
Lecture 7

The PCP theorem and hardness of
approximation

Scribe: Thomas Vidick
The PCP theorem was proved as the result of a long, intense line of work in the 90s exploring the power

of interaction. Since then the theorem has been given a second proof, and has found many applications, in
particular to hardness of approximation. In this lecture we give two equivalent formulations of the theorem.

7.1 Proof checking version

Our first formulation gives the theorem its name (PCP = Probabilistically Checkable Proof). It states that,
provided that one is willing to settle for a probabilistic decision process that errs with small probability, all
languages in NP have proofs that can be verified very efficiently: only a constant number of symbols of the
proof need to be evaluated! To state this formally we first need the notion of a PCP verifier.

Definition 7.1 (PCP verifier). Let r, q : N → N and let Σ = (Σn)n∈N be a sequence of finite sets.1 A
(r, q)Σ − PCP verifier V is a probabilistic polynomial-time algorithm that takes as input a string x ∈ {0, 1}∗
and has access to a special tape containing a proof Π ∈ Σ∗

n, where n = |x| is the length of x. The verifier
flips at most r(n) random coins, makes at most q(n) queries to the proof, and outputs a single “accept” or
“reject” symbol. Given the specification of a verifier V and x ∈ {0, 1}∗ we let ω(Vx) be the maximum
acceptance probability of V, when its input is x and the maximum is taken over all possible proofs Π ∈ Σ∗.

We define an associated complexity class:

Definition 7.2. Let c, s : N → [0, 1] be arbitrary (computable) functions and r, q, Σ as in Definition 7.1. A
language L is in PCPc,s[r, q]Σ if there exists a (r, q)Σ − PCP verifier V such that, for every x ∈ {0, 1}∗:

• (Completeness.) If x ∈ L then ω(Vx) ≥ c, i.e. there exists a proof Π such that Vx accepts Π with
probability at least c,

• (Soundness.) If x /∈ L then ω(Vx) ≤ s, i.e. for every proof Π, Vx accepts Π with probability at most
s.

When c = 1, s = 1/2 and Σ = {0, 1} we use the shorthand PCP[r, q] for PCPc,s[r, q]Σ.

1Most often we will have Σn = Σ a constant-sized set for all n.

45

The PCP theorem states that all languages in NP have very efficient verifiers, namely ones that only
read a constant number of bits from the proof:

Theorem 7.3 (PCP, proof-checking variant). The inclusion NP ⊆ PCP(O(log n), O(1)) holds. Equiv-
alently, given a (O(log n), O(1)){0,1}-PCP verifier V the problem of deciding between ω(Vx) = 1 and
ω(Vx) ≤ 1/2 is NP-hard.

7.2 Constraint satisfaction problems

Our second formulation of the PCP theorem uses the language of constraint satisfaction problems, and is
the most useful for applications to hardness of approximation.

Definition 7.4 (CSP). Let m, q : N → N and let Σ = (Σn) be a sequence of finite sets. A (m, q)Σ − CSP
φ is a collection of m constraints Cj, each acting on at most q out of a total of n variables. If m = poly(n)
and Σ = {0, 1} we refer to (m, q)Σ − CSPs as q − CSPs.

Given a CSP φ, its value ω(φ) is the maximum fraction of constraints that an assignment can satisfy:

ω(φ) = max
x1,...,xn

#{j : Cj is satisfied by (xi)}
m

.

The Cook-Levin theorem states that 3-SAT is NP-complete. In other words, the problem of deciding
whether ω(φ) = 1 or ω(φ) ≤ 1 − 1/m for (m, 3){0,1} − CSPs is NP-complete. The PCP theorem shows
that an a priori much easier, approximation version of this problem remains just as hard:

Theorem 7.5 (PCP, CSP variant). For any L ∈ NP there exists a polynomial-time mapping x ∈ {0, 1}∗ 7→
φx from strings x to (m, q) − CSPs φx, where m = poly(n) and q = O(1), such that x ∈ L =⇒
ω(φx) = 1 and x /∈ L =⇒ ω(φx) ≤ 1/2. Equivalently, there exists a constant q such that given a
q − CSP φ the problem of deciding between ω(φ) = 1 and ω(φ) ≤ 1/2 is NP-complete.

