Lecture 1

Introduction

Scribe: Thomas Vidick

1.1 Local Hamiltonians

In this course we study local Hamiltonians, and we study them through the lens of computational complexity.
Informally, a local Hamiltonian is a collection of local constraints on a physical system. For us, the physical
system will always be the space of n qubits, H = C". A Hamiltonian on H is a Hermitian matrix H on
H. Through the singular value decomposition H = Y; A;|u;)(u;|, H assigns an energy A; € R to the
state |u;). More generally, a state |¢p) is assigned energy (¢|H|¢). The eigenvector associated with the
smallest eigenvalue is called the ground state and we generally denote it [I'). We mostly consider “static”
problems about H, such as estimating its smallest eigenvalue (ground energy), representing its ground state,
or computing expectation values of local observables (I'|O|T’) on it.
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singular value decomposition H = |0)(0| — |1)(1|. Therefore the smallest eigenvalue of H is —1 and the
associated ground state is |1). Another Hamiltonian with the same ground state is H' = |0)}(0| = (H +
Id) /2. Sometimes writing Hamiltonians as positive semi-definite operators will be convenient because the
smallest energy is then clearly non-negative.

If we now consider n = 2 we can introduce some more interesting examples. First of all, H =
|0)(0| ® |0)(0] is interesting because it has a degenerate ground space, spanned by {|00), [10), [11)}. An-
other example of a degenerate Hamiltonian is H = Z ® Z. This has singular value decomposition

Let’s look at some examples. First take n = 1l and let H = Z = ( ) This is Hermitian with

H = [00)(00| + [11)(11] — |[01)(01| — [10)10]

so that the ground energy is —1 and the ground space is spanned by {|01), |10)}, i.e. the odd-parity com-
putational basis states.

Of course, we should not restrict ourselves to Hamiltonians that are diagonal in the computational basis,
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spanned by the odd-parity strings in the Hadamard basis, i.e. {|+)|—), |—)|+)}.

All Hamiltonians we saw so far have eigenstates that are product states. A more interesting example is

H = %(X ® X+ Z®Z). Because X and Z commute, X ® X and Z ® Z commute hence are simultane-

ously diagonalizable. Their joint eigenbasis is the Bell basis |¢,p) = (I ® X“Zh)%(|00> +]11)). One

and for example H = X ® X, where X is the Pauli matrix X = , similarly has ground space
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can then verify that H has smallest eigenvalue —1 with a unique associated ground state
1

\/§(|01> —[10)),

IT) = |¢1,1) =

the singlet.
Now that we’ve seen some small examples, let’s look at three families of #-qubit Hamiltonians.

1.1.1 The QSAT hamiltonians

We call a Hamiltonian k-local if it can be expressed as a linear combination of terms, such that each term acts
as identity on all but at most k of the qubits. For example, H=1y7"  I® - I®|0}0|® [® - ® I is
a 1-local Hamiltonian whose ground state is the |11 - - - 1) (all other computational basis states are assigned
an energy equal to 7 minus their Hamming weight).

Quantum k-SAT is a general class of k-local Hamiltonians where the only restriction is that each of the
local terms is required to be a projection. So, H = % ", IT;, where IT; takes the form I'l; = Ids—l_ ®QP;, P;
a projection acting on the qubits in S; only, with S; C [n] of size |S;| < k.

The only observation we make about this class at the moment is that it allows us to model classical
k-CSPs such as k-SAT. Take for example a 3-SAT formula with clauses such as x1 V X3 V X3. This can
be represented by the local constraint |1)(1]; ® |0)(0]2 ® |1)(1|3, which assigns an energy penalty of 1 to
the only non-satisfying configuration. To any 3-SAT formula ¢ we can in this way associate a 3-QSAT
Hamiltonian H,, such that the smallest eigenvalue of H,, is exactly the fraction of clauses that are violated
in an optimal assignment to ¢. As a consequence, the problem of computing the smallest eigenvalue is at
least as hard as the problem of deciding if a 3-SAT formula is satisfiable or not, i.e. NP-hard. (Note that
for this statement to hold, it is important that the reduction ¢ +— H,, can be performed in polynomial time,
which is indeed the case.)

