the QPCP conjecture as follows:
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Conjecture 8.5. (QPCP conjecture, proof checking variant)
QMA - QPCP1/3, 2/3[})01}7(1’1),0(1)].

It is worth noting that both in the classical and quantum version, the proof length is bounded by
O(poly(n)), with the only difference that in the quantum version, this bound is explicit.

We will show below that this variant is equivalent to the previous one. It is quite counterintuitive as
the CSP variant seems like a more “natural” extension to the known QMA-hardness of the 3-LH problem;
whereas on the other side, the second variant states something surprising, as it would induce that no matter
the quantity of entanglement in the quantum proof, reading a constant number g of its qubits is in a way
“enough” for the verifying process.

8.3 Equivalence of the variants
As the two variants define the same conjecture, the following lemma is natural:
Lemma 8.6. For the QPCP conjecture, CSP variant < Proof Checking variant.

Proof. Starting with the easiest, the (:>) direction, we know that if L. € QMA, there exist, by the CSP vari-
ant QPCP conjecture, a computable function H : x — H, and a constant 7y such thatif x € L, Apin(H) < a
and if x ¢ L, Amin(H) > b, with a — b > . The quantum verifier Vy simply selects H; uniformly at ran-
dom and measures it, exactly the same way we did to prove that k-LHE QMA. Because the difference
between completeness and soundness is constant, we can boost it by repeating the process until having %
and % as desired.

The (<) direction is more tricky, as it uses notions of quantum tomography, we sketch the proof as
follows. We start with our QPCP verifier V, and would like to compute a corresponding H, in poly-time.
We could simply define it by seeing that the querying process is g-local, however, the challenge is that the
g positions are not predefined, and so doing it in such say would force Hy to operate on all possible proof
qubits. We rather create H, = (Z)_1 Y5 [p):|s|=q Hs, now how to find Hg? Let’s say that for a run of Vi,
the positions of the proof qubits queried by Vy is a set S C [p], then all the circuit can be interpreted as
a big POVM (114, TI7"), the probability that the state is accepted is given by Pr(Vy accepts |0™)[¢)) =
||T19¢¢|&) | |*, where | &) is the proof restricted to the queried qubits. Our mission now is thus to find 14
for each S. This is done by performing tomography: we run Vy repeatedly on a proof that contains |0) except
on the proof qubits indexed by S, which are initialized to an arbitrary state |u1), |u2), ..., |ug). If we select
only the runs where V; actually queries exactly the qubits in S, we can estimate |T1 [uq)|uz) - - - [ug) ||*.
Repeating this a polynomial number of times, over a family of states |u;) that form an e-net over all single-
qubit states, will allow us to estimate all matrix coefficients of I1¢° to within inverse polynomial accuracy.

O

As a side note, we can introduce a subclass of QMA, QCMA ” Quantum-Classical Merlin Arthur” where
the quantum verifier is quantum but has only access to a said ”classical” proof (diagonal in the Z basis), we
then define the following hierarchy:

Theorem 8.7. NP C MA C QCMA C QMA.
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Figure 8.3: Chopping qubit grid with | X | areas

8.4 QPCP for geometrically local Hamiltonians

Surprisingly, when we restrict the Hamiltonians to a geometrical structure (such as 1D or even 2D Hamil-
tonians), the QPCP conjecture does not hold (unless of course, P = QMA). This is because, even though
these versions of the LH problem are still QMA-hard, they are easy ways to obtain rough (constant factor)
approximations to the ground state energy. Let’s for example take a 2D Hamiltonian. Its interaction graph
can be represented as a 2-dimensional grid. Now, let’s choose a large constant [ and let’s chop the grid into
I x I regions as showed in figure We name each rectangle C; and create the associated H; that corre-
sponds to H restricted to the qubits in C;. Then we can write H = ) ; H; + Hy where H} corresponds to
the interaction pairs that ’cross” the rectangle, as shown in pink in the figure. The idea is that if we choose
[ large enough, the number of crossing terms will be negligible, ||Hy|| < 2n - < n? = m. And so, we
are only left to compute the minimal energy of each H;, which is done in poly-time, and add the results up
to obtain a good approximation, with small additive error, to the minimum energy of H.