With some more work, Hastad showed the following:

Theorem 7.6. Let ε > 0. Given a 3-SAT formula φ, it is NP-hard to distinguish between ω(φ) = 1 and
ω(φ) ≤ 7/8 + ε.

The theorem is optimal in the sense that given any 3-SAT formula there always exists an assignment
satisfying a fraction 7/8 of the clauses. To see this, note that a randomly chosen assignment satisfies any
3-SAT clause with probability exactly 7/8. By linearity of expectation, the expected fraction of clauses
satisfied by a random assignment is 7/8, hence there must exist an assignment satisfying as many clauses.

7.3 Equivalence between the two versions

We show the implication Theorem 7.3 =⇒ Theorem 7.5 in detail. Let L be any language in NP and
x ∈ {0, 1}∗. By Theorem 7.3 we know that there exists a PCP verifier V = Vx that flips r = r(|x|) random
coins, makes q = q(|x|) queries to a proof Π, and is such that, if x ∈ L then there exists a proof Π that Vx
accepts with probability 1, whereas if x /∈ L any proof Π is accepted by Vx with probability at most 1/2.

Consider the following constraint satisfaction problem φx. φx has as many variables as there are loca-
tions in the proof Πx, which without loss of generality is at most q2r = poly(|x|). For each possible string
R ∈ {0, 1}r we introduce a constraint CR which corresponds to the check performed by Vx on this choice

46

of random bits. Precisely, whenever the verifier’s random bits correspond to R, he looks up q entries of the
proof Π and accepts if and only if these entries satisfy a certain constraint. The constraint Cj is defined to
evaluate to 1 if and only if the variables on which Cj acts are assigned values that would have made the
verifier Vx accept, if the entries of Π he looks up were assigned matching values.

If x ∈ L we know that there exists a proof Π that is accepted by Vx. In other words, there is an
assignment to the variables of φx (the corresponding entries of Π) that satisfies all the clauses (the verifier’s
test on any possible random string). Hence ω(φx) = 1.

If x /∈ L then every proof Π is rejected by Vx with probability at least 1/2. Suppose for contradiction
that ω(φx) > 1. This means that there would exist an assignment to all variables that satisfies strictly more
than 1/2 of the constraints. We can define a corresponding proof Π that lists all the variables’ values. By
definition of φx from Vx the proof Π would satisfy strictly more than 1/2 of the verifier’s possible tests,
contradicting our assumption that Vx rejects any proof with probability at least 1/2. Hence it must be that
ω(φx) ≤ 1/2, which concludes the proof.

The reverse implication is not hard to see. The PCP verifier will choose a clause uniformly at random,
query all variables that appear in it, and accept if and only if it is satisfied. We omit the details.

7.4 A “toy” version of the PCP Theorem

The original PCP Theorem in its proof-checking version demonstrates that for any L ∈ NP there exists
a verifier that uses only O(log(n)) random bits, queries only a constant number of positions in the proof,
and correctly answers the question x ∈ L? with constant probability. A simpler version only requires the
number of random bits to be polynomial in the input size:

Theorem 7.7. NP ⊆ PCP(r = O(poly(n)), q = O(1)).

This version has an exponential blowup in the maximal proof size that is O(2poly(n)) compared to
O(poly(n)) from the original PCP Theorem. Despite being a weaker result, it will allow us to demonstrate
tools and ideas used in the original version.

In order to prove Theorem 7.7, we use the NP-complete problem “Quadratic Equations” (QUADEQ)
that is defined next.

Definition 7.8. (QUADEQ) An instance φ of QUADEQ is given by m constraints Cj over n boolean
variables xi of the form:

Cj : ∑
i

α
(j)
i xi + ∑

i,k
β
(j)
i,k xixk ≡ γ(j) mod 2,

or equivalently

α(j) · x + β(j) · (x ⊗ x) ≡ γ(j) mod 2,

where
x = (xi)i=1,...,n ∈ {0, 1}n,

α(j) = (α
(j)
i)i=1,...,n ∈ {0, 1}n,

β(j) = (β
(j)
ik)i,k=1,...,n ∈ {0, 1}n2

and

γ(j) ∈ {0, 1}.

