
Lecture 12

Approximation algorithms for local
Hamiltonian problems

Scribes: Zihan Hu and Zijing Di
In this lecture, we study approximation algorithms for local Hamiltonian problems. Specifically, we

have a k-local Hamiltonian instance H = 1
m ∑m

i=1 Hi on n qudits with Hi ≥ 0 in mind, and ideally we
would like to find an approximation α of λmin(H) within multiplicative error β, i.e.

(1 − β) · λmin(H) ≤ α ≤ (1 + β) · λmin(H).

We will approximate λmin(H) with a product state. The rest of the lecture is devoted to answering the
following two questions:

1. What is the best approximation factor for a product state?

2. Can we find the best product state?

12.1 Product state approximation

In this section, we will answer the first question.

Theorem 12.1. Suppose that H is k-local on n qudits (d dimensional) such that Hi ≥ 0, ∀i. Then there
exists a product state |ϕ⟩ = |ϕ1⟩ ⊗ |ϕ2⟩ ⊗ · · · ⊗ |ϕn⟩ ∈ (Cd)⊗n such that

⟨ϕ|H|ϕ⟩ ≥ λmax(H)/dk−1 .

Remark 12.2. Here we use λmax instead of λmin because on the one hand, it is too good to be true to find a
product state |ϕ⟩ with ⟨ϕ|H|ϕ⟩ ≤ λmin(H)/2k−1 (when λmin(H) = 0, it can be the case that all ground
states are highly entangled); on the other hand, we can always use simple transformation to swap between
λmin and λmax, so it suffices to consider λmax.

Remark 12.3. The coefficient 1/dk−1 is the best we can hope for. Consider the following example: the
Hamiltonian H = I − 1

2 (|00⟩+ |11⟩) (⟨00|+ ⟨11|) is 2-local on 2 qubits. Then λmax(H) = 1 while for
any product state |ϕ⟩, ⟨ϕ|H|ϕ⟩ = 1

2 .
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Before we show a formal proof of Theorem 12.1, we first see a simple case where d = 2, n = 2 to
illustrate the proof idea.

Let us fix an instance, a Hamiltonian H on 2 qubits. Suppose |ψ⟩ is the 2-qubit state that achieves the
desired λmax(H). To relate it with a product state, we do a Schmidt decomposition on it

|ψ⟩ =
2

∑
i=1

√
λi|ui⟩|vi⟩

where λ1 + λ2 = 1, and {|ui⟩}i, {|vi⟩}i are basis for C2.

λmax(H) = ⟨ψ|H|ψ⟩ =
2

∑
i=1

λi⟨ui, vi|H|ui, vi⟩+ 2
√

λ1λ2Re(⟨u1, v1|H|u2, v2⟩)

Notice that for any vectors |a⟩, |b⟩,

Re(⟨a|H|b⟩) =Re(⟨a|
√

H ·
√

H|b⟩)
≤∥

√
H|a⟩∥ · ∥

√
H|b⟩∥

=
√
⟨a|H|a⟩

√
⟨b|H|b⟩

≤1
2
(⟨a|H|a⟩+ ⟨b|H|b⟩) (12.1)

Thus we have that

λmax(H) ≤ 2
2

∑
i=1

λi⟨ui, vi|H|ui, vi⟩ = 2Tr(Hρ) ,

where ρ = ∑2
i=1 λi|ui, vi⟩⟨ui, vi|. And therefore, maxi⟨ui, vi|H|ui, vi⟩ ≥ Tr(Hρ) ≥ 1

2 λmax(H).
The general case is similar, except that we decompose the state qudit by qudit. We first define the

transformation to decompose the state qudit by qudit.

Definition 12.4. For an n-qudit state |ψ⟩, we first do Schmidt decomposition on |ψ⟩ on the first qudit and
the rest of the system:

|ψ⟩ =
d

∑
i1=1

√
λi1 |ui1⟩|vi1⟩ .

Then we continue to do Schmidt decomposition on each |vi1⟩ on the first qudit and the rest of the system:
for each i1,

|vi1⟩ =
d

∑
i2=1

√
λi1,i2 |ui1,i2⟩|vi1,i2⟩ .

We repeat the process until there are no more qudits. We can write the state |ψ⟩ as

|ψ⟩ =
d

∑
i1=1

· · ·
d

∑
in−1=1

√
λi1 λi1,i2 · · · λi1,i2,··· ,in−1 |ui1⟩|ui1,i2⟩ · · · |ui1,i2,··· ,in−1⟩|vi1,i2,··· ,in−1⟩ .