1.1.2 The Heisenberg model

The Heisenberg model is a general class of Hamiltonians that is studied in Physics. A Hamiltonian from
this class is parametrized by a graph G = (V, E) and takes the form

1
H:E Z (DCXZ'®X]‘+5Y1‘®Y]‘+”)/ZI‘®Z]‘).
{ij}€E

Here, X; denotes a Pauli X matrix acting on the i-th qubit, etc. The summation is over undirected edges in
G. The coefficients «, B,y € {0,1} vary depending on the sub-family of Hamiltonians one is considering:
eIfa =pf=0,v=1then H = % Y.ijZi ® Zj, where m = |E|, is diagonal in the computational
basis. Each basis state |x) can be interpreted as a cut in the graph G, and the energy that H associates

to this cut is equal to the number of edges that are not cut, minus the number of edges that are cut;
equivalently, the total number of edges minus twice the number of cut edges (normalized by m). Thus,

up to an additive shift of the number of edges, the smallest eigenvalue problem for H is exactly the
MAXCUT problem in the graph G. In particular, we recover once more that this problem is NP-hard.

* If &« = B =1, v = 0 then we obtain the so-called anti-ferromagnetic XY model. For this model, the
local terms take the form X; ® X; + Y; ® Y;. This term has smallest eigenvalue —2 with associated
eigenstate the singlet.



* Finally we consider the case where « = B = v = 1. The local terms are X; ® X; +Y; ® Y; + Z; ® Z;,
with smallest eigenvalue —3 with associated eigenvector the singlet. The only other eigenvalue is +1
with associated eigenspace the space spanned by the remaining three Bell states. In this case we may
rescale the Hamiltonian to take the form

1 1
H=— Y ;(d-aX0X-proY,-129Z).
{ij}€E

The advantage is that now each term, associated with an edge {i,j} is a projection on the singlet state
on the corresponding vertices i and j. Note that flipping signs turned the energy minimization problem
into a maximization problem. This class is referred to as quantum MAXCUT. Informally speaking,
the task is to determine how many singlet states can be “packed” along the edges of a graph. Note
that contrary to MAXCUT, even when the graph is bipartite this problem is not trivial, as due to the
phenomenon of monogamy of entanglement a given vertex can in general not be in a singlet state with
more than one other vertices. We will return to this class of Hamiltonians in greater detail later on in
the class.

1.1.3 The Motzkin Hamiltonian

The Motzkin Hamiltonian is our first example of a Hamiltonian that acts on higher-dimensional particles, in
this case qutrits instead of qubits. That is, the Motzkin Hamiltonian is a Hermitian matrix on (C3)®". We
use the labels |L), |R), |0) for an orthonormal basis of C°.

A Motzkin path is a well-parenthesized expression. For example, if n = 1 there is only 0, if n = 2 there
is LR and 00, if n = 3 we have OLR, LOR, LRO and 000, etc.

The Motzkin Hamiltonian has the property that its ground state |I') is a uniform superposition of all
Motzkin paths. This is interesting for two reasons. Firstly, because of the “well-parenthesized” condition,
this ground state has a fairly large amount of entanglement; namely, it is possible to show that the entangle-
ment entropy across the middle cut scales as ()(logn). Secondly, it is possible to give a realization of the
Motzkin Hamiltonian as a “1D” Hamiltonian, namely all local constraints are nearest-neighbor on a line.

To see how this is done, introduce the states

9) = —=(00) [LR),  [ge) = —=(L0) = 0L}, |yx) = —=([0R) —|R0))
¢) = \/i ’ Yr) = \/E ’ Yr) = 5 :

The Motzkin Hamiltonian is then defined as follows:

n—1

H = [R)(R| + [L)(L|x + ) <!¢><¢!j,j+1 + [ (Weljiv + |¢R><¢R!j,j+1> :

=

It can be shown that the smallest eigenvalue of H is 0, and the associated eigenvector is the Motzkin State
|M,,), the uniform superposition over all Motzkin paths (see the problem sheet for a proof of this).

