
Lecture 3

Classification of local hamiltonian problems

Scribe: Zijing Di

3.1 Perturbation theory

Our goal in this section is to finish the proof of Theorem 2.4 that 2LH is QMA-complete. We have shown
in the last lecture that 3LH is QMA-complete, and we are left to prove that the ground energy of every 3LH
can be approximated with the ground energy of a 2LH.

To solve it, we will introduce a powerful technique called perturbation theory, which is used to analyze
the spectrum of the sum of two Hamiltonians when one of them has small norm while the spectrum of
the other one has large gap. This can give a better approximation than the projection lemma (Lemma 2.6)
because we consider higher order terms in the approximation. Interestingly, as a byproduct, we will see
how the higher order terms create 3-local Hamiltonian from 2-local Hamiltonians, and this will be crucial
in simulating 3-local Hamiltonians with 2-local Hamiltonians.

Given a sum of two Hamiltonians H = H0 + V (we treat the norm of V as small and the spectrum
gap of H0 as large), define Π− as the projection onto the span of eigenvectors of H0 whose eigenvalues are
smaller than J

2 and Π+ = Id−Π−. Then for every operator A, define A+ = Π+AΠ+, A−+ = Π−AΠ+,
A+− = Π+AΠ−, and A− = Π−AΠ−. We also define Π′

− to be the projection onto the low-energy space
of H (the span of eigenvectors of H whose eigenvalues are smaller than J

2 ). Let GH(z) = (z · Id−H)−1

and Σ−(z) = z · Id− −(GH
− (z))−1, where GH

− (z) = Π−GH(z)Π−.

Theorem 3.1. Assume all of H0’s eigenvalues are in (−∞, 0] ∪ [J,+∞) and ∥V∥ < J/2. Suppose there
exists an effective Hamiltonian He f f such that Spec(He f f ) ⊆ [−c, c] (eigenvalues of He f f lie in the range
[−c, c]). If ∥Σ−(z)− He f f ∥ ≤ ϵ for some c < J

2 − ϵ and all z ∈ [−c − ϵ, c + ϵ], then for each j, the jth

eigenvalue of He f f is ϵ-close to the jth eigenvalue of Π′
−HΠ′

−.

Remark 3.2. λmin(Π′
−HΠ′

−) is the same as the ground energy of H since Π′
− projects H into its low-energy

space. Then this lemma says the ground energy of He f f is ϵ-close to that of H if ∥Σ−(z)− He f f ∥ ≤ ϵ.

We will only give the intuition behind the proof. Intuitively, when we project H onto Π−HΠ−, the
spectrum often changes and eigenvalues are not preserved. Instead, we encode eigenvalues of H in the poles
of GH(z) at z being eigenvalues of H. Since poles are preserved under projection, small eigenvalues of H
are also poles of GH

− . With some effort we can show z is the pole of GH
− if and only if it is an eigenvalue of

Σ−(z). Then if the ground energy of Σ−(z) is ϵ-close to that of He f f , we will have that the ground energy
of H is ϵ-close to He f f .
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This theorem is particularly useful when ∥V∥ is close to
√

J. For example, consider the following 2× 2
matrices,

H0 =

(
J 0
0 0

)
, V =

(
0 δ
δ ϵ

)
, H = H0 + V =

(
J δ
δ ϵ

)
.

The smallest eigenvalue of H is 1
2

(
J + ϵ −

√
(J − ϵ)2 + 4δ2

)
. This is close to λmin(V|S) ≈ ϵ if δ2 ≪ J

where S is the null space of H0, but is very different otherwise.
Next, we will show how to use Theorem 3.1 to obtain 2-local Hamiltonians from 3-local Hamiltonians.
Given a 3-local Hamiltonian Htarget, assume that we can write Htarget = A ⊗ B ⊗ C + Helse where

A, B, C are 1-local Hamiltonians and Helse is a 2-local Hamiltonian. In general, we can always write a
3-local Hamiltonian as ∑i Ai ⊗ Bi ⊗ Ci + Helse and the proof generalizes.