To go even further, this idea of ”chopping” the qubits can be generalized to any graph. We state this fact
formally in the following theorem:

Theorem 8.8. Let H be a 2-local Hamiltonian acting on qudits (H acts on (Cd )®™"), on a regular graph of
degree D. Then for every |) € (C)*" and for all partitions X = \J; X; of [n] such that Vi, |X;| = r:

There exists a state |¢) = |¢p1) @ ... ® |y, /) with each |¢p;) only acting on the qudits of X; such that
1
6 E[S(X,)y]\ 5
[lHIp) — (plHIp)] < c- (4 - LG

Because the entanglement entropy S(.) is never larger than the number of qubits, the right part of the
product is smaller than 1, meaning that if we take D > d, we can approximate the energy of H by the
energy of H on a product state. The intuition comes from the “monogamy” of entanglement.

We can then see that this theorem implies that the QPCP conjecture is false on graphs with D = w(1)
unless QCMA = QMA. What is also interesting about this theorem is that it is not true classically, as SAT
remains hard on graphs of high degree.
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To give some intuition about the theorem, we can state the de Finetti theorem, stating that a 7-
exchangeable distribution must be close to a product distribution. Formally:

Theorem 8.9. Let P be a distribution over [d]" such that P is n-exchangeable, i.e. Prp(s) =
Prp(7t(s)) for every permutation 7t € Sy,. Then, there exists a distribution y on [d] such that

k7 () ~ [ Q%¥dplly < min {zid k(kz_l)}

We won'’t prove this theorem in the course, but we give a proof sketch for d = 2:

Proof. The exchangeability condition implies that P must be a convex combination of uniform distri-
butions over strings of a given Hamming weight, e.g Pr(010) = Pr(100) = Pr(001). Let’s now take
one such distributions, P;. The idea is that the marginal distribution on k variables is hypergeometric,
and if we have k < n, then this distribution is very close to a product of binomial distributions. [

The quantum analog of this theorem is not enough to prove Theorem [8.8] but already gives us the
flavor of it in some sense. Formally, it is stated as:

Theorem 8.10. (Quantum De Finetti, Renner, ETH)
Let p be a density matrix on (Cd)®” such that p is n-exchangeable, i.e p is unchanged after any
permutation of the n qudits. Then, there exists a measure Y such that

2k(d + k)

vk, ltra—i(p) = [ odplle < =55

The achieved bound is stronger than in Theorem [8.8] however, it requires n-exchangeability, which
is not the case there. Therefore, the theorem is not directly applicable; but it gives the flavor of what
we need: a high degree of symmetry, or many constraints between “almost all” pairs of qudits, will
force the entanglement to be very weak overall and thus a good product state approximation can be
found.

8.5 Global entanglement

One of the implications of the QPCP conjecture is the existence of states that are impossible to create with
a poly-time circuit.

More precisely, assume that QCMA # QMA, the QPCP conjectures implies that there exist families
of g-LH such that Apin (H) < a and that V|¢), (¢|H|p) < b = a+ Yest, |P) does not have a poly-time
quantum circuit representation. This comes from the fact that if [) = C|0), then C is a classical witness to
the statement Apmin (H) < b, i.e. H is a YES-instance.

To be more formal, we define the NLTS; conjecture as follows:

Definition 8.11. NTLS_gcpn is true <> There exists a family of LH such that if (¢|H|¢) < b then |¢) has
no depth-d quantum circuit

The above statement can be formalized as: ”if QCMA # QMA and if the QPCP conjecture is true, then

NLTS 01y () 18 also true”. Furthermore, we can state a weaker theorem:
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Theorem 8.12. There exists d = Q(log n) such that NLTS,; is true.
To give an intuition to this theorem, we can introduce the notion on globally entangled states:
Definition 8.13. |¢) is said to be non-trivial if it has no constant depth circuit representation.

Definition 8.14. |¢) is called globally entangled if there exists |¢') L |¢) such that for any local observable
O, (¥[O[y) = (¢'|O[¢").

In other words, such states |¢), |¢') are very easy to distinguish as they are orthogonal, but as soon
as we restrict them to a subset of qubits, it’s impossible to differentiate the two states. Such states are for
example the cat states |GHZ ) = \%(|O”> +[1")).

In the next lecture, we will continue to explore this statement by showing a lemma that basically says
that non-triviality implies global entanglement. Thus, loosely speaking, Theorem [8.12] which we prove in
the next couple lecture implies that there are local Hamiltonians such that all states with low energy are
globally entangled.
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