The state ρ(|ψ⟩) is defined as

ρ(|ψ⟩) =
d

∑
i1=1

· · ·
d

∑
in−1=1

λi1 · · · λi1,i2,··· ,in−1 |ui1 , · · · ui1,i2,··· ,in−1 , vi1,i2,··· ,in−1⟩⟨ui1 , · · · ui1,i2,··· ,in−1 , vi1,i2,··· ,in−1 |
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Note that this is a well-defined density matrix.
We will show the following:

Lemma 12.5. For every Hamiltonian Hi acting on k out of n qudits and every n-qudit state |ψ⟩,

dk−1Tr(Hiρ(|ψ⟩)) ≥ ⟨ψ|Hi|ψ⟩ .

Before we prove the lemma, we first show how it can be used to prove Theorem 12.1.

Proof of Theorem 12.1. Now we have an instance H = 1
m ∑m

i=1 Hi on n qudits where each Hi is acting on
k out of n qudits. Suppose |ψ⟩ is the n-qudit state that achieves the desired λmax(H).

By Lemma 12.5 and the linearity,

dk−1Tr(Hρ(|ψ⟩)) ≥ ⟨ψ|H|ψ⟩ = λmax(H) .

Notice that ρ(|ψ⟩) is a mixture over product states |ϕ⟩ = |ϕ1⟩ ⊗ |ϕ2⟩ ⊗ · · · ⊗ |ϕn⟩ ∈ (Cd)⊗n. By
convexity,

max
|ϕ⟩=|ϕ1⟩⊗|ϕ2⟩⊗···⊗|ϕn⟩∈(Cd)⊗n

⟨ϕ|H|ϕ⟩ ≥ Tr(Hρ(|ψ⟩)) ≥ λmax(H)/dk−1 ,

which concludes the proof.

Now we are left with the proof of Lemma 12.5.

Proof of Lemma 12.5. We prove the lemma by induction on n + k.
For the base case k = 1, Tr(Hiρ(|ψ⟩)) = ⟨ψ|Hi|ψ⟩, because the reduced density matrix of ρ(|ψ⟩) on

any qudit is the same as the reduced density matrix of |ψ⟩⟨ψ| on the same qudit.
For the induction step, notice that for |ψ⟩ = ∑d

i1=1
√

λi1 |ui1⟩|vi1⟩, we have that

ρ(|ψ⟩) =
d

∑
i1=1

λi1 |ui1⟩⟨ui1 | ⊗ ρ(|vi1⟩) .

If Hi acts on the first qubit,

⟨ψ|Hi|ψ⟩ =
d

∑
i1=1

λi1⟨ui1 , vi1 |Hi|ui1 , vi1⟩+ ∑
1≤i1≤d,1≤i′1≤d,i1 ̸=i′1

√
λi1 λi′1

Re(⟨ui′1
, vi′1

|Hi|ui1 , vi1⟩)

≤d
d

∑
i1=1

λi1⟨ui1 , vi1 |Hi|ui1 , vi1⟩ ,

where the last inequality is due to the same reason as equation 12.1.
By induction hypothesis for the Hamiltonian ⟨ui1 |Hi|ui1⟩ acting on k − 1 out of n − 1 qudits, we have

that

⟨ui1 , vi1 |Hi|ui1 , vi1⟩ ≤ dk−2Tr(⟨ui1 |Hi|ui1⟩ρ(|vi1⟩)) = dk−2Tr(Hi(|ui1⟩⟨ui1 | ⊗ ρ(|vi1⟩))) .

By linearity,

⟨ψ|Hi|ψ⟩ ≤dk−1Tr(Hi(
d

∑
i1=1

λi1 |ui1⟩⟨ui1 | ⊗ ρ(|vi1⟩)))

=dk−1Tr(Hiρ(|ψ⟩)) .
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On the other hand, if Hi does not act on the first qubit, then Hi is a Hamiltonian acting on k out of n − 1
qudits, by induction hypothesis, we have that

⟨ψ|Hi|ψ⟩ =
d

∑
i1=1

λi1⟨vi1 |Hi|vi1⟩

≤dk−1
d

∑
i1=1

λi1Tr(Hiρ(|vi1⟩))

=dk−1Tr(Hiρ(|ψ⟩)) ,

which establishes the induction step.
Since both the base case and the induction step have been proved to be true, by mathematical induction,

Lemma 12.5 holds.

For some specific interaction graph G, we might even have better approximation of λmin(H).