The Motzkin Hamiltonian is an example of a local Hamiltonian that has additional structure, in this case
the Hamiltonian is geometrically local in 1D. This restriction, of geometric locality, is sometimes imposed
as it is “physically relevant”: most quantum mechanical systems exist in one, two or three-dimensional
Euclidean space. Another restriction that can be considered is that of translation invariance: this means
that the Hamiltonian is defined on e.g. a 2D grid, and the local terms are invariant under translation. This
constraint represents some kind of spatial homogeneity of the system. Another condition, of a different
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nature, that arises at times, is that the Hamiltonian is spectrally gapped: the smallest and second smallest
eigenvalues are separated by, say, an inverse polynomial in the number of qubits (note that for a Hamiltonian
of bounded (polynomial) norm the “typical” gap between eigenvalues is exponentially small). Each of these
restrictions may affect the complexity of problems associated with the local Hamiltonian, and we will see
how in later lectures.

1.2 The class QMA

Having introduced our main object of study we now get ready to formulate the main complexity-theoretic
question that we will ask about it. For this we introduce the complexity class QMA (“Quantum Merlin-
Arthur”), which is the quantum analogue of the class NP. Before that, let’s review the definition of the
complexity class BQP (“Bounded-error Quantum Polynomial time”).

The complexity class BQP

The complexity class BQP is the quantum analogue of the class BPP. It consists of all languages that can be
decided in quantum polynomial time. More formally,

Definition 1.1. A language L € BQP if there exists a classical polynomial time algorithm A that maps
inputs x € {0,1}* to quantum circuits C, on n = poly(|x|) qubits, where the circuit is considered as a
sequence of unitary operators each on 2 qubits, i.e Cy = UrUr_1...U; where each U; € L(C? ® C?), such
that:

1. Completeness: x € L = Pr(Cy accepts |0,)) > %
2. Soundness: x ¢ L = Pr(Cy accepts |0,)) < %

We say that the circuit “Cy accepts |¢p)” if the first output qubit measured in Cy|¢p) is 1. More specifi-
cally, letting H|11> = |1)(1]; be the projection of the first qubit on state |1),

Pr(Cy accepts [)) = (I} @ Tdy1)Celp) |13 -

The complexity class QMA

The complexity class QMA (or BQNP, as Kitaev originally named it) is the quantum analog of the class
NP. More formally,

Definition 1.2. A language L € QMA if there exists a classical polynomial time algorithm A that maps
inputs x € {0,1}* to quantum circuits Cy on n + q = poly(|x|) qubits, such that:

1. Completeness: x € L = 3|¢) € C¥, |||)|l2 = 1, such that Pr(C, accepts [0,) ® |¢)) > 2
2. Soundness: x € L = V|¢) € C¥, ||$)|2 =1, Pr(Cy accepts |0,) @ [¢)) < 1
Proposition 1.3. NP C QMA

Proof. The circuit C, will be the NP verifier “hardwired” with the input x, and it will measure every bit of
|¢) independently and use it as the classical proof 7. O
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Exercise 1.1. Let QMA_ ; be same as QMA but with completeness and soundness parameters ¢ and s

1
instead of % and % Show that QMA . ; = QMA as long as ¢ —s € ——————~. (The main issue to

O(poly(|x|))

consider during repetition is the entanglement that could exist between multiple quantum proofs).

Exercise 1.2. Show the progressively stronger sequence of inclusions NP € QMA C PP C PSPACE C
EXP.

Remark 1.4. Note that QMA is a largest eigenvalue problem:

Pr(Cy accepts [0,) @ |9)) = |(IT) @ 1d)C4[0,) ® )13
= (| ® (04| CHITY ©1d)C[04) @ |)
= (y|Dly),

where D = 1d ®(0n|CI(H‘11> ®1d)Cy|0,) ®Id is a 27 x 27 matrix. Since (¢|p) = 1, finding |¢) which
maximizes ({|D|yp) is exactly same as the maximum eigenvalue A of the matrix D.
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