Lecture 5

Approximate Ground State Projections

Scribes: Maria Okounkova and Fernando Granha Jeronimo

5.1 The Detectability lemma

We start by discussing the detectability lemma, which provides the basis for a local constraint satisfaction
view of the local Hamiltonian problem. More formally, given a d-local Hamiltonian H = Y_!' ; H; and a
state |¢) that is “far” from being its ground state in the sense of having a high value for the energy (|H|y),
we want to say that we will be able to “detect” the high energy simply by making the local measurements
H,,Hy,...,H, in sequence[]

The detectability lemma provides some sufficient conditions under which this is possible. We let the H;
be projections, and assume that H is frustration free, i.e., there is a state |T') that is simultaneously a ground
state of all the H; (and hence has energy 0). We further assume that the Hamiltonian is gapped, i.e., there is
a positive constant ¢ such that any state |¢) orthogonal to |I') has energy at least &: (¢|H|¢p) > .

Ideally, we would like to prove that whenever |¢) is of the form (¢|H|¢) > J, then the probability of
failing to detect it using a sequential measurement as above is at most 1 — Q3(4), i.e.,

(I = Hu)(I = Hy1) - (1= H)|9) |3 = 1 - Q(6).

However, this statement cannot be true. Suppose for example that there exists a state |u) such that (u|H;|u) =
1for1 <i < m. Then, a simple calculation shows that the state |¢) = /1 — /n|T’) +/d/n|u) satisfies
(¢p|H|p) = 6, even though the probability of failure is 1 — & /n. The actual detectability lemma gets around
this by only considering states |¢) that are orthogonal to the ground state |T').

Lemma 5.1 (Detectability lemma). Let H = Y |' | H; be a frustration free Hamiltonian such that (i)
all H; are projections, and (ii) each H; commutes with all but (at most) g other terms H;. We further
assume that |T') is the unique ground state of H with energy 0, and any state |{) orthogonal to |T) satisfies
(Y|H|p) > 6 > 0. Then, for every |¢) orthogonal to |T') we have

(I Hp)(I— Hy1)...(I— H)[)2 <10 <g‘52>

I'The precise order of the measurements does not matter. The crucial point is that each of the 71 measurements involves only a
small number of qubits, and is the non-commutative analog of classical tests of low query complexity.
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Proof. Let P; be the projection to the ground state of H; (thus, H; = I — P;, since H; are projections). We
define

|¢) = PuPy_1...P1]9).

Note that our goal is to show that |||¢)||* = 1 — €2(6/g2). We now consider the term (¢p|H;|¢). Observe
thatif Py, Py, —1, . . ., Piy-1 commute with H; then (¢|H;|¢) = 0. So, leti; > ip > --- > i, be the (possible)
indices greater than 7 such that H; , 1 < k < g do not commute with H;. We denote the set of these indices
by N (7). We then have

k°

Hi|¢) =Py ... P, 1HiP; ... Pi|¢) — Py ... P, 1HiH; P, 1 ... Pi|¢),
using [ — H; = P,
y ( T Pk) HHP,_y...Pi[y),
JEN() © ki
kN (i)
by iterating the last step for each i, 1 < k < g.

Now, since H; is a projection, we have

(PIHilg) = [ Hilg)|*
<g Y [HP- Pl
JEN(I)
using the Schwarz inequality, followed by neglecting some projections,
=) {H ... P1|y) H2 — ||PiPj-1 ... P1|) HZ} , since H; are projections.
JEN(i)

Thus, summing over i, we have

@IHE <8Y X [P PP = [P Pl ]

i=1jeN(i)

n
<&y (1B PP = [P P ), (5.1)
j=1
since each of the terms can appear for at most d values of i,

=g (1= I1Pu-- Pl9)IP) = (1= [[19)I) - (5.2)

Now, we note that |¢) is orthogonal to the ground state |T'):

(@IT) = (p|Pr - P4|T) = (y[T) =0,

where for the second equality we used P;|T') = |I') for all i. Hence from the hypothesis of the theorem, we
have (¢|H|¢) > 6 |||¢)||*. Using the above inequality, we then have

1

1+ &'

) |I* <

which completes the proof. O
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Remark 5.2. A partial converse to the main inequality, (5.2), is given by the “quantum union bound.” Under
the same assumptions about H, but without the restriction on limited non-commutation, this states that the
inequality |||¢)||?> > 1 —4(y|H|¢). In case where all H; are diagonal in the computational basis and ker H;
is interpreted as an “event” in the space of all bit strings, this recovers the classic union bound (up to the
factor of 4...).

5.2 Decay of correlations

A consequence of the detectability lemma is decay of correlations, which we now discuss.