1. If the graph G is planar, there exists a PTAS for λmin(H) that finds λmin(H)± ϵ in time nO(1/ϵ2).
This is because a planar graph can be cut up in pieces and then we can approximate λmin(H) as we
did for the 2D grid.

2. If the graph G is D-regular, then ∀|ψ⟩, there exists a product state |ϕ⟩ = |ϕ1⟩ ⊗ |ϕ2⟩ ⊗ · · · ⊗ |ϕn⟩
such that

|⟨ψ|H|ψ⟩ − ⟨ϕ|H|ϕ⟩| ≤ O((
d2 ln d

D
)1/3) .

This suggests that for d = 2, if D ≫ 1/ϵ3, then there exists a good product state approximation.
We must emphasize that it might be NP-hard to find such state in general. But for dense graph with
D ≫ δn, there exists a PTAS to find such a product state. We will see how to find such a good product
state for the quantum MAXCUT problem on D-regular graph where D ≫ δn, which partially answers
the second question.

12.2 Classical approximation algorithm for MAXCUT on dense graphs

Before we show how to find a good approximation product state for the quantum MAXCUT problem on
dense graphs, we first consider its classical version.

Given an undirected graph G = (V, E), where |V| = n, the goal of MAXCUT problem is to find S ⊆ V
such that |E(S, S̄)| := |{{v, w} s.t v ∈ S, w ∈ S̄}| is maximized, where S̄ := V \ S. The problem can also
be formulated as

max
x∈{0,1}n ∑

{i,j}∈E
xi(1 − xj).

Intuitively, this is because x is like a partition of V into set S or S̄ depending on whether xi = 0 or 1. If a cut
fails to cut an edge {i, j}, then xi = xj and xi(1 − xj) = 0. A maximum cut should maximize the number
of non-zero xi(1 − xj), and hence the formulation.
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For every i ∈ V, we define N(i) to be the set of neighbors of i: N(i) := {j : {i, j} ∈ E}. Then for
every x, we denote

L(x) := ∑
{i,j}∈E

xi(1 − xj)

= ∑
i∈V

xi ∑
j∈N(i)

(1 − xj);

Ri(x) := ∑
j∈N(i)

(1 − xj).

Theorem 12.6. For every ϵ > 0, given an undirected graph G = (V, E) where |V| = n, there exists a
polynomial time (ϵn2 + 2n

√
2n log n)-additive approximation algorithm for MAXCUT.

The algorithm has three main procedures:

1. Choose a set S of O(log n) vertices at random and guess the values {xi}i∈S.

2. Use the fixed values {xi}i∈S to estimate Ri(x): Use linear programming the solve the following in
polynomial time.

max
y:∀i,0≤yi≤1

∑
i

yiRi

3. “Round” each yi ∈ [0, 1] to xi ∈ {0, 1}.

Roughly speaking, the strategy is reducing the quadratic problem to linear problem by guessing a small
part of the vertices and estimating Ri(x), and then reducing the integer problem to linear programming by
relaxing the constraints.
Step 1.

Lemma 12.7. Let a1, . . . , an ∈ [−M, M]. Choose S ⊆ {1, . . . , n} at random and with replacement such
that |S| = g log n. Then

n

∑
i=1

ai − n · M ·
√

2
g
≤ ∑

i∈S
ai ·

n
|S| ≤

n

∑
i=1

ai + n · M ·
√

2
g

with probability at least 1 − 1/n2 over choice of S.

Proof. We rely on Hoeffding’s inequality.

Lemma 12.8 (Hoeffding’s). For independent random variables z1, . . . , zn, if for every i ∈ [n], −M ≤ zi ≤
M, then

Pr

[∣∣∣∣∣∑i
zi − E[∑

i
zi]

∣∣∣∣∣ ≥ t

]
≤ 2e−2t2/(nM2)

For j = 1, . . . , g log n we define the random variable Xj to be the j-th element whose index is chosen to
be in the set S, so that these variables are independent (because we chose elements of S with replacement)
and for every j, E[Xj] =

1
n ∑n

i=1 ai. Applying Hoeffding’s inequality with t = M · |S| ·
√

2
g gives

Pr

[∣∣∣∣∣∑j
Xj − E[∑

j
Xj]

∣∣∣∣∣ ≥ t

]
= Pr

[∣∣∣∣∣∑i∈S
ai −

g log n
n

n

∑
i=1

ai

∣∣∣∣∣ ≥ t

]
≤ 2e−2t2/(g log nM2) ≤ 1

n2 .