We then construct a 2-local Hamiltonian H = H0 + V as follows. We add a new qubit w and define

H0 = J|1⟩⟨1|w

V =

(
Helse +

α2

J
(−A + B)2 +

α2β

J2

(
A2 + B2)C

)
⊗ |0⟩⟨0|w

+ (α(−A + B)⊗ Xw + β(−C)⊗ |1⟩⟨1|w)
= H′

else ⊗ |0⟩⟨0|w + V ′

for some constants α, β ∈ R, where H′
else = Helse +

α2

J (−A + B)2 + α2β
J2

(
A2 + B2)C and the rest of

terms in V consist of V ′. Observe that H0 and V are 2-local. Our goal is to show λmin(H) ≈ λmin(Htarget)
using Theorem 3.1.

First, we partition V by projectors Π− = |0⟩⟨0|w and Π+ = |1⟩⟨1|w as follows.

V =

(
H′

else α(−A + B)
α(−A + B) β(−C)

)
V− = H′

else ⊗ |0⟩⟨0|w
V−+ = α(−A + B)⊗ |0⟩⟨1|w
V+− = α(−A + B)⊗ |1⟩⟨0|w

V+ = β(−C)⊗ |1⟩⟨1|w

Let G(z) = (z · Id−H0)−1. We can compute G+(z) = 1
z−J |1⟩⟨1|w. Since z ≪ J by assumption, 1

z−J is
on the order of 1

−J .
By Taylor expansion on G and Σ−, we have

Σ−(z) = V− + V−+G+V+− + V−+G+V+G+V+− + . . .

= H′
else ⊗ |0⟩⟨0|w + (−1

J
)α2(−A + B)2 ⊗ |0⟩⟨0|w

+

(
(−1

J
)2α2(−A + B)2β(−C)

)
⊗ |0⟩⟨0|w + . . .

= Helse ⊗ |0⟩⟨0|w +
2α2β

J2 ABC ⊗ |0⟩⟨0|w + . . .
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In the second equation, notice that α2

J (−A + B)2 ⊗ |0⟩⟨0|w in H′
else of the first term cancels out with the

second term. The rest of the terms in the expansion is on the order O( 1
J1/3 ). Setting α = 1√

2
J2/3 and

β = J2/3,

Σ−(z) = ABC ⊗ |0⟩⟨0|w + Helse ⊗ |0⟩⟨0|w + O(
1

J1/3 )

Setting He f f = (ABC + Helse) ⊗ |0⟩⟨0|w, this implies that ∥Σ−(z) − He f f ∥ ≤ ϵ = O( 1
J1/3 ). Then by

Theorem 3.1, the jth eigenvalue of He f f is O( 1
J1/3 )-close to the jth eigenvalue of Π′

−HΠ′
−. With some extra

effort, we can show that the smallest eigenvalue of He f f is that of the initial 3-local Hamiltonian Htarget,
which concludes the proof that the 2-local Hamiltonian is QMA-complete.

3.2 Classification theorem

After learning the QMA-completeness of general 2LH, we introduce more restrictions and see how they
affect the complexity of solving the Local Hamiltonian problem.

Definition 3.3. For a set S of local terms, S − LH is the Local Hamiltonian problem with the restriction
that all local terms are in S.

For example, for a set S = {Z ⊗ Z, X}, the input Hamiltonian H of the S − LH problem is specified
by a space of n qubits and a collection of m local Hamiltonians Hj acting on the space such that Hj is in
the form of Zi1 ⊗ Zi2 or Xi (1 ≤ i1, i2, i ≤ n). The SLHa,b problem is to decide between the following two
cases:

• (YES): ∃|ψ⟩ ∈ C2n
, ∥|ψ⟩∥ = 1, such that ⟨ψ|H|ψ⟩ ≤ a

• (NO): ∀|ψ⟩ ∈ C2n
, ∥|ψ⟩∥ = 1, ⟨ψ|H|ψ⟩ ≥ b

What is the complexity of solving the S − LH problem?
When S = {Z ⊗ Z}, S − LH is exactly the MAXCUT problem, which is NP-complete.
When S = {X ⊗ X, X ⊗ I, Z ⊗ I, X ⊗ Z, I ⊗ I, Z ⊗ Z}, S − LH is QMA-complete. The reason

is as follows. With some extra effort, we can see that we do not need complex numbers in the proof of
QMA-completeness of 2LH. Since every 2-local Hamiltonian that does not contain complex numbers can
be written as a linear combination of local terms from S (and Y ⊗Y, but it is not hard to see that such terms
are not needed at any step), solving SLH implies solving a QMA-complete problem.

