

Lecture 12

Approximation algorithms for local Hamiltonian problems

Scribes: Zihan Hu and Zijing Di

In this lecture, we study approximation algorithms for local Hamiltonian problems. Specifically, we have a k -local Hamiltonian instance $H = \frac{1}{m} \sum_{i=1}^m H_i$ on n qudits with $H_i \geq 0$ in mind, and ideally we would like to find an approximation α of $\lambda_{\min}(H)$ within multiplicative error β , i.e.

$$(1 - \beta) \cdot \lambda_{\min}(H) \leq \alpha \leq (1 + \beta) \cdot \lambda_{\min}(H).$$

We will approximate $\lambda_{\min}(H)$ with a product state. The rest of the lecture is devoted to answering the following two questions:

1. What is the best approximation factor for a product state?
2. Can we find the best product state?

12.1 Product state approximation

In this section, we will answer the first question.

Theorem 12.1. *Suppose that H is k -local on n qudits (d dimensional) such that $H_i \geq 0, \forall i$. Then there exists a product state $|\phi\rangle = |\phi_1\rangle \otimes |\phi_2\rangle \otimes \cdots \otimes |\phi_n\rangle \in (\mathbb{C}^d)^{\otimes n}$ such that*

$$\langle \phi | H | \phi \rangle \geq \lambda_{\max}(H) / d^{k-1} .$$

Remark 12.2. Here we use λ_{\max} instead of λ_{\min} because on the one hand, it is too good to be true to find a product state $|\phi\rangle$ with $\langle \phi | H | \phi \rangle \leq \lambda_{\min}(H) / 2^{k-1}$ (when $\lambda_{\min}(H) = 0$, it can be the case that all ground states are highly entangled); on the other hand, we can always use simple transformation to swap between λ_{\min} and λ_{\max} , so it suffices to consider λ_{\max} .

Remark 12.3. The coefficient $1/d^{k-1}$ is the best we can hope for. Consider the following example: the Hamiltonian $H = I - \frac{1}{2}(|00\rangle + |11\rangle)(\langle 00| + \langle 11|)$ is 2-local on 2 qubits. Then $\lambda_{\max}(H) = 1$ while for any product state $|\phi\rangle$, $\langle \phi | H | \phi \rangle = \frac{1}{2}$.

Before we show a formal proof of Theorem 12.1, we first see a simple case where $d = 2, n = 2$ to illustrate the proof idea.

Let us fix an instance, a Hamiltonian H on 2 qubits. Suppose $|\psi\rangle$ is the 2-qubit state that achieves the desired $\lambda_{\max}(H)$. To relate it with a product state, we do a Schmidt decomposition on it

$$|\psi\rangle = \sum_{i=1}^2 \sqrt{\lambda_i} |u_i\rangle |v_i\rangle$$

where $\lambda_1 + \lambda_2 = 1$, and $\{|u_i\rangle\}_i, \{|v_i\rangle\}_i$ are basis for \mathbb{C}^2 .

$$\lambda_{\max}(H) = \langle \psi | H | \psi \rangle = \sum_{i=1}^2 \lambda_i \langle u_i, v_i | H | u_i, v_i \rangle + 2\sqrt{\lambda_1 \lambda_2} \operatorname{Re}(\langle u_1, v_1 | H | u_2, v_2 \rangle)$$

Notice that for any vectors $|a\rangle, |b\rangle$,

$$\begin{aligned} \operatorname{Re}(\langle a | H | b \rangle) &= \operatorname{Re}(\langle a | \sqrt{H} \cdot \sqrt{H} | b \rangle) \\ &\leq \|\sqrt{H}|a\rangle\| \cdot \|\sqrt{H}|b\rangle\| \\ &= \sqrt{\langle a | H | a \rangle} \sqrt{\langle b | H | b \rangle} \\ &\leq \frac{1}{2}(\langle a | H | a \rangle + \langle b | H | b \rangle) \end{aligned} \tag{12.1}$$