The instance φ belongs to QUADEQ if and only if there is an assignment x that satisfies all constraints.

47

The following is an example of a QUADEQ instance.
C1 : x1 + x2 + x4x5 + x2x7 ≡ 1 mod 2
C2 : x7 + x1x2 ≡ 0 mod 2
...
Cm : x9 + x5x6 ≡ 1 mod 2

(7.1)

The goal is to describe a PCP verifier for QUADEQ and as we advance some tools are established. The
first such tool is a test that fails with probability 1

2 if a QUADEQ instance φ is infeasible, and always accepts
otherwise.

Given coefficients a = (ai)i=1,...,m ∈ {0, 1} chosen independently and uniformly at random, form an
equation by combining the constraints of φ as follows:

E = E(a) : ∑
j

aj(α
(j) · x + β(j) · (x ⊗ x)) = ∑

j
ajγ

(j).

Claim 7.9. For a uniformly random choice of the coefficients a, it holds:

(i) If x satisfies all constraints, then x satisfies E(a),

(ii) If x does not satisfy all constraints, Pra[x satisfies E(a)] ≤ 1
2 .

Proof. Item (i) is clear, as any assignment that satisfies all equations individually must also satisfy the sum.
For item (ii), we introduce the error vector given by

e =

 α(1) · x + β(1) · (x ⊗ x)− γ(1)

...
α(m) · x + β(m) · (x ⊗ x)− γ(m)

 (7.2)

Since not all the constraints of φ are satisfiable, the vector e has at least one not zero component. Note
that the inner product of the random vector a with the error vector e checks the parity of the elements ai for
which ei = 1. As the elements ai are drawn independently and uniformly at random this parity is 1 with
probability exactly 1

2 . Moreover, the probability that x does not satisfy E is Pra[e · a = 1] ≤ 1
2 .

Now, We are ready for our first attempt to solve the simplified PCP Theorem 7.7. We assume that the

verifier has access to a proof Π = (Π1, Π2) where Π1 ∈ {0, 1}2n
and Π2 ∈ {0, 1}2n2

. Ideally, we would
like to have Π to be composed of

• (Π1)α = α · x, and

• (Π2)β = βx · (⊗x).

for some x ∈ {0, 1}n.
In words, the proof Π1 encodes in each position α the value of the inner product with a fixed x (similarly

to Π2). If φ ∈ QUADEQ, the bit string x would be the satisfying assignment.
It is important to note that all combination of the constraints given by any random a will lead to a new

value for α and β whose inner product with x is encoded in Π. This is a key point that allows us to use
Claim 4. A first attempt at designing a verifier for QUADEQ is given below.

48

1 Choose a = (ai)i=1,...,m ∈ {0, 1} uniformly at random ;

2 Compute


α = ∑j ajα

(j) ∈ {0, 1}n

β = ∑j ajβ
(j) ∈ {0, 1}n2

γ = ∑j ajγ
(j) ∈ {0, 1}

;

3 Make two queries (Π1)α and (Π2)β ;
4 Accept iff (Π1)α + (Π2)β = γ ;

Algorithm 1: Verifier V for QUADEQ
The problem of this verifier is that it expects the proof to be in a particular format. Provided this is the

case, it follows from Claim that the verifier V has completeness 1 and soundness at most 1
2 . However, it

can not rely on receiving this exact format, or otherwise the system may loose its constant soundness as the
proof Π is given by an adversarial prover.

The proofs Π1 and Π2 should encode the evaluation of a linear function (the inner product with a fixed
x, or x ⊗ x) over all possible inputs. Fortunately, this is a strong property that we can exploit to ensure that
Π is “close” to having the desired format. For this, we devise a linearity test that has oracle access to a
function f : {0, 1}n → {0, 1} and whose goal is to check that f is linear. (By linearity we mean that there
is c ∈ {0, 1}n such that f (α) = c1α1 + · · ·+ cnαn mod 2 = c · α for every α.)

Testing if f is exact linear would require querying its value on all inputs. Nevertheless, the next simple
test can enforce that it is “almost” linear.