Theorem 5.3 (Decay of Correlations). Suppose H is a geometrically-local Hamiltonian on a n-qubit D-
dimensional grid with spectral gap 5 > 0. Let X, Y be Hermitian operators on (C?)®" such that d(X,Y) >
m (here d(X,Y) is the length of the shortest path on the grid between the patches X and Y act on), then,

[(LIXIT){T]Y|E) = (C[X @ Y[D)| < [|X]]|Y]| - e/ (5.3)

In words, this theorem says that the further apart the operators X and Y are, the less correlated the results
will be when we measure the ground state. Here is an example where such decay does not happen:

Example 5.4. Consider the CAT state |¢p) = (]0...0) +]1...1)) and let X be the Pauli Z operator

1
V2
on the ith quit, and Y be the Pauli Z operator on the jth qubit. Since our state is already expressed in the
computation basis, we can easily see that (¢|X|¢p) = —1-1+1-1 = 0 and likewise (p|Y[yp) = 0.
This corresponds to acting with X and Y independently. However, this state is highly correlated for these
operators, as, acting on |ip) first with X projects |¢) into the state either [0...0) or |1...1), where the
outcome of the Y measurement is fully determined (the outcomes are always perfectly correlated). Indeed,
we can compute (| X @ Y|p) = 1. So te difference | (| X|¥) (¢|Y|¢) — (| X @ Y|p)| = 1 and does not
decay exponentially: this state cannot be the ground state of a local, gapped Hamiltonian!

Now let’s prove Theorem[5.3] We will use the detectability lemma, for a well-chosen ordering of the H;
terms.

Proof of Theorem The proof is best described via a picture, see Figure Consider a tensor network
representation of |I')with X and Y acting on sets of qubits at distance m. This is represented here in one
dimension, but works in any number of dimensions. The picture, without the 1 — H; terms inserted in the
middle, corresponds to a tensor nertwork representation of (I'| X ® Y|T'). Let’s consider inserting 1 — H;
terms (projectors). Any term which is not in the “causal” cone of X and Y (as pictured) can be “absorbed”
into the top or bottom states |T'), using (1 — H;)|T') = |T') for any i since |T') is the ground state and
the Hamiltonian is frustration-free. A layer of corresponds to the product of pairwise commuting terms.
Inserting all the Hamiltonians requires 2 layers in 1 dimension, and 2D layers in dimension D (2D is just
the maximum degree). How many layers can we insert? The spacing m between the operators X and Y.
Hence overall we can insert | = m /2D copies of the operator A = []"(I — H;) from the detectability
lemma, without changing the value of the tensor network:

TX@ YD) =(I[(XoD)A (Y @ I)|T)
The detectability lemma implies that

|A" = [P)(T|[| < (1= Q(6/D?))! m e= /DY),
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Figure 5.1: Visual for decay of correlations proof

Recall that we want to bound
[(IXT)(TY|T) — (T[X @ Y|T)|
=[{[[(X@I)(A» — [[)(T)(TY)[T)]
m _ 3
<|IX[|- Y]] - | A2 — [T)(T]| < [ X][][Y[|le~ 207D,
which completes the proof. O

Before we discuss the area law, which will essentially tell us that ground states of gapped local Hamilto-
nians have much less entanglement than the maximum allowed in “generic” states, let’s introduce entropy,
specifically Von Neumann entropy, as a measure of entanglement.

Definition 5.5 (von Neumann Entropy). Consider any |¢) € H4 ® Hp, and perform a Schmidt decom-
position to obtain |) = Y9, A;|u;) a|v;)p. The von Neumann entropy of i) across region A is defined
as

S(A)y = S((A7)i) = Y AfIn 1 (5.4)
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Example 5.6. If [¢)) = |L) ® |R) then S(A) ) = O (the product state has no entanglement).

The maximally entangled state |¢) = YP |i)a ® i), has entropy S(A)y) = In(D). In general,

1
vD
S(A)|yy < In(dim Hilbert space). This is a direct quantum generalization of the fact that a classical proba-
bility distribution on D elements has entropy at most In D, and this is achieved by the uniform distribution.

Using this definition, we can now discuss the Area law, stated as a conjecture.

Conjecture 5.7 (Area Law). Let |T') be the ground state of H (the type of Hamiltonian discussed at the
beginning of these notes). Then, for any region A,

where dA denotes the boundary of region A, the set of qubits that interact (through H) with at least one
qubit outside of region A.

In other words, the area law conjectures that, in gound states of gapped local Hamiltonians, entropy
scales are the surface area, rather than the maximum, which would be the volume. This has recently been
proven for 1-dimensions, and we will see a complete proof in this and the next lecture. The conjecture is
open for any dimension at least 2.

The proof makes essential use of the following ingredient called Approximate Ground-State Projection
(AGSP):

Definition 5.8 (AGSP). Given a Hamiltonian H, a (D, A)-AGSP for H is an operator K € (C?)®N such
that

« Ky =)
< V) (In) =0, [KIp) 2 < All1p)?