Thus we have that

$$\lambda_{\max}(H) \leq 2 \sum_{i=1}^2 \lambda_i \langle u_i, v_i | H | u_i, v_i \rangle = 2 \operatorname{Tr}(H\rho) ,$$

where $\rho = \sum_{i=1}^2 \lambda_i |u_i, v_i\rangle \langle u_i, v_i|$. And therefore, $\max_i \langle u_i, v_i | H | u_i, v_i \rangle \geq \operatorname{Tr}(H\rho) \geq \frac{1}{2} \lambda_{\max}(H)$.

The general case is similar, except that we decompose the state qudit by qudit. We first define the transformation to decompose the state qudit by qudit.

Definition 12.4. For an n -qudit state $|\psi\rangle$, we first do Schmidt decomposition on $|\psi\rangle$ on the first qudit and the rest of the system:

$$|\psi\rangle = \sum_{i_1=1}^d \sqrt{\lambda_{i_1}} |u_{i_1}\rangle |v_{i_1}\rangle .$$

Then we continue to do Schmidt decomposition on each $|v_{i_1}\rangle$ on the first qudit and the rest of the system: for each i_1 ,

$$|v_{i_1}\rangle = \sum_{i_2=1}^d \sqrt{\lambda_{i_1, i_2}} |u_{i_1, i_2}\rangle |v_{i_1, i_2}\rangle .$$

We repeat the process until there are no more qudits. We can write the state $|\psi\rangle$ as

$$|\psi\rangle = \sum_{i_1=1}^d \cdots \sum_{i_{n-1}=1}^d \sqrt{\lambda_{i_1} \lambda_{i_1, i_2} \cdots \lambda_{i_1, i_2, \dots, i_{n-1}}} |u_{i_1}\rangle |u_{i_1, i_2}\rangle \cdots |u_{i_1, i_2, \dots, i_{n-1}}\rangle |v_{i_1, i_2, \dots, i_{n-1}}\rangle .$$

The state $\rho(|\psi\rangle)$ is defined as

$$\rho(|\psi\rangle) = \sum_{i_1=1}^d \cdots \sum_{i_{n-1}=1}^d \lambda_{i_1} \cdots \lambda_{i_1, i_2, \dots, i_{n-1}} |u_{i_1}, \dots, u_{i_1, i_2, \dots, i_{n-1}}, v_{i_1, i_2, \dots, i_{n-1}}\rangle \langle u_{i_1}, \dots, u_{i_1, i_2, \dots, i_{n-1}}, v_{i_1, i_2, \dots, i_{n-1}}|$$

Note that this is a well-defined density matrix.

We will show the following:

Lemma 12.5. *For every Hamiltonian H_i acting on k out of n qudits and every n -qudit state $|\psi\rangle$,*

$$d^{k-1}\text{Tr}(H_i\rho(|\psi\rangle)) \geq \langle\psi|H_i|\psi\rangle .$$

Before we prove the lemma, we first show how it can be used to prove Theorem 12.1.

Proof of Theorem 12.1. Now we have an instance $H = \frac{1}{m}\sum_{i=1}^m H_i$ on n qudits where each H_i is acting on k out of n qudits. Suppose $|\psi\rangle$ is the n -qudit state that achieves the desired $\lambda_{\max}(H)$.

By Lemma 12.5 and the linearity,

$$d^{k-1}\text{Tr}(H\rho(|\psi\rangle)) \geq \langle\psi|H|\psi\rangle = \lambda_{\max}(H) .$$

Notice that $\rho(|\psi\rangle)$ is a mixture over product states $|\phi\rangle = |\phi_1\rangle \otimes |\phi_2\rangle \otimes \cdots \otimes |\phi_n\rangle \in (\mathbb{C}^d)^{\otimes n}$. By convexity,

$$\max_{|\phi\rangle=|\phi_1\rangle\otimes|\phi_2\rangle\otimes\cdots\otimes|\phi_n\rangle\in(\mathbb{C}^d)^{\otimes n}} \langle\phi|H|\phi\rangle \geq \text{Tr}(H\rho(|\psi\rangle)) \geq \lambda_{\max}(H)/d^{k-1} ,$$

which concludes the proof. \square

Now we are left with the proof of Lemma 12.5.

