Lecture 12

Approximation algorithms for local
Hamiltonian problems

Scribes: Zihan Hu and Zijing Di

In this lecture, we study approximation algorithms for local Hamiltonian problems. Specifically, we
have a k-local Hamiltonian instance H = % Y"1 H; on n qudits with H; > 0 in mind, and ideally we
would like to find an approximation & of A (H) within multiplicative error B, i.e.

(1—- ﬁ) “Amin(H) <a < (1 +,3) - Amin(H).

We will approximate Amin (H) with a product state. The rest of the lecture is devoted to answering the
following two questions:

1. What is the best approximation factor for a product state?

2. Can we find the best product state?

12.1 Product state approximation
In this section, we will answer the first question.

Theorem 12.1. Suppose that H is k-local on n qudits (d dimensional) such that H; > 0,Vi. Then there
exists a product state |¢) = |p1) @ o) ® - - @ |¢pn) € (C?)®" such that

(P|H|p) > Amax(H) /d*1 .

Remark 12.2. Here we use Amax instead of Apin because on the one hand, it is too good to be true to find a
product state |¢) with (¢|H|¢) < Amin(H) /281 (when Apmin(H) = 0, it can be the case that all ground
states are highly entangled); on the other hand, we can always use simple transformation to swap between
Amin and Amax, S0 it suffices to consider Apay.

Remark 12.3. The coefficient 1/d*~1 is the best we can hope for. Consider the following example: the
Hamiltonian H = I — J (|00) + |11)) ((00] 4 (11|) is 2-local on 2 qubits. Then Amax(H) = 1 while for

any product state |¢), (¢|H|¢p) = 3.

69

Before we show a formal proof of Theorem we first see a simple case where d = 2,n = 2 to
illustrate the proof idea.

Let us fix an instance, a Hamiltonian H on 2 qubits. Suppose |ip) is the 2-qubit state that achieves the
desired Amax(H). To relate it with a product state, we do a Schmidt decomposition on it

2
=Y Vi) o)
i=1
where A + Ay = 1, and {|u;) };, {|v;) }; are basis for C2.
2
AmaX(H) = <1./J|H‘IP> = ZAi<ui,vi|H|ui,vi) +2\/ /\1A2Re(<u1,01’H|M2,Uz>)
i=1
Notice that for any vectors |a), |b),
Re((a|H|b)) =Re((a|vV'H - VH|b))
<|[VHla)| - |[VH]|b)|

=/ (alHla)\/ (b| H|b)

<3 ((alHla) + {b]H|p)) (2.1

Thus we have that

2
Amax(H) <2 Ai(uj,vi|H|uj, v;) = 2Tr(Hp) ,
i=1

where p = Y7 1 A;|u;, v;) (u;,v;|. And therefore, max; (u;, v;|H|u;, v;) > Tr(Hp) > A max(H).
The general case is similar, except that we decompose the state qudit by qudit. We first define the
transformation to decompose the state qudit by qudit.

Definition 12.4. For an n-qudit state |¢), we first do Schmidt decomposition on |¢) on the first qudit and

the rest of the system:
3 /s o)
11 1

Then we continue to do Schmidt decomposition on each |v;,) on the first qudit and the rest of the system:

for each iy,
d
i) = Y /i Ui i)0 i)
=1

We repeat the process until there are no more qudits. We can write the state |i) as

2 E , \//\z])\z] ip " ° 11 in, in_1 |”i1>|ui1,i2> T |uz‘1,i2,-~-,i,,,1>|Ui1,i2,---,i,,,1> .

lnl 1

The state p(|1p)) is defined as

Z Z /\11 ’ 11 i e igoy | Wiys * Wiy in e iy s Uil,l'zw",in71> <ui1' C Uiy, iy 10 Vigin, e g
=1 Zn 1= =1

70

Note that this is a well-defined density matrix.
We will show the following:

Lemma 12.5. For every Hamiltonian H; acting on k out of n qudits and every n-qudit state),

A1 Tr(Hip(|9)) = (lHily) -
Before we prove the lemma, we first show how it can be used to prove Theorem[I2.1]

Proof of Theorem[I2.1] Now we have an instance H = % Y"1 H; on n qudits where each H; is acting on
k out of n qudits. Suppose |ip) is the n-qudit state that achieves the desired Amax(H).
By Lemma|[12.5]and the linearity,

A Te(Hp(ly))) 2 ($[H|P) = Amax(H)

Notice that p(|1)) is a mixture over product states |¢) = |p1) @ |¢2) @ --- @ |p,) € (C)®". By
convexity,

max H > Tr(H > Amax (H /dk—l)
|4’>:|¢1>®\¢2>®~-~®|¢n>E(Cd)®n<¢| |9) = Tr(Ho([¢))) (H)

which concludes the proof. O
Now we are left with the proof of Lemma|12.