We have the following classification theorem to characterize the hardness of the S − LH problem.

Theorem 3.4 (Classification theorem). SLH problem is:
• in P if S only has 1-local terms;

• otherwise NP-complete if there exists a unitary U on C2 such that for every Hamiltonian h ∈ S,
U⊗2h

(
U⊗2)† is diagonal;

• otherwise STOQMA-complete if there exists a unitary U on C2 such that for every Hamiltonian h ∈ S,
U⊗2h

(
U⊗2)†

= αZ ⊗ Z + A ⊗ I + I ⊗ B (a diagonal term plus some 1-local terms);

• QMA-complete otherwise.
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The first point is easy to verify, as 1-local terms decouple and H can be diagonalized by diagonalizing
the constraints on each qubit one at a time. For the second point, inclusion in NP is easy to see since
eigenstates of H are computational basis states. NP-completeness requires more work, but can be shown
using standard techniques in NP-completeness; essentially, a reduction from MAXCUT. The third bullet is
more delicate. We will not define the class STOQMA here. It is an interesting class that lies between MA
and AM, and as a consequence is believed to be strictly larger than NP, and strictly smaller than QMA.
Finally, the last bullet is shown using a lot of perturbation theory. The significance of the theorem is that the
complexity of S − LH can, overall, take only a small number of forms; at a high level the moral is that a
family of local Hamiltonians is “hard unless it is obviously easy.”

By setting S = { 1
4 (Id−X ⊗ X − Y ⊗ Y − Z ⊗ Z)}, we can obtain the following corollary.

Corollary 3.5. Quantum MAXCUT problem is QMA-complete.

We can also consider Hamiltonians with geometric locality. To be more specific, we can consider the
Hamiltonians where the qubits are arranged in a geometric way (e.g. 1D line, 2D grid, 3D cube) and
interactions can only occur between two adjacency nodes. This kind of Hamiltonians has motivations from
physics. Again, most quantum mechanical systems exist in one, two or three-dimensional Euclidean space
where interactions are geometrically local. We give figures for 1D LH and 2D LH problem.

Figure 3.1: The 1D LH problem where each node is a qubit and each Hj acts on one edge where H =
1
m ∑m

j=1 Hj

Figure 3.2: The 2D LH problem where each node is a qubit and each Hj acts on one edge where H =
1
m ∑m

j=1 Hj

Surprisingly, the Local Hamiltonian problem is hard even when interactions are restricted to geometric
locality.

Theorem 3.6. The 2D Local Hamiltonian problem is QMA-hard.

The proof of this theorem is not very difficult, and combines tools that we have already seen. Essentially,
one has to go through all steps, from the circuit-to-Hamiltonian construction to perturbation theory, and
revisit each step while having in mind a geometric location for the qubits, trying to ensure that qubits that
participate in the same local constraint (such as a clock qubit and the qubits on which the gate at that time
step acts) are always close by in Euclidean space. Then, one needs to deal with crossings, etc., which is
done using perturbation theory.
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Theorem 3.7. The 1D Local Hamiltonian problem on 9-d qubits is QMA-hard.

Furthermore, the Local Hamiltonian problem is hard even when the interactions satisfy translation in-
variance (TI). In this case, there is a single local Hamiltonian term which is copied on every edge, and
the only variable parameter is the number of qubits of the line. So the input to the problem is the binary
representation of an integer N, and yes (resp. no) instances are such that the smallest eigenvalue of the TI
Hamiltonian on a line of N qubits is at most a (resp. at least b).

With this interpretation of the input the number of qubits is exponential in the input size, thus the natural
quantum witness is exponential in the input size and the natural inclusion is that the 1D-TI LH problem is
in QMAEXP. In fact, the following theorem holds.

Theorem 3.8. The 1D-TI Local Hamiltonian problem on 11-d qubits is QMAEXP-complete.
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