Proof of Lemma 12.5. We prove the lemma by induction on $n + k$.

For the base case $k = 1$, $\text{Tr}(H_i\rho(|\psi\rangle)) = \langle\psi|H_i|\psi\rangle$, because the reduced density matrix of $\rho(|\psi\rangle)$ on any qudit is the same as the reduced density matrix of $|\psi\rangle\langle\psi|$ on the same qudit.

For the induction step, notice that for $|\psi\rangle = \sum_{i_1=1}^d \sqrt{\lambda_{i_1}} |u_{i_1}\rangle |v_{i_1}\rangle$, we have that

$$\rho(|\psi\rangle) = \sum_{i_1=1}^d \lambda_{i_1} |u_{i_1}\rangle \langle u_{i_1}| \otimes \rho(|v_{i_1}\rangle) .$$

If H_i acts on the first qubit,

$$\begin{aligned} \langle\psi|H_i|\psi\rangle &= \sum_{i_1=1}^d \lambda_{i_1} \langle u_{i_1}, v_{i_1} | H_i | u_{i_1}, v_{i_1} \rangle + \sum_{1 \leq i_1 \leq d, 1 \leq i'_1 \leq d, i_1 \neq i'_1} \sqrt{\lambda_{i_1} \lambda_{i'_1}} \text{Re}(\langle u_{i'_1}, v_{i'_1} | H_i | u_{i_1}, v_{i_1} \rangle) \\ &\leq d \sum_{i_1=1}^d \lambda_{i_1} \langle u_{i_1}, v_{i_1} | H_i | u_{i_1}, v_{i_1} \rangle , \end{aligned}$$

where the last inequality is due to the same reason as equation 12.1.

By induction hypothesis for the Hamiltonian $\langle u_{i_1} | H_i | u_{i_1} \rangle$ acting on $k - 1$ out of $n - 1$ qudits, we have that

$$\langle u_{i_1}, v_{i_1} | H_i | u_{i_1}, v_{i_1} \rangle \leq d^{k-2} \text{Tr}(\langle u_{i_1} | H_i | u_{i_1} \rangle \rho(|v_{i_1}\rangle)) = d^{k-2} \text{Tr}(H_i(|u_{i_1}\rangle \langle u_{i_1}| \otimes \rho(|v_{i_1}\rangle))) .$$

By linearity,

$$\begin{aligned} \langle\psi|H_i|\psi\rangle &\leq d^{k-1} \text{Tr}(H_i(\sum_{i_1=1}^d \lambda_{i_1} |u_{i_1}\rangle \langle u_{i_1}| \otimes \rho(|v_{i_1}\rangle))) \\ &= d^{k-1} \text{Tr}(H_i\rho(|\psi\rangle)) . \end{aligned}$$

On the other hand, if H_i does not act on the first qubit, then H_i is a Hamiltonian acting on k out of $n - 1$ qudits, by induction hypothesis, we have that

$$\begin{aligned}\langle \psi | H_i | \psi \rangle &= \sum_{i_1=1}^d \lambda_{i_1} \langle v_{i_1} | H_i | v_{i_1} \rangle \\ &\leq d^{k-1} \sum_{i_1=1}^d \lambda_{i_1} \text{Tr}(H_i \rho(|v_{i_1}\rangle)) \\ &= d^{k-1} \text{Tr}(H_i \rho(|\psi\rangle)) ,\end{aligned}$$

which establishes the induction step.