Proof of Lemma We prove the lemma by induction on 7 + k.

For the base case k = 1, Tr(H;p(|))) = (¢|H;|¢), because the reduced density matrix of p(|i)) on
any qudit is the same as the reduced density matrix of i) (| on the same qudit.

For the induction step, notice that for |ip) = 2?1:1 V/Ai iy)|vi,), we have that

d
o(lp)) = Y Ailui) (uy | @ p(loy,)) -

i1=1
If H; acts on the first qubit,
d
($lHily) = Y A (wiy, v | Hilwiy, 0) +). Aiy Ay Re((uyr, vy |Hiluiy, viy)
i1=1 1<iy <d,1<i{ <d,ih i}

d
Sd Z /\1'1 <ui1,l),‘1 \Hi]uil,vi1> ,

11:1

where the last inequality is due to the same reason as equation [12.1]
By induction hypothesis for the Hamiltonian (u; |H;|u;,) acting on k — 1 out of n — 1 qudits, we have
that

(uiy, vi, | Hiluiy, 07) < d2Tr({u | Hiluiy)p(|03,))) = d 2 Te(Hy(Jug,) (uy | @ p(]04)))) -

By linearity,

d
(p[Hilp) <d*"Tr(Hi(Y Ailuiy) i @ p(J0i1))))

=1

=d“"'Tr(Hp(ly))) -

71

On the other hand, if H; does not act on the first qubit, then H; is a Hamiltonian acting on k out of n — 1
qudits, by induction hypothesis, we have that

d
<¢|H1|1/7> = E Ai1<vi1’Hi|Ui1>

=1

<d 1Y A Te(Hip(lon))

=1

=d“"Tr(Hip(ly))) ,

which establishes the induction step.

Since both the base case and the induction step have been proved to be true, by mathematical induction,
Lemma holds. O

For some specific interaction graph G, we might even have better approximation of Amin(H).

1. If the graph G is planar, there exists a PTAS for Amin(H) that finds Amin(H) £ € in time nO1/€e?).
This is because a planar graph can be cut up in pieces and then we can approximate Amin(H) as we
did for the 2D grid.

2. If the graph G is D-regular, then Vi), there exists a product state |¢p) = |P1) @ o) @ + - - @ |¢pn)
such that
d*Ind
[(wlH]p) — (¢lHI¢) < O(—F5—)"°) -

This suggests that for d = 2, if D >> 1/¢€>, then there exists a good product state approximation.
We must emphasize that it might be NP-hard to find such state in general. But for dense graph with
D > dn, there exists a PTAS to find such a product state. We will see how to find such a good product
state for the quantum MAXCUT problem on D-regular graph where D >> én, which partially answers
the second question.

12.2 Classical approximation algorithm for MAXCUT on dense graphs

Before we show how to find a good approximation product state for the quantum MAXCUT problem on
dense graphs, we first consider its classical version.

Given an undirected graph G = (V, E), where |V| = n, the goal of MAXCUT problem s to find S C V
such that |E(S, S)| := [{{v,w} s.tv € S,w € S}| is maximized, where S := V' \ S. The problem can also
be formulated as

max X (1 — x;).
xe{0,1} {i’%:eE (i)

Intuitively, this is because x is like a partition of V into set S or S depending on whether x; = 0 or 1. If a cut

fails to cut an edge {i, j}, then x; = x; and x;(1 — x;) = 0. A maximum cut should maximize the number
of non-zero x;(1 — x;), and hence the formulation.

72

For every i € V, we define N (i) to be the set of neighbors of i: N(i) := {j : {i,j} € E}. Then for
every x, we denote

L(x):= Y xi(l1—x)
{ij}eE
= in Z (1—x]');
i€V jeN(i)
R,’(.’Xf) = Z (1 — X])
jEN()
Theorem 12.6. For every € > 0, given an undirected graph G = (V,E) where |V| = n, there exists a
polynomial time (en?* + 2n+/2n log n)-additive approximation algorithm for MAXCUT.
The algorithm has three main procedures:

1. Choose a set S of O(log 1) vertices at random and guess the values {x; }cs.

2. Use the fixed values {x;};cs to estimate R;(x): Use linear programming the solve the following in
polynomial time.

max R;
y:Vi,0<y;<1 ; Yifi

3. “Round” each y; € [0,1] to x; € {0,1}.

Roughly speaking, the strategy is reducing the quadratic problem to linear problem by guessing a small
part of the vertices and estimating R;(x), and then reducing the integer problem to linear programming by
relaxing the constraints.