* If |) has a tensor-network representation with bond dimension < L, then K|¢) has a tensor-network
representation with bond dimension < D - L.

Example 5.9. For example, the operator A = (I — Hy,) ... (I — Hy) from the detectability lemma is an
AGSP. The detectaibility lemma states that its A parameter is A = 1 — (). To evaluate B, observe
that applying any (I — H;) can be done at the cost of a multiplicative blow-up by a factor at most 4 (the
dimension of the space on which (I — H;) acts non-trivially) across the bond on which H; acts. Since each
bond is acted on by only one operator, the total blow-up is D = 4.

We will prove a theorem which is a bit more general than the area law, namely

Theorem 5.10. Suppose there exists a (D, A)-AGSP such that DA < 3. Then |T) satisfies an area law of
the form S(A)ry < O(1) log D.

First we prove the theorem, based on the following two lemmas. Then we will see a construction of the
required (B, A)-AGSP. Indeed, note that the AGSP from the detectability lemma does not quite make the
cut, since BA ~ 4 for small constant J.

Lemma 5.11. Suppose 3(D, A)- AGSP such that DA < 1. Fix a partition (A, A) of the space on which
the Hamiltonian acts. Then there exists a product state |¢) = |L) 4 @ |R) 5 such that |{p|T)| = u > \/%.
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Proof. Let |¢) be a product state with the largest overlap on |I'), meaning that is maximizes y = |(¢|T)|,
and can be expressed as |¢) = u|l) + /1 — u2|p) (where the latter is some state orthogonal to the
ground state). Apply K to get K|¢) = u|T') + &|¢’) where |¢') is normalized and |6|> < A. The Schmidt
decomposition of K|T') has at most B terms, so we can express, using Cauchy-Schwarz,

p=[(TIK@)] = | L ATILIR) < /A2 EATILIIR)? < /(42 4+ 4) VD, fmax (TILK[R):

Thus there exists a product state such that [(I'|L);|R);| > D(yz—i—A) This must be < y by assumption,
K
1 1 1 1
VD+/12 > i 2> A> =
and hence v D+/pu* + A > 1 meaning that y= > D A> D 2D~ 2D ]

Before we move to the next lemma, we need an auxiliary result known as Eckart-Young Theorem. This
result bounds the maximum possible overlap between states |) and |¢) where the latter has a predefined
Schmidt Rank.

Theorem 5.12 (Eckart-Young). Let |¢) € C" @ C* be a normalized vector with Schmidt decomposition
lp) = Y Ai|u;)|v;), where Ay > Ay > - - -. Then for any normalized |p) € C @ C* with Schmidt rank
at most B it holds that

Given a product state that has overlap y with the ground state, the next lemma uses an AGSP to bound
the entanglement across the associated cut (i*,i* + 1).

Lemma 5.13. Suppose 3(D, A)-AGSP and 3 a product state |¢) = |L) 4 ® |R) z such that |($|T')| = p.
Then

. 1
S((i*,i* + 1)) < O(l)k(;’ngogD (5.6)

Proof. Denote by K the (D, A)-AGSP.Define |¢;) = ”Ilglii;” It is not hard to see that |¢;) is such that
(i) SR(|¢r)) < D'

. ;,{
(i) [(Flgr)| = Nt
Property (i) follows from SR(|¢)) = 1 and the AGSP having bond parameter D. Furthermore, property
(ii) follows from the definition of the shrinking parameter A.
Let |T) = Y A;|L;}|R;) be the Schmidt decomposition of the ground state relative to cut (i*,i* 4+ 1),
where A1 > Ay > .... By the Eckart-Young Theorem we have

2

D! u
A2 > (T > >

or equivalently
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2 2 Al
A2 < K <1- - <2
Z — 2+Al(1 ‘H)_ V2+Al_]/l2

i>D!

We choose Iy = 2%33 k- llggi such that A 2 < 1 and proceed to bound the worst case entropy across the

AGSP cut. The first D' Schmidt coefﬁc1ents account for an entropy of at most [y log D. For the remaining
coefficients, we group them in chunks of size D" in intervals [Dklo +1, D(kH)ZO} indexed by k. For each of
these intervals, the corresponding entropy can be upper bounded by

Aklo

(k+1)ly _ lo%(k +1)logD,

Aklo

where here N is an upper bound on the total probability mass in the interval, and D~ (k1)

I a lower bound

on the size of any Schmidt coefficient (squared) in the interval, which follows from the fact that they are
organized in descending order and must sum to 1. Therefore, the total entropy is

N 1
S((*,i* +1)) < lologD—Fk;lo?(k—kl)logD

<lologD+lologD2 (k+1)
=12

< O(1)lplogD

< O(l)izgz log D

We note that this bound is sufficient to imply the area law as our AGSP construction will have constant A
and B (and hence ). ]
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