Since both the base case and the induction step have been proved to be true, by mathematical induction, Lemma 12.5 holds. \square

For some specific interaction graph G , we might even have better approximation of $\lambda_{\min}(H)$.

1. If the graph G is planar, there exists a PTAS for $\lambda_{\min}(H)$ that finds $\lambda_{\min}(H) \pm \epsilon$ in time $n^{O(1/\epsilon^2)}$. This is because a planar graph can be cut up in pieces and then we can approximate $\lambda_{\min}(H)$ as we did for the 2D grid.
2. If the graph G is D -regular, then $\forall |\psi\rangle$, there exists a product state $|\phi\rangle = |\phi_1\rangle \otimes |\phi_2\rangle \otimes \cdots \otimes |\phi_n\rangle$ such that

$$|\langle \psi | H | \psi \rangle - \langle \phi | H | \phi \rangle| \leq O\left(\left(\frac{d^2 \ln d}{D}\right)^{1/3}\right) .$$

This suggests that for $d = 2$, if $D \gg 1/\epsilon^3$, then there exists a good product state approximation. We must emphasize that it might be NP-hard to find such state in general. But for dense graph with $D \gg \delta n$, there exists a PTAS to find such a product state. We will see how to find such a good product state for the quantum MAXCUT problem on D -regular graph where $D \gg \delta n$, which partially answers the second question.

12.2 Classical approximation algorithm for MAXCUT on dense graphs

Before we show how to find a good approximation product state for the quantum MAXCUT problem on dense graphs, we first consider its classical version.

Given an undirected graph $G = (V, E)$, where $|V| = n$, the goal of MAXCUT problem is to find $S \subseteq V$ such that $|E(S, \bar{S})| := |\{\{v, w\} \text{ s.t } v \in S, w \in \bar{S}\}|$ is maximized, where $\bar{S} := V \setminus S$. The problem can also be formulated as

$$\max_{x \in \{0,1\}^n} \sum_{\{i,j\} \in E} x_i(1 - x_j).$$

Intuitively, this is because x is like a partition of V into set S or \bar{S} depending on whether $x_i = 0$ or 1. If a cut fails to cut an edge $\{i, j\}$, then $x_i = x_j$ and $x_i(1 - x_j) = 0$. A maximum cut should maximize the number of non-zero $x_i(1 - x_j)$, and hence the formulation.

For every $i \in V$, we define $N(i)$ to be the set of neighbors of i : $N(i) := \{j : \{i, j\} \in E\}$. Then for every x , we denote

$$\begin{aligned} L(x) &:= \sum_{\{i,j\} \in E} x_i(1-x_j) \\ &= \sum_{i \in V} x_i \sum_{j \in N(i)} (1-x_j); \\ R_i(x) &:= \sum_{j \in N(i)} (1-x_j). \end{aligned}$$

Theorem 12.6. *For every $\epsilon > 0$, given an undirected graph $G = (V, E)$ where $|V| = n$, there exists a polynomial time $(\epsilon n^2 + 2n\sqrt{2n \log n})$ -additive approximation algorithm for MAXCUT.*

The algorithm has three main procedures:

1. Choose a set S of $O(\log n)$ vertices at random and guess the values $\{x_i\}_{i \in S}$.
2. Use the fixed values $\{x_i\}_{i \in S}$ to estimate $R_i(x)$: Use linear programming to solve the following in polynomial time.

$$\max_{y: \forall i, 0 \leq y_i \leq 1} \sum_i y_i R_i$$

3. “Round” each $y_i \in [0, 1]$ to $x_i \in \{0, 1\}$.

Roughly speaking, the strategy is reducing the quadratic problem to linear problem by guessing a small part of the vertices and estimating $R_i(x)$, and then reducing the integer problem to linear programming by relaxing the constraints.

Step 1.