Multiplying ∑i∈S ai − g log n
n ∑n

i=1 ai by n
|S| =

n
g log n we get the desired bound.
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We now show how to apply Lemma 12.7 for Step 1. Fix i ∈ V, define

aj :=

{
1 − xj if j ∈ N(i)
0 otherwise

Then we have ∑j aj = Ri(x). Randomly choose S such that |S| = g log n. For every i ∈ S, fix xi ∈ {0, 1}.
Apply Lemma 12.7 with g = 1/ϵ2, M = 1, then with probability at least 1 − 1/n2,

ρi :=
n
|S| ∑

j∈S
aj ∈ [Ri(x)− nϵ, Ri(x) + nϵ]. (12.2)

For the same S, union bounding over all i ∈ V, we have that with probability at least 1− 1/n, for every
i ∈ V, ρi ∈ [Ri(x)− nϵ, Ri(x) + nϵ].

If our guess of {xi}i∈S is correct, we can compute such ρi for each i ∈ V.
Step 2. Suppose that our guess of {xi}i∈S is correct and we have computed ρi such that ρi ∈ [Ri(x) −
nϵ, Ri(x) + nϵ] for each i ∈ V where x is the optimal solution. In this step, we solve the following linear
program in polynomial time:

OPT∗ := sup
y:∀i∈[n],0≤yi∈1

ρi−nϵ≤Ri(y)≤ρi+nϵ

∑
i∈[n]

yiρi

By the linear program, we obtain y such that

∑
i∈[n]

yiRi(y) ≥ ∑
i∈[n]

yi(ρi − nϵ)

≥ ∑
i∈[n]

yiρi − n2ϵ (since ∑i yi ≤ n)

≥ ∑
i∈[n]

xiρi − n2ϵ By optimality of linear program

≥ ∑
i∈[n]

xi(Ri(x)− nϵ)− n2ϵ (By Equation 12.2)

≥ ∑
i∈[n]

xiRi(x)− 2n2ϵ = MAXCUT(G)− 2n2ϵ (12.3)

Step 3. In the last step, we round the real value solution y into an integer solution. For each i ∈ [n], we set
independently

zi =

{
1 w.p. (with probability) yi

0 w.p. 1 − yi
(12.4)

Lemma 12.9. Suppose ay = b and for every i ∈ [n], |ai| ≤ M. Define z as in Equation 12.4. Then with
probability at least 1 − 1/n2, by Hoeffding’s inequality,

a · z ∈ [b − M
√

2n log n, b + M
√

2n log n]

In our setting, we set a such that a · y = Ri(y). Then, by the above lemma (setting M = 1), for every
i ∈ [n],

Ri(z) ∈ [Ri(y)−
√

2n log n, Ri(y) +
√

2n log n]
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with probability at least 1 − 1/n by union bound.
Finally, we have

∑
i∈[n]

zi · Ri(z) ≥ ∑
i∈[n]

zi · (Ri(y)−
√

2n log n)

≥ ∑
i∈[n]

zi · Ri(y)− n
√

2n log n

≥ ∑
i∈[n]

yi · Ri(y)− n
√

2n log n − n
√

2n log n

(By applying Lemma 12.9 for ai = Ri(y))

≥ MAXCUT(G)− ϵn2 − 2n
√

2n log n (By Equation 12.3)

12.3 Quantum product state approximation algorithm on dense graphs

Let H be a 2-local Hamiltonian on n qubits. The strategy to find a good product state approximation is
roughly the same as the strategy to find an approximation for the classical MAXCUT problem.

Instead of doing a linear program, in the quantum case, we will solve some semi-definite programming
problem in the form of

sup
ρ=∑k pkρ

(1)
k ⊗···⊗ρ

(n)
k
Tr(Hρ) =sup

ρ=∑k pkρ
(1)
k ⊗···⊗ρ

(n)
k

∑
i,j

∑
P,Q

α
(i,j)
P,QTr(P ⊗ Qρ)

=sup
ρ=∑k pkρ

(1)
k ⊗···⊗ρ

(n)
k

∑
k

pk ∑
i,P

Tr(ρ
(i)
k P)

 ∑
j∈N(i)

∑
Q

α
(i,j)
P,QTr(Qρ

(j)
k )

 ,

where H = ∑i,j Hi,j and Hi,j = ∑P,Q∈{I,X,Y,Z} α
(i,j)
P,Q P ⊗ Q.

Here roughly speaking, ∑j∈N(i) ∑Q α
(i,j)
P,QTr(Qρ

(j)
k ) can be viewed as a quantity similar to Ri(x) in the

previous section.
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