1 Choose α, α′ ∈ {0, 1}n at random;
2 Query f (α), f (α′), f (α + α′);
3 Accept iff f (α + α′) = f (α) + f (α′);

Algorithm 2: BLR Linearity Test
The next theorem makes precise our notion of “almost linear”. If the linearity test succeeds with high

probability, f agrees with a single linear function on a large fraction of inputs.

Theorem 7.10 (BLR). The BLR linearity test satisfies:
(i) If f is linear, then Pr[f passes BLR test] = 1.

(ii) Suppose Pr[f passes BLR test] ≥ 1 − ϵ for some ϵ > 0, then there is a coefficient vector c such that
f (α) = c · α for 1 − ϵ fraction of α ∈ {0, 1}n.

Assuming the theorem, which is a classic in complexity theory but whose proof we do not include, we
conclude the description of our PCP verifier for QUADEQ. Recall that the a correct proof Π = (Π1, Π2)
must consist of (Π1)α = α · x and (Π2)β = β · (x ⊗ x) for some satisfying assignment x of the given
QUADEQ instance φ.

To verify the proof Π, the verifier performs the each of the following with probability 1/4.

1. Linearity test on Π1. That is, we use Theorem 7.11 with f = (−1)Π1
. This is equivalent to querying

(Π1)α, (Π1)α′ and (Π1)α+α′ for α, α′ ∈u {0, 1}n, and testing whether (Π1)α + (Π1)α′ = (Π1)α+α′ .

2. Linearity test on Π2

3. Consistency of tensor product: Choose α, α′ ∈ {0, 1}n, β ∈ {0, 1}n2
uniformly at random. Then

check (Π1)α(Π1)α′ = (Π2)(α⊗α′)+β + (Π2)β.

4. As in the previous lecture, construct an equation at random, say with coefficients (α, β, γ), and check
(Π1)α + (Π2)β = γ.

49

We will skip the detailed analysis of this verifier. But, we have presented all the required elements
to establish the correctness and soundness of this verifier. Overall, if φ is satisfiable then there exists a
proof Π that is accepted with probability 1. On the other hand, if φ is not satisfiable then any proof is
rejected with probability at least 0.001 (the exact constant is not relevant here). This implies that we have
soundness at most 0.999. Repeating the verifier’s test a large enough (constant) number of times to amplify
the soundness, we obtain Theorem 7.7: NP ⊆ PCP1,1/2(O(poly(n)), O(1)). Note that the length of the
proof Π is 2n + 2n2

bits, and the number of random bits required by the verifier is at most 2 + 2n2.
Recall that the PCP theorem is a stronger version of Theorem 7.7 that claims that NP ⊆ PCP(O(log n), O(1)).

In order to get to the PCP theorem we need to save on randomness, or equivalently make the proof much
shorter. We can accomplish this by extending our framework to low-degree polynomials over Fp.

7.5 Proof of Theorem 7.10

For completeness, we include a proof of Theorem 7.10. This material was not covered in class. For conve-
nience, we restate the theorem here using slightly different notation.

Theorem 7.11 (BLR). Suppose a function f : {±1}n → {±1} satisfies

Pr
α,α′∈U{±1}

[
f (α) f (α′) = f (αα′)

]
= 1 − ε,

where the product αα′ is taken componentwise and ∈U means that α, α′ are chosen uniformly at random.
Then there exists a set S ⊆ [n] such that f (α) = ∏i∈S αi for at least a fraction 1 − ε of all α.

The connection between the theorem and the linearity test is obtained by setting f (α) = (−1)Π
α . Now,

if f satisfies f (α) = ∏i∈S αi then proof Π satisfies the required linear form, i.e., Πα = ∑i∈S αi = cS · α,
where cs is the indicator vector for set S. To prove the BLR theorem we will need a little bit of Fourier
analysis over Fn

2 .

Basics of Fourier analysis over Fn
2

In this section we present some basic definitions and results from Fourier analysis over F = ({±1},×).
These results are used in the next section to prove Theorem 7.11.

Note that the set V = { f : {±1}n → R} is a vector space. The canonical basis for this vector space
consists of the delta functions δx. Specifically, for all x ∈ {±1}n write

δx : y 7→ 1 if y = x
0 otherwise.