Step[1}

Lemma 12.7. Let aq,...,a, € [—M, M] Choose S C {1,...,n} at random and with replacement such
that |S| = glogn. Then

I
QR IN

i=1

rj:
NI
=
<
Pyre
I\
]
©|=
I\
rj:
2
=
<

with probability at least 1 — 1/n? over choice of S.
Proof. We rely on Hoeffding’s inequality.

Lemma 12.8 (Hoeffding’s). For independent random variables z1, . .., zy, if for everyi € [n], —M < z; <
M, then
Pr [

Forj=1,...,¢logn we define the random variable X; to be the j-th element whose index is chosen to
be in the set S, so that these variables are independent (because we chose elements of S with replacement)

and for every j, E[X;] = L™ ;. Applying Hoeffding’s inequality with t = M - |S] - \/g gives

T n

> | < o2t/ (nM?)

ZZ,‘ — IE[ZZZ']

1

glOng - —22/(glog nM?) 1
Pr|Y_X;i—E[)_Xj]| >t| =Pr||) a— Y ai| >t <2 8108 < .
i j ics L n
Multiplying ;e a; — £ k;lg =Y a;by [§] = giogn We get the desired bound. O

73

We now show how to apply Lemma for Step[l} Fix i € V, define

- 1—x]' iijN(i)
7 0 otherwise

Then we have }_; 4; = R;(x). Randomly choose S such that [S| = glogn. Foreveryi € S, fix x; € {0,1}.
Apply Lemma with ¢ = 1/€%, M = 1, then with probability at least 1 — 1/n?,

p;i = |nS| Zaj € [Ri(x) — ne, Ri(x) + nel. (12.2)
jE€S

For the same S, union bounding over all i € V, we have that with probability at least 1 — 1/n, for every
i€V, pi € [Ri(x) —ne, Ri(x) + nel.

If our guess of {x;};cs is correct, we can compute such p; foreachi € V.
Step [21 Suppose that our guess of {x;};cs is correct and we have computed p; such that p; € [R;(x) —
ne, Ri(x) + ne| for each i € V where x is the optimal solution. In this step, we solve the following linear
program in polynomial time:

OPT* .= sup Z Yipi
y:vien],0<y;€l ie[n]
pi—ne<R;(y)<p;+ne

By the linear program, we obtain y such that
Y. viRi(y) =) vi(pi — ne)
i€[n] i€n]

> Y yipi —n’e (since Y, y; < 1)

ien]

> 2 Xi0i — n’e By optimality of linear program
ien]

> Y xi(Ri(x) — ne) — n’e (By Equation[12.2)

ie[n)

> Y xiRi(x) — 2n*e = MAXCUT(G) — 2n’e (12.3)

=n

Step 3 In the last step, we round the real value solution y into an integer solution. For each i € [n], we set
independently

(12.4)

, 1 w.p. (with probability) y;
10 wp.1-— Yi

Lemma 12.9. Suppose ay = b and for every i € [n],
probability at least 1 — 1/n?, by Hoeffding’s inequality,

a-z € [b—M/2nlogn,b+ My/2nlogn]

In our setting, we set 4 such that a - y = R;(y). Then, by the above lemma (setting M = 1), for every

i€ [n],
Ri(z) € [Ri(y) — v/2nlogn, Ri(y) + \/2nlogn|

74

a;| < M. Define z as in Equation Then with

with probability at least 1 — 1/# by union bound.
Finally, we have

Y zi-Ri(z) > Y zi- (Ri(y) — /2nlogn)

i€n] i€[n]
> Y zi-Ri(y) —ny/2nlogn
ien]

> Y yi-Ri(y) — ny/2nlogn —ny/2nlogn

(By applying Lemma fora; = R;(y))
> MAXCUT(G) — en* — 2n+/2nlogn (By Equation[12.3)

12.3 Quantum product state approximation algorithm on dense graphs

Let H be a 2-local Hamiltonian on n qubits. The strategy to find a good product state approximation is
roughly the same as the strategy to find an approximation for the classical MAXCUT problem.

Instead of doing a linear program, in the quantum case, we will solve some semi-definite programming
problem in the form of

ij)
SUP =5 profl - cpl" o Tr(Hp) TPy ppV @ p" ;1%“ o Tr(P @ Qp)
= () ij)
—5“pp:zkpkp,§1>®-~®p£”)Zk:pk;ﬂ(pk P)]e%: Y ayhTr(0p)) |

where H = ZZ] H and H ZP,QE{I,X,Y,Z} DCI(;:]Q)P &® Q
Here roughly speakmg, Zje N(i) 20 ocg,’]Q)Tr(Qp,({])) can be viewed as a quantity similar to R;(x) in the
previous section.

75

	Approximation algorithms for local Hamiltonian problems
	Product state approximation
	Classical approximation algorithm for MAXCUT on dense graphs
	Quantum product state approximation algorithm on dense graphs