Lemma 12.7. *Let $a_1, \dots, a_n \in [-M, M]$. Choose $S \subseteq \{1, \dots, n\}$ at random and with replacement such that $|S| = g \log n$. Then*

$$\sum_{i=1}^n a_i - n \cdot M \cdot \sqrt{\frac{2}{g}} \leq \sum_{i \in S} a_i \cdot \frac{n}{|S|} \leq \sum_{i=1}^n a_i + n \cdot M \cdot \sqrt{\frac{2}{g}}$$

with probability at least $1 - 1/n^2$ over choice of S .

Proof. We rely on Hoeffding’s inequality.

Lemma 12.8 (Hoeffding’s). *For independent random variables z_1, \dots, z_n , if for every $i \in [n]$, $-M \leq z_i \leq M$, then*

$$\Pr \left[\left| \sum_i z_i - \mathbb{E} \left[\sum_i z_i \right] \right| \geq t \right] \leq 2e^{-2t^2/(nM^2)}$$

For $j = 1, \dots, g \log n$ we define the random variable X_j to be the j -th element whose index is chosen to be in the set S , so that these variables are independent (because we chose elements of S with replacement) and for every j , $\mathbb{E}[X_j] = \frac{1}{n} \sum_{i=1}^n a_i$. Applying Hoeffding’s inequality with $t = M \cdot |S| \cdot \sqrt{\frac{2}{g}}$ gives

$$\Pr \left[\left| \sum_j X_j - \mathbb{E} \left[\sum_j X_j \right] \right| \geq t \right] = \Pr \left[\left| \sum_{i \in S} a_i - \frac{g \log n}{n} \sum_{i=1}^n a_i \right| \geq t \right] \leq 2e^{-2t^2/(g \log n M^2)} \leq \frac{1}{n^2}.$$

Multiplying $\sum_{i \in S} a_i - \frac{g \log n}{n} \sum_{i=1}^n a_i$ by $\frac{n}{|S|} = \frac{n}{g \log n}$ we get the desired bound. \square

We now show how to apply Lemma 12.7 for Step 1. Fix $i \in V$, define

$$a_j := \begin{cases} 1 - x_j & \text{if } j \in N(i) \\ 0 & \text{otherwise} \end{cases}$$

Then we have $\sum_j a_j = R_i(x)$. Randomly choose S such that $|S| = g \log n$. For every $i \in S$, fix $x_i \in \{0, 1\}$. Apply Lemma 12.7 with $g = 1/\epsilon^2$, $M = 1$, then with probability at least $1 - 1/n^2$,

$$\rho_i := \frac{n}{|S|} \sum_{j \in S} a_j \in [R_i(x) - n\epsilon, R_i(x) + n\epsilon]. \quad (12.2)$$

For the same S , union bounding over all $i \in V$, we have that with probability at least $1 - 1/n$, for every $i \in V$, $\rho_i \in [R_i(x) - n\epsilon, R_i(x) + n\epsilon]$.

If our guess of $\{x_i\}_{i \in S}$ is correct, we can compute such ρ_i for each $i \in V$.

Step 2. Suppose that our guess of $\{x_i\}_{i \in S}$ is correct and we have computed ρ_i such that $\rho_i \in [R_i(x) - n\epsilon, R_i(x) + n\epsilon]$ for each $i \in V$ where x is the optimal solution. In this step, we solve the following linear program in polynomial time:

$$OPT^* := \sup_{\substack{y: \forall i \in [n], 0 \leq y_i \leq 1 \\ \rho_i - n\epsilon \leq R_i(y) \leq \rho_i + n\epsilon}} \sum_{i \in [n]} y_i \rho_i$$