We have a natural inner product in this vector space that is defined as follows:

⟨ f , g⟩ :=
1
2n ∑

x∈{±1}n

f (x)g(x).

In addition to the canonical basis, for this vector space of functions we have a Fourier basis that consists
of the following set of functions {χS : x 7→ ∏i∈S xi | S ⊆ [n]}. Note that this basis is orthonormal with

50

respect to the inner product ⟨, ⟩:

⟨χS, χT⟩ =
1
2n ∑

x
χS(x)χT(x)

=
1
2n ∑

x
∏
i∈S

xi ∏
i∈T

xi

=
1
2n ∑

x
χS∆T(x), (since xi ∈ {±1}, x2

i = 1).

where S∆T denotes the symmetric difference between the sets S and T. For S ̸= T we have ∑x χS∆T(x) =
0; since we are summing over all x ∈ {±1}n. For S = T, the inner product ⟨χS, χS⟩ is equal to one. Hence,
we get orthonormality. In particular, the characters χS form a complete basis for our vector space V, and
every function f ∈ V, f : {±1} → R can be decomposed as

f (x) = ∑
S⊆[n]

f̂ (S) · χS(x),

where f̂ (S) ∈ R is called the Fourier coefficient at S. Note that by orthogonality of the Fourier basis we
have f̂ (S) = ⟨ f , χS⟩. Next we state a useful property of the Fourier coefficients.

Proposition 7.12. For any functions f , g : {±1} → R we have ⟨ f , g⟩ = ∑S f̂ (S)ĝ(S).

This proposition implies a useful corollary—called Parseval’s identity—for ±1 valued functions. Note
that when f is ±1 valued, the inner product ⟨ f , f ⟩ = 1. This along with the proposition above, ⟨ f , f ⟩ =

∑S f̂ (S)2, gives us Parseval’s identity:

Corollary 7.13. For any ±1-valued function f , we have ∑S f̂ (S)2 = 1.

Proof of Theorem 7.11

Using Fourier analytic tools we will now prove Theorem 7.11. The assumption of the theorem implies that

1 − 2ε =
1

22n ∑
α,α′

f (α) f (α′) f (αα′)

=
1

22n ∑
αα′

∑
S,T,U

f̂ (S) f̂ (T) f̂ (U)χS(α)χT(α
′)χU(αα′) (via Fourier expansion)

=
1

22n ∑
αα′

∑
S,T,U

f̂ (S) f̂ (T) f̂ (U)χS(α)χT(α
′)χU(α)χU(α

′)

Here, the last equality follows from the fact that χU(αα′) = χU(α)χU(α
′); this equality is obtained just

from the definition of χU . Rewriting the right-hand-side of the above equation we obtain:

1 − 2ε = ∑
S,T,U

f̂ (S) f̂ (T) f̂ (U)

(
1
2n ∑

α

χS(α)χT(α)

)(
1
2n ∑

α

χT(α
′)χU(α

′)

)
= ∑

S,T,U
f̂ (S) f̂ (T) f̂ (U)⟨χS, χT⟩ ⟨χT, χU⟩

51

The orthogonality of χs implies that only the summands where S = T = U are non-zero, in fact are equal to
one. The remaining summands, where either S ̸= T or T ̸= U, are equal to zero. Therefore, the following
inequality holds:

1 − 2ε ≤ ∑
U

f̂ (U)3

≤ max
W

f̂ (W) ∑
U

f̂ (U)2

= max
W

f̂ (W) (by Parseval’s identity).

Write S0 = arg maxS f̂ (S). By the inequality above, f̂ (S0) ≥ 1 − 2ε.
We can now prove Theorem 7.11. Recall that the Fourier coefficient f̂ (S0) =

1
2n ∑α f (α)χS0(α). But,

the inequality f̂ (S0) ≥ 1 − 2ε holds iff f (α) = χS0(α) for at least (1 − ε)2n α’s; both f and χS0 are
±1 valued. In other words, for at most ε2n many α’s for f and χS0 differ. This completes the proof of the
theorem.

52

	The PCP theorem and hardness of approximation
	Proof checking version
	Constraint satisfaction problems
	Equivalence between the two versions
	A ``toy'' version of the PCP Theorem
	Proof of Theorem 7.10