By the linear program, we obtain y such that

$$\begin{aligned} \sum_{i \in [n]} y_i R_i(y) &\geq \sum_{i \in [n]} y_i (\rho_i - n\epsilon) \\ &\geq \sum_{i \in [n]} y_i \rho_i - n^2 \epsilon && (\text{since } \sum_i y_i \leq n) \\ &\geq \sum_{i \in [n]} x_i \rho_i - n^2 \epsilon && \text{By optimality of linear program} \\ &\geq \sum_{i \in [n]} x_i (R_i(x) - n\epsilon) - n^2 \epsilon && (\text{By Equation 12.2}) \\ &\geq \sum_{i \in [n]} x_i R_i(x) - 2n^2 \epsilon = \text{MAXCUT}(G) - 2n^2 \epsilon && (12.3) \end{aligned}$$

Step 3. In the last step, we round the real value solution y into an integer solution. For each $i \in [n]$, we set independently

$$z_i = \begin{cases} 1 & \text{w.p. (with probability) } y_i \\ 0 & \text{w.p. } 1 - y_i \end{cases} \quad (12.4)$$

Lemma 12.9. Suppose $ay = b$ and for every $i \in [n]$, $|a_i| \leq M$. Define z as in Equation 12.4. Then with probability at least $1 - 1/n^2$, by Hoeffding's inequality,

$$a \cdot z \in [b - M\sqrt{2n \log n}, b + M\sqrt{2n \log n}]$$

In our setting, we set a such that $a \cdot y = R_i(y)$. Then, by the above lemma (setting $M = 1$), for every $i \in [n]$,

$$R_i(z) \in [R_i(y) - \sqrt{2n \log n}, R_i(y) + \sqrt{2n \log n}]$$

with probability at least $1 - 1/n$ by union bound.

Finally, we have

$$\begin{aligned}
\sum_{i \in [n]} z_i \cdot R_i(z) &\geq \sum_{i \in [n]} z_i \cdot (R_i(y) - \sqrt{2n \log n}) \\
&\geq \sum_{i \in [n]} z_i \cdot R_i(y) - n \sqrt{2n \log n} \\
&\geq \sum_{i \in [n]} y_i \cdot R_i(y) - n \sqrt{2n \log n} - n \sqrt{2n \log n} \\
&\quad \text{(By applying Lemma 12.9 for } a_i = R_i(y) \text{)} \\
&\geq \text{MAXCUT}(G) - \epsilon n^2 - 2n \sqrt{2n \log n} \quad \text{(By Equation 12.3)}
\end{aligned}$$

12.3 Quantum product state approximation algorithm on dense graphs

Let H be a 2-local Hamiltonian on n qubits. The strategy to find a good product state approximation is roughly the same as the strategy to find an approximation for the classical MAXCUT problem.

Instead of doing a linear program, in the quantum case, we will solve some semi-definite programming problem in the form of

$$\begin{aligned}
\sup_{\rho=\sum_k p_k \rho_k^{(1)} \otimes \dots \otimes \rho_k^{(n)}} \text{Tr}(H\rho) &= \sup_{\rho=\sum_k p_k \rho_k^{(1)} \otimes \dots \otimes \rho_k^{(n)}} \sum_{i,j} \sum_{P,Q} \alpha_{P,Q}^{(i,j)} \text{Tr}(P \otimes Q\rho) \\
&= \sup_{\rho=\sum_k p_k \rho_k^{(1)} \otimes \dots \otimes \rho_k^{(n)}} \sum_k p_k \sum_{i,P} \text{Tr}(\rho_k^{(i)} P) \left(\sum_{j \in N(i)} \sum_Q \alpha_{P,Q}^{(i,j)} \text{Tr}(Q\rho_k^{(j)}) \right) ,
\end{aligned}$$

where $H = \sum_{i,j} H_{i,j}$ and $H_{i,j} = \sum_{P,Q \in \{I,X,Y,Z\}} \alpha_{P,Q}^{(i,j)} P \otimes Q$.

Here roughly speaking, $\sum_{j \in N(i)} \sum_Q \alpha_{P,Q}^{(i,j)} \text{Tr}(Q\rho_k^{(j)})$ can be viewed as a quantity similar to $R_i(x)$ in the